Changes

Jump to: navigation, search

Silver Based Materials

9,597 bytes removed, 14:17, 23 November 2022
no edit summary
|}
</figtable>
 
<xr id="fig:Influence of 1 10 atom of different alloying metals"/><!--Fig. 2.47:--> Influence of 1-10 atom% of different alloying metals on the electrical resistivity of silver
 
<xr id="fig:Electrical resistivity p of AgCu alloys"/><!--Fig. 2.48:--> Electrical resistivity p of AgCu alloys
<div class="multiple-images">
Dispersion hardened alloys of silver with 0.5 wt% MgO and NiO (ARGODUR 32) are produced by internal oxidation. While the melt-metallurgical alloy is easy to cold-work and form, the material becomes very hard and brittle after dispersion hardening. Compared to fine silver and hard-silver, this material has a greatly improved temperature stability and can be exposed to brazing temperatures up to 800°C without decreasing its hardness and tensile strength.
Because of these mechanical properties and its high electrical conductivity ARGODUR 32 is mainly used in the form of contact springs that are exposed to high thermal and mechanical stresses in relays and contactors for aeronautic applications.
 
 
<xr id="fig:Phase diagram of silver copper"/><!--Fig. 2.52:--> Phase diagram of silver-copper
 
<xr id="fig:Phase diagram of silver cadmium"/><!--Fig. 2.53:--> Phase diagram of silver-cadmium
 
<xr id="fig:Strain hardening of AgCu3 by cold working"/><!--Fig. 2.54:--> Strain hardening of AgCu3 by cold working
 
<xr id="fig:Softening of AgCu3 after annealing"/><!--Fig. 2.55:--> Softening of AgCu3 after annealing for 1 hr after 80% cold working
 
<xr id="fig:Strain hardening of AgCu5 by cold working"/><!--Fig. 2.56:--> Strain hardening of AgCu5 by cold working
 
<xr id="fig:Softening of AgCu5 after annealing"/><!--Fig. 2.57:--> Softening of AgCu5 after annealing for 1 hr after 80% cold working
 
<xr id="fig:Strain hardening of AgCu 10 by cold working"/><!--Fig. 2.58:--> Strain hardening of AgCu 10 by cold working
 
<xr id="fig:Softening of AgCu10 after annealing"/><!--Fig. 2.59:--> Softening of AgCu10 after annealing for 1 hr after 80% cold working
<xr id="fig:Strain hardening of AgCu28 by cold working"/><!--Fig. 2.60:--> Strain hardening of AgCu28 by cold working
 
<xr id="fig:Softening of AgCu28 after annealing"/><!--Fig. 2.61:--> Softening of AgCu28 after annealing for 1 hr after 80% cold working
 
<xr id="fig:Strain hardening of AgNiO15 by cold working"/><!--Fig. 2.62:--> Strain hardening of AgNi0.15 by cold working
 
<xr id="fig:Softening of AgNiO15 after annealing"/><!--Fig. 2.63:--> Softening of AgNi0.15 after annealing for 1 hr after 80% cold working
 
<xr id="fig:Strain hardening of ARGODUR 27"/><!--Fig. 2.64:--> Strain hardening of AgCu1.8Ni0.2 (ARGODUR 27) by cold working
 
<xr id="fig:Softening of ARGODUR 27 after annealing"/><!--Fig. 2.65:--> Softening of AgCu1.8Ni0.2 (ARGODUR 27) after annealing for 1 hr after 80% cold working
<div class="multiple-images">
AgPd alloys are mostly used in relays for the switching of medium to higher loads (> 60V, > 2A) as shown in <xr id="tab:Application Examples and Forms of Suppl for Silver-Palladium Alloys"/><!--(Table 2.20)-->. Because of the high palladium price, these formerly solid contacts have been widely replaced by multi-layer designs such as AgNi0.15 or AgNi10 with a thin Au surface layer. A broader field of application for AgPd alloys remains in the wear resistant sliding contact systems.
 
