Changes

Jump to: navigation, search

Naturharte Kupfer-Legierungen

27,532 bytes added, 00:48, 23 September 2014
temp edit
Legierungen wie Messinge (CuZn), Zinnbronzen (CuSn) und Neusilber (CuNiZn), bei denen die gewünschte Festigkeit durch Kaltumformung erzeugt wird, werden als naturharte Legierungen bezeichnet. Zu dieser Gruppe sind auch die Silberbronzen mit Silbergehalten von 2 bis 6 Massen-% zu zählen.

====<!--5.1.4.1-->Kupfer-Zink-Legierungen (Messing)====

Kupfer-Zink-Legierungen finden wegen ihrer ausreichend hohen elektrischen
Leitfähigkeit, der gegenüber Kupfer höheren Festigkeit bei noch guter Verarbeitbarkeit
und des günstigen Preises breite Anwendung als Kontaktträgerwerkstoffe
in Schaltgeräten der Energietechnik (<xr id="tab:Physical_Properties_of_ Selected_Copper_Zinc_Alloys"/><!--(Tab. 5.7)--> und <xr id="tab:Mechanical_Properties_of_Selected_Copper_Zinc_Alloys"/><!--(Tab. 5.8)-->). Besonders
geeignet sind die sehr gut kaltbildsamen Messinge bis 37 Massen-% Zn, die
nach dem Zustandsdiagramm ausschließlich aus der &alpha;-Phase aufgebaut sind
(<xr id="fig:Phase_diagram_of_copper_zinc_for_the_range_of_0_60_wt_zinc"/><!--(Fig. 5.5)-->). Beachtenswert ist die starke Abhängigkeit der Dichte, der elektrischen
Leitfähigkeit und der Festigkeitseigenschaften vom Zinkgehalt (<xr id="fig:Mechanical_properties_of_brass_ depending_on_the_copper_content_after_cold_working_of_0_and_50"/><!--(Fig. 5.6)-->).

<figtable id="tab:Physical_Properties_of_ Selected_Copper_Zinc_Alloys">
<caption>'''<!--Table 5.7:-->Physikalische Eigenschaften einiger Kupfer-Zink-Legierungen'''</caption>

{| class="twocolortable" style="text-align: left; font-size: 12px"
|-
!Werkstoff<br />Bezeichnung<br />EN UNS
!Zusammensetzung<br />[wt%]
!Dichte<br />[g/cm<sup>3</sup>]
!colspan="2" style="text-align:center"|Elektr. Leitfähigkeit
!Elektr. Widerstand[μΩ·cm]
!Wärmeleitfähigkeit<br />[W/(m·K)]
!Lin. Ausdehnungskoeff.<br />[10<sup>-6</sup>/K]
!E-Modul<br />[GPa]
!Erweichungstemperatur<br />(ca. 10% Festigkeitsabfall)<br />[°C]
!Schmelzbereich<br />[°C]
|-
!
!
!
![MS/m]
![% IACS]
!
!
!
!
!
!
|-
|CuZn5<br />CW500L<br />C21000
|Cu 94 - 96<br />Zn Rest
|8.87
|33
|57
|3.8
|243
|18.0
|127
|
|1055 - 1065
|-
|CuZn10<br />CW501L<br />C22000
|Cu 89 - 91<br />Zn Rest
|8.79
|25
|43
|4.0
|184
|18.2
|125
|
|1030 - 1045
|-
|CuZn15<br />CW502L<br />C23000
|Cu 84 - 86<br />Zn Rest
|8.75
|21
|36
|4.8
|159
|18.5
|122
|ca. 250
|1005 - 1025
|-
|CuZn20<br />CW503L<br />C24000
|Cu 79 - 81<br />Zn Rest
|8.67
|19
|33
|5.3
|142
|18.8
|120
|ca. 240
|980 - 1000
|-
|CuZn30<br />CW505L<br />C26000
|Cu 69 - 71<br />Zn Rest
|8.53
|16
|28
|6.3
|124
|19.8
|114
|ca. 230
|910 - 940
|-
|CuZn37<br />CW508L<br />C27200
|Cu 62 - 64<br />Zn Rest
|8.45
|15.5
|27
|6.5
|121
|20.2
|110
|ca. 220
|900 - 920
|-
|CuZn23Al3Co<br />CW703R<br />C68800
|Cu 73.5<br />Al 3.4<br />Co 0.4<br />Zn Rest
|8.23
|9.8
|17
|10.2
|78
|18.2
|116
|ca. 280
|950 - 1000
|}
</figtable>


