Changes

Jump to: navigation, search

Contact Spring Calculations

32 bytes added, 15:36, 27 January 2017
Contact Spring Calculations
==={||'''Editor''':|DODUCO Holding GmbH<!--6.4.7-br>Im Altgefäll 12<br>75181 Pforzheim / Germany<br>Phone +49 (0) 7231 602-0<br>Contact Spring Calculations===Fax +49 (0) 7231 602-398<figure id="fig:Oneside_fixed_contact_bending_spring"br>[[FileMail:One side fixed contact bending springinfo@doduco.jpgnet<br>|right-|thumb'''Managing Directors''':|One side fixed contact bending spring]]Dr. Hans-Joachim Dittloff (Vorsitzender)</figurebr>The influence of the dimensions can be illustrated best by using the single side fixed beam model Dr. Franz Kaspar<xr id="fig:Oneside_fixed_contact_bending_spring"/br>Hajo Kufahl<!br>|--(Fig. 6.20)-->. For small deflections the following equation is valid|'''Registration'''::$F = \frac{3 \cdot E \cdot J}{L^3} $|HRB 710592 AG Mannheim|-
where J is the momentum of inertia of the rectangular cross section of the beam|'''Consulting and Realisation''':$J = \frac{B \cdot D^3}{12}$ For springs with a circular cross|Steinbeis -sectional area the momentum of inertia is:$J=\pi D^4/64$:$D= Durchmesser$ To avoid plastic deformation of the spring the max bending force σTransferzentrum Unternehmensentwicklung an der Hochschule Pforzheim (SZUE)<sub>max</subbr> cannot be exceeded:$\sigma_{max} = \frac{3 \cdot E \cdot D}{2L^2}\cdot_{max}$ The stress limit is defined through the fatigue limit and the 0.2% elongation limit resp.:$\times_{max} = \frac{2 \cdot L^2}{3 \cdot D \cdot E}R_{p0,2}$ Blücherstraße 32 <br />and/or75177 Pforzheim <br />https:$F_{max} = \frac{B \cdot D^2}{6L}R_{p0,2}$//www.szue.de/|- <li>|'''Special Spring ShapesRevision and German version'''</li>:|Christian Teitscheid - Teitscheid Freelance IT<ulbr>Barbarastraße 22 <li>'''Triangular spring'''</librDeflection:$ \times = \frac{F}{2 \cdot E \cdot J}L^3$   :$= \frac{6 \cdot F}{E \cdot B}\cdot \frac{L^3}{D^3}$  Max. bending force:$\sigma_{max}= \frac{18 \cdot F \cdot L}{B \cdot D^2}$  47495 Rheinberg <li>'''Trapezoidal spring'''</librDeflectionhttp:$ \times = \frac{F}{(2 + B_{min} /B_{max})}\times \frac{L^3}{E \cdot J}$  :$\times= \frac{12 \cdot F}{(2 + B_{min} /B_{max})}\cdot \frac{L^3}{E \cdot B \cdot D^3}$  Maxwww.teitscheid-freelance. bending force:$\sigma_{max}= \frac{18 \cdot F \cdot L}{(2 + B_{min} de/B_{max}) \cdot B_{max} \cdot D^2 }$</ul>|-  ==References==[[Application Tables and Guideline Data for Use of Electrical Contact Design#References|References]] [[de:Berechnung_von_Kontaktfedern]]}

Navigation menu

Powered by