<xr id="fig:Phase diagram of silver palladium"/><!--Fig. 2.66:--> Phase diagram of silver-palladium
 
<xr id="fig:Strain hardening of AgPd30 by cold working"/><!--Fig. 2.67:--> Strain hardening of AgPd30 by cold working
 
<xr id="fig:Strain hardening of AgPd50 by cold working"/><!--Fig. 2.68:--> Strain hardening of AgPd50 by cold working
 
<xr id="fig:Strain hardening of AgPd30Cu5 by cold working"/><!--Fig. 2.69:--> Strain hardening of AgPd30Cu5 by cold working
 
<xr id="fig:Softening of AgPd30 AgPd50 AgPd30Cu5"/><!--Fig. 2.70:--> Softening of AgPd30, AgPd50, and AgPd30Cu5 after annealing of 1 hr after 80% cold working
<div class="multiple-images">
|}
</figtable>
 
 
<xr id="fig:Strain hardening of AgNi9010 by cold working"/><!--Fig. 2.71:--> Strain hardening of Ag/Ni 90/10 by cold working
 
<xr id="fig:Softening of AgNi9010 after annealing"/><!--Fig. 2.72:--> Softening of Ag/Ni 90/10 after annealing for 1 hr after 80% cold working
 
<xr id="fig:Strain hardening of AgNi8020"/><!--Fig. 2.73:--> Strain hardening of Ag/Ni 80/20 by cold working
 
<xr id="fig:Softening of AgNi8020 after annealing"/><!--Fig. 2.74:--> Softening of Ag/Ni 80/20 after annealing for 1 hr after 80% cold working
 
<xr id="fig:Micro structure of AgNi9010"/><!--Fig. 2.75:--> Micro structure of Ag/Ni 90/10 a) perpendicular to the extrusion direction b) parallel to the extrusion direction
 
<xr id="fig:Micro structure of AgNi 8020"/><!--Fig. 2.76:--> Micro structure of Ag/Ni 80/20 a) perpendicular to the extrusion direction b) parallel t o the extrusion direction
Using different silver powders and minor additives for the basic Ag and CdO, starting materials can help influence certain contact properties for specialized applications.
 
<xr id="fig:Strain hardening of internally oxidized AgCdO9010"/><!--Fig. 2.77:--> Strain hardening of internally oxidized Ag/CdO 90/10 by cold working
 
<xr id="fig:Softening of internally oxidized AgCdO9010"/><!--Fig. 2.78:--> Softening of internally oxidized (i.o.) Ag/CdO 90/10 after annealing for 1 hr after 40% cold working
 
<xr id="fig:Strain hardening of AgCdO9010P"/><!--Fig. 2.79:--> Strain hardening of powder metallurgical (p.m.) Ag/CdO 90/10 by cold working
 
<xr id="fig:Softening of AgCdO9010P after annealing"/><!--Fig. 2.80:--> Softening of powder metallurgical Ag/CdO 90/10 after annealing for 1 hr after 40% cold working
 
<xr id="fig:Strain hardening of AgCdO8812"/><!--Fig. 2.81:--> Strain hardening of powder metallurgical Ag/CdO 88/12
 
<xr id="fig:Softening of AgCdO8812WP after annealing"/><!--Fig. 2.82:--> Softening of powder metallurgical Ag/CdO 88/12 after annealing for 1 hr after different degrees of cold working
 
<xr id="fig:Micro structure of AgCdO9010"/><!--Fig. 2.83:--> Micro structure of Ag/CdO 90/10 i.o. a) close to surface b) in center area
 