<figtable id="tab:Mechanical_Properties_of_Selected_Copper_Zinc_Alloys">
<caption>'''<!--Table 5.8:-->Mechanische Eigenschaften einiger Kupfer-Zink-Legierungen'''</caption>

{| class="twocolortable" style="text-align: left; font-size: 12px"
|-
!Werkstoff
!Zustand
!Zugfestigkeit R<sub>m</sub><br />[MPa]
!0,2% Dehngrenze<br />R<sub>p02</sub><br />[MPa]
!Bruchdehnung<br />A<sub>50</sub><br />[%]
!Vickershärte<br />HV
!Biegeradius<sup>1)</sup><br />min senkrecht zur<br />Walzrichtung
!Biegeradius<sup>1)</sup><br />min parallel zur<br />Walzrichtung
!Federbiegegrenze σ<sub>FB</sub><br />[MPa]
!Biegewechselfestigkeit σ<sub>BW</sub><br />[MPa]
|-
|CuZn5
|R 230<br />R 270<br />R 340
|230 - 280<br />270 -350<br />340 - 440
|&le; 130<br />&ge; 200<br />&ge; 280
|36<br />12<br />4
|45 - 90<br />70 - 120<br />110 - 160
|0 x t<br />0 x t<br />
|0 x t<br />0 x t<br />
|250
|130
|-
|CuZn10
|R 240<br />R 280<br />R 350
|240 - 290<br />280 - 360<br />350 - 450
|&le; 140<br />&ge; 200<br />&ge; 290
|36<br />13<br />4
|50 - 100<br />80 - 130<br />110 - 160
|0 x t<br />0 x t<br />
|0 x t<br />0 x t<br />
|260
|140
|-
|CuZn15
|R 300<br />R 350<br />R 410<br />R 480<br />R 550
|300 - 370<br />350 - 420<br />410 - 490<br />480 - 560<br />&ge; 550
|&le; 150<br />&ge; 270<br />&ge; 360<br />&ge; 420<br />&ge; 480
|16<br />8<br />3<br />1<br />
|85 - 120<br />100 - 150<br />125 - 155<br />150 - 180<br />&ge; 170
|0 x t<br />0 x t<br />0 x t<br />1 x t<br />
|0 x t<br />0 x t<br />1 x t<br />3 x t<br />
|300
|160
|-
|CuZn20
|R 270<br />R 320<br />R 400<br />R 480
|270 - 320<br />320 - 400<br />400 - 480<br />480 - 570
|&le; 150<br />&ge; 200<br />&ge; 320<br />&ge; 440
|38<br />20<br />5<br />3
|55 - 105<br />95 - 155<br />120 - 180<br />&ge; 150
|0 x t<br />0 x t<br />0 x t<br />
|0 x t<br />0 x t<br />0 x t<br />
|320
|180
|-
|CuZn30
|R 270<br />R 350<br />R 410<br />R 480
|270 - 350<br />350 - 430<br />410 - 490<br />480 - 580
|&le; 160<br />&ge; 200<br />&ge; 430<br />&ge; 430
|40<br />21<br />9<br />4
|95 - 125<br />120 - 155<br />150 - 180<br />170 - 200
|0 x t<br />0 x t<br />0 x t<br />1 x t
|0 x t<br />1 x t<br />2 x t<br />3 x t
|330
|180
|-
|CuZn37
|R 300<br />R 350<br />R 410<br />R 480<br />R 550
|300 - 370<br />350 - 440<br />410 - 490<br />480 - 560<br />550 - 640
|&le; 180<br />&ge; 200<br />&ge; 260<br />&ge; 430<br />&ge; 500
|38<br />19<br />8<br />3<br />
|55 - 105<br />95 - 155<br />120 - 190<br />&ge; 150<br />&ge; 170
|0 x t<br />0 x t<br />0 x t<br />0.5 x t<br />1 x t
|0 x t<br />0 x t<br />0 x t<br />1 x t<br />3 x t
|350
|190
|-
|CuZn23Al3Co
|R 660<br />R 740<br />R 820
|660 - 750<br />740 - 830<br />&ge; 820
|&ge; 580<br />&ge; 660<br />&ge; 780
|10<br />3<br />2
|190 - 220<br />210 - 240<br />&ge; 235
|0 x t<br />1 x t<br />
|0 x t<br />2 x t<br />
|&ge; 400
|230
|}
</figtable>
<sup>1)</sup> t: Banddicke max 0,5 mm

Nachteile der Kupfer-Zink-Legierungen sind die mit steigendem Zinkgehalt
zunehmende Neigung zur Spannungsrisskorrosion und das im Vergleich zu
anderen Kupferlegierungen schlechte Spannungsrelaxationsverhalten.

