Changes

Jump to: navigation, search

Contact Spring Calculations

32 bytes removed, 08:55, 11 January 2023
m
Reverted edits by Doduco Redaktion (talk) to last revision by STZAdmin
{||'''Editor''':|DODUCO Holding GmbH===<br>Im Altgefäll 12<br>75181 Pforzheim / Germany<br>Phone +49 (0) 7231 602!--6.4.7--0<br>Contact Spring Calculations===Fax +49 (0) 7231 602-398<brfigure id="fig:Oneside_fixed_contact_bending_spring">Mail[[File: info@doducoOne side fixed contact bending spring.net<br>jpg|-right|'''Managing Directors''':thumb|One side fixed contact bending spring]]Dr. Hans-Joachim Dittloff (Vorsitzender)<br/figure>Dr. Franz KasparThe influence of the dimensions can be illustrated best by using the single side fixed beam model <brxr id="fig:Oneside_fixed_contact_bending_spring"/>Hajo Kufahl<br!--(Fig. 6.20)-->. For small deflections the following equation is valid:|-|'''Registration''':|HRB 710592 AG Mannheim|-$F = \frac{3 \cdot E \cdot J}{L^3} $
|'''Consulting and Realisation'''where J is the momentum of inertia of the rectangular cross section of the beam:$J = \frac{B \cdot D^3}{12}$ |Steinbeis For springs with a circular cross- Transferzentrum Unternehmensentwicklung an der Hochschule Pforzheim (SZUE)sectional area the momentum of inertia is:$J=\pi D^4/64$:$D= Durchmesser$ To avoid plastic deformation of the spring the max bending force σ<sub>max<br/sub>cannot be exceeded:$\sigma_{max} = \frac{3 \cdot E \cdot D}{2L^2}\cdot_{max}$ The stress limit is defined through the fatigue limit and the 0.2% elongation limit resp.:$\times_{max} = \frac{2 \cdot L^2}{3 \cdot D \cdot E}R_{p0,2}$ Blücherstraße 32 <br/>75177 Pforzheim and/or<br/>https://www.szue.de/$F_{max} = \frac{B \cdot D^2}{6L}R_{p0,2}$ |-|<li>'''Revision and German versionSpecial Spring Shapes''':</li>|Christian Teitscheid - Teitscheid Freelance IT<brul>Barbarastraße 22 <brli>'''Triangular spring'''</li>47495 Rheinberg Deflection:$ \times = \frac{F}{2 \cdot E \cdot J}L^3$   :$= \frac{6 \cdot F}{E \cdot B}\cdot \frac{L^3}{D^3}$  Max. bending force:$\sigma_{max}= \frac{18 \cdot F \cdot L}{B \cdot D^2}$  <brli>'''Trapezoidal spring'''</li>httpDeflection:$ \times = \frac{F}{(2 + B_{min} /B_{max})}\times \frac{L^3}{E \cdot J}$  :$\times= \frac{12 \cdot F}{(2 + B_{min} /wwwB_{max})}\cdot \frac{L^3}{E \cdot B \cdot D^3}$  Max.teitscheid-freelance.debending force:$\sigma_{max}= \frac{18 \cdot F \cdot L}{(2 + B_{min} /B_{max}) \cdot B_{max} \cdot D^2 }$</ul>  ==References==[[Application Tables and Guideline Data for Use of Electrical Contact Design#References|-References]] |}[[de:Berechnung_von_Kontaktfedern]]

Navigation menu

Powered by