<xr id="fig:Micro structure of AgCdO9010P"/><!--Fig. 2.84:--> Micro structure of Ag/CdO 90/10 p.m.: a) perpendicular to extrusion direction b) parallel to extrusion direction
<div class="multiple-images">
Further processing of these differently produced powders follows the conventional processes of pressing, sintering and hot extrusion to wires and strips. From these contact parts, contact rivets and tips are manufactured. To obtain a brazable backing, the same processes as used for Ag/CdO are applied. As for Ag/CdO, larger contact tips can also be manufactured using the press-sinter-repress (PSR) process <xr id="tab:Physical Properties of Powder Metallurgical Silver-Metal Oxide Materials with Fine Silver Backing Produced by the Press-Sinter-Repress Process"/><!--(Table 2.27)-->.
<div id="figures">
<xr id="fig:Strain hardening of AgSNO2 92 8 PE"/><!--Fig. 2.87:--> Strain hardening of Ag/SnO<sub>2</sub> 92/8 PE by cold working
 
<xr id="fig:Softening of AgSnO2 92 8 PE"/><!--Fig. 2.88:--> Softening of Ag/SnO<sub>2</sub> 92/8 PE after annealing for 1 hr after 40% cold working
 
<xr id="fig:Strain hardening of Ag SnO2 88 12 PE"/><!--Fig. 2.89:--> Strain hardening of Ag/SnO<sub>2</sub> 88/12 PE by cold working
 
<xr id="fig:Softening of Ag SnO2 88 12 PE after annealing"/><!--Fig. 2.90:--> Softening of Ag/SnO<sub>2</sub> 88/12 PE after annealing for 1 hr after 40% cold working
 
<xr id="fig:Strain hardening of oxidized AgSnO2 88 12 PW4"/><!--Fig. 2.91:--> Strain hardening of oxidized Ag/SnO<sub>2</sub> 88/12 PW4 by cold working
 
<xr id="fig:Softening of Ag SnO2 88 12 PW4 after annealing"/><!--Fig. 2.92:--> Softening of Ag/SnO<sub>2</sub> 88/12 PW4 after annealing for 1 hr after 30% cold working
 
<xr id="fig:Strain hardening of internally oxidized Ag SnO2 88 12 TOS F"/><!--Fig. 2.97:--> Strain hardening of internally oxidized Ag/SnO<sub>2</sub> 88/12 TOS F by cold working
 
<xr id="fig:Softening of Ag SnO2 88 12 TOS F after annealing"/><!--Fig. 2.98:--> Softening of Ag/SnO<sub>2</sub> 88/12 TOS F after annealing for 1 hr after 30% cold working
 
<xr id="fig:Strain hardening of internally oxidized Ag SnO2 88 12P"/><!--Fig. 2.99:--> Strain hardening of internally oxidized Ag/SnO<sub>2</sub> 88/12P by cold working
 
<xr id="fig:Softening of Ag SnO2 88 12P after annealing"/><!--Fig. 2.100:--> Softening of Ag/SnO<sub>2</sub> 88/12 SP after annealing for 1 hr after 40% cold working
 
<xr id="fig:Strain hardening of Ag SnO2 88 12 WPD"/><!--Fig. 2.105:--> Strain hardening of Ag/SnO<sub>2</sub> 88/12 WPD by cold working
 
<xr id="fig:Softening of Ag SnO2 88 12 WPD after annealing"/><!--Fig. 2.106:--> Softening of Ag/SnO<sub>2</sub> 88/12 WPD after annealing for 1 hr after different degrees of cold working
 
<xr id="fig:Micro structure of Ag SnO2 92 8 PE"/><!--Fig. 2.109:--> Micro structure of Ag/SnO<sub>2</sub> 92/8 PE: a) perpendicular to extrusion direction
b) parallel to extrusion direction
 
<xr id="fig:Micro structure of Ag SnO2 88 12 PE"/><!--Fig. 2.110:--> Micro structure of Ag/SnO<sub>2</sub> 88/12 PE: a) perpendicular to extrusion direction
b) parallel to extrusion direction
 