Von den Sondermessingen kommt vor allem CuZn23Al3Co als Kontaktträgerwerkstoff
zum Einsatz. Dieser Werkstoff erreicht wesentlich höhere Festigkeitswerte
als die Standard-Messinge. Obwohl CuZn23Al3Co zu den naturharten
Legierungen gerechnet wird, erreicht er bei geeigneter Anlassbehandlung eine
ausgeprägte Festigkeitszunahme.

<xr id="fig:Phase_diagram_of_copper_zinc_for_the_range_of_0_60_wt_zinc"/><!--Fig. 5.5:--> Zustandsdiagramm Kupfer-Zink für den Bereich 0 bis 60 Massen-% Zink

<xr id="fig:Mechanical_properties_of_brass_ depending_on_the_copper_content_after_cold_working_of_0_and_50"/><!--Fig. 5.6:--> Festigkeitseigenschaften von Messing in Abhängigkeit vom Kupfergehalt (Kaltumformung 0 und 50%)

<xr id="fig:Strain hardening of CuZn36 by cold forming"/><!--Fig. 5.7:--> Verfestigungsverhalten von CuZn36 durch Kaltumformung

<xr id="fig:Softening of CuZn36 after 3 hrs annealing after 25% cold working"/><!--Fig. 5.8:--> Erweichungsverhalten von CuZn36 nach 3h Glühdauer und einer Kaltumformung von 25%

<div class="multiple-images">

<figure id="fig:Phase_diagram_of_copper_zinc_for_the_range_of_0_60_wt_zinc">
[[File:Phase diagram of copper zinc.jpg|left|thumb|<caption>Zustandsdiagramm Kupfer-Zink für den Bereich 0 bis 60 Massen-% Zink</caption>]]
</figure>

<figure id="fig:Mechanical_properties_of_brass_ depending_on_the_copper_content_after_cold_working_of_0_and_50">
[[File:Mechanical properties of brass depending on the copper content.jpg|left|thumb|<caption>Festigkeitseigenschaften von Messing in Abhängigkeit vom Kupfergehalt (Kaltumformung 0 und 50%)</caption>]]
</figure>

<figure id="fig:Strain hardening of CuZn36 by cold forming">
[[File:Strain hardening of CuZn36 by cold forming.jpg|left|thumb|<caption>Verfestigungsverhalten von CuZn36 durch Kaltumformung</caption>]]
</figure>

<figure id="fig:Softening of CuZn36 after 3 hrs annealing after 25% cold working">
[[File:Softening of CuZn36 25.jpg|left|thumb|<caption>Erweichungsverhalten von CuZn36 nach 3h Glühdauer und einer Kaltumformung von 25%</caption>]]
</figure>
</div>
<div class="clear"></div>

====<!--5.1.4.2-->Kupfer-Zinn-Legierungen (Zinnbronze)====

Because of their good elastic spring properties and formability the copper-tin alloys CuSn6 and CuSn8 are standard materials for spring contact elements in electrome-chanical components such as connectors, switches, and relays <xr id="tab:Physical Properties of Copper-Tin Alloys"/><!--(Tab. 5.9)--> and <xr id="tab:Mechanical Properties of Copper-Tin Alloys"/><!--(Tab.5.10)-->. Besides these other alloys such as CuSn4 and CuSn5 and the multi-metal tin bronze CuSn3Zn9 have significant usage – mainly in North America. <!--5.10-->
<xr id="fig:Phase diagram of the Cu-Sn system for the range of 0 – 30 wt% Sn"/> shows the copper rich side of the phase diagram for the CuSn system. The mechanical property values achieved by cold forming are superior to these of the brass alloys <xr id="fig:Mechanical properties of tin bronze depending on the tin content (cold working 0 and 50%)"/><!--(Fig. 5.11)-->. They increase significantly with increasing Sn content. The work hardening and softening behavior are shown for the example of CuSn8 in <xr id="fig:Strain hardening of CuSn8 by cold working"/><!--Figures 5.12--> and <xr id="fig:Softening of CuSn8 after 3 hrs annealing after 50% cold working"/><!--Fig. 5.13-->. The stress relaxation properties for CuSn alloys are good for up to 100°C, deteriorate however quickly for temperatures above 150°C.