<xr id="fig:Micro structure of Ag SnO2 88 12 PW"/><!--Fig. 2.111:--> Micro structure of Ag/SnO<sub>2</sub> 88/12 SPW: a) perpendicular to extrusion direction
b) parallel to extrusion direction
 
<xr id="fig:Micro structure of Ag SnO2 88 12 TOS F"/><!--Fig. 2.114:--> Micro structure of Ag/SnO<sub>2</sub> 88/12 TOS F: a) perpendicular to extrusion direction
b) parallel to extrusion direction
 
<xr id="fig:Micro structure of Ag SnO2 86 14 WPC"/><!--Fig. 2.115:--> Micro structure of Ag/SnO<sub>2</sub> 86/14 WPC: a) perpendicular to extrusion direction
b) parallel to extrusion direction, 1) AgSnO<sub>2</sub> contact layer, 2) Ag backing layer
 
<xr id="fig:Micro structure of Ag SnO2 92 8 WTOS F"/><!--Fig. 2.116:--> Micro structure of Ag/SnO<sub>2</sub> 92/8 WTOS F: a) perpendicular to extrusion direction
b) parallel to extrusion direction,1) AgSnO<sub>2</sub> contact layer, 2) Ag backing layer
 
<xr id="fig:Micro structure of Ag SnO2 88 12 WPD"/><!--Fig. 2.117:--> Micro structure of Ag/SnO<sub>2</sub> 88/12 WPD: parallel to extrusion direction
1) AgSnO<sub>2</sub> contact layer, 2) Ag backing layer
 
<xr id="fig:Micro structure of Ag SnO2 88 12 WPX"/><!--Fig. 2.118:--> Micro structure of Ag/SnO<sub>2</sub> 88/12 WPX:parallel to extrusion direction
1) AgSnO<sub>2</sub> contact layer, 2) Ag backing layer
 
<xr id="fig:Micro structure of Ag SnO2 86 14 WPX"/><!--Fig. 2.119:--> Micro structure of Ag/SnO<sub>2</sub> 86/14 WPX: a) perpendicular to extrusion direction
b) parallel to extrusion direction, 1) AgSnO<sub>2</sub> contact layer, 2) Ag backing layer
</div>
<div class="multiple-images">
<figure id="fig:Micro structure of Ag SnO2 88 12 TOS F">
[[File:Micro structure of Ag SnO2 88 12 TOS F.jpg|left|thumb|<caption>Micro structure of Ag/SnO<sub>2</sub> 88/12 TOS F: a) perpendicular to extrusion direction b) parallel to extrusion direction</caption>]]
</figure>
 
<figure id="fig:Micro structure of Ag SnO2 86 14 WPC">
[[File:Micro structure of Ag SnO2 86 14 WPC.jpg|left|thumb|<caption>Micro structure of Ag/SnO<sub>2</sub> 86/14 WPC: a) perpendicular to extrusion direction b) parallel to extrusion direction, 1) AgSnO2 contact layer, 2) Ag backing layer</caption>]]
</figure>
</figure>
<figure id="fig:Micro structure of Ag SnO2 88 12 WPX">
[[File:Micro structure of Ag SnO2 88 12 WPX.jpg|left|thumb|<caption>Micro structure of Ag/SnO<sub>2</sub> 88/12 WPX:parallel to extrusion direction 1) AgSnO2 contact layer, 2) Ag backing layer</caption>]]
</figure>
 
<figure id="fig:Micro structure of Ag SnO2 86 14 WPX">
[[File:Micro structure of Ag SnO2 86 14 WPX.jpg|left|thumb|<caption>Micro structure of Ag/SnO<sub>2</sub> 86/14 WPX: a) perpendicular to extrusion direction b) parallel to extrusion direction, 1) AgSnO2 contact layer, 2) Ag backing layer</caption>]]
</figure>
</div>
<div class="clear"></div>

Navigation menu

Powered by