<figtable id="tab:Physical Properties of Copper-Tin Alloys">
<caption>'''<!--Table 5.9:-->Physical Properties of Copper-Tin Alloys'''</caption>

{| class="twocolortable" style="text-align: left; font-size: 12px"
|-
!Material<br />Designation<br />EN UNS
!Composition<br />[wt%]
!Density<br />[g/cm<sup>3</sup>]
!colspan="2" style="text-align:center"|Electrical<br />Conductivity
!Electrical<br />Resistivity<br />[μΩ·cm]
!Thermal<br />Conductivity<br />[W/(m·K)]
!Coeff. of Linear<br />Thermal<br />Expansion<br />[10<sup>-6</sup>/K]
!Modulus of<br />Elasticity<br />[GPa]
!Softening Temperature<br />(approx. 10% loss in<br />strength)<br />[°C]
!Melting<br />Temp Range<br />[°C]
|-
!
!
!
![MS/m]
![% IACS]
!
!
!
!
!
!
|-
|CuSn4<br />CW450K<br />C51100
|Sn 3.5 - 4.5<br />P 0.01 - 0.4<br />Cu Rest
|8.85
|12.0
|20
|8.3
|118
|18.0
|120
|ca. 260
|960 - 1060
|-
|CuSn5<br />CW451K<br />C51000
|Sn 4.5 - 5.5<br />P 0.01 - 0.4<br />Cu Rest
|8.85
|10.0
|17
|10.0
|96
|18.0
|120
|ca. 260
|940 - 1050
|-
|CuSn6<br />CW452K<br />C51900
|Sn 5.5 - 7.0<br />P 0.01 - 0.4<br />Cu Rest
|8.80
|9.0
|15
|11.1
|75
|18.5
|118
|ca. 280
|910 - 1040
|-
|CuSn8<br />CW453K<br />C52100
|Sn 7.5 - 8.5<br />P 0.01 - 0.4<br />Cu Rest
|8.80
|7.5
|13
|13.3
|67
|18.5
|115
|ca. 320
|875 - 1025
|-
|CuSn3Zn9<br />CW454K<br />C42500
|Zn 7.5 - 10<br />Sn 1.5 - 3.5<br />P 0.2<br />Ni 0.2<br />Cu Rest
|8.75
|12
|28
|6.2
|120
|18.4
|126
|ca. 250
|900 - 1015
|}
</figtable>



<figtable id="tab:Mechanical Properties of Copper-Tin Alloys">
<caption>'''<!--Table 5.10:-->Mechanical Properties of Copper-Tin Alloys'''</caption>

{| class="twocolortable" style="text-align: left; font-size: 12px"
|-
!Material
!Hardness<br />Condition
!Tensile Strength R<sub>m</sub><br />[MPa]
!0,2% Yield Strength<br />R<sub>p02</sub><br />[MPa]
!Elongation<br />A<sub>50</sub><br />[%]
!Vickers<br />Hardness<br />HV
!Bend Radius<sup>1)</sup><br />perpendicular to<br />rolling direction
!Bend Radius<sup>1)</sup><br />parallel to<br />rolling direction
!Spring Bending<br />Limit σ<sub>FB</sub><br />[MPa]
!Spring Fatigue<br />Limit σ<sub>BW</sub><br />[MPa]
|-
|CuSn4
|R 290<br />R 390<br />R 480<br />R 540<br />R 610
|290 - 390<br />390 - 490<br />480 - 570<br />540 - 630<br />&ge; 610
|&le; 190<br />&ge; 210<br />&ge; 420<br />&ge; 490<br />&ge; 540
|40<br />13<br />5<br />4<br />2
|70 - 100<br />115 - 155<br />150 - 180<br />170 - 200<br />&ge; 190
|0 x t<br />0 x t<br />0 x t<br />0 x t
|0 x t<br />0 x t<br />0 x t<br />1 x t
|420
|200
|-
|CuSn5
|R 310<br />R 400<br />R 490<br />R 550<br />R 630<br />R 690
|310 - 390<br />400 - 500<br />490 - 580<br />550 - 640<br />630 - 720<br />&ge; 690
|&le; 250<br />&ge; 240<br />&ge; 430<br />&ge; 510<br />&ge; 600<br />&ge; 670
|45<br />17<br />10<br />6<br />3
|75 - 105<br />120 - 160<br />160 - 190<br />180 - 210<br />200 - 230<br />&ge; 220
|0 x t<br />0 x t<br />0 x t<br />0 x t<br />1 x t
|0 x t<br />0 x t<br />0 x t<br />1 x t<br />2 x t
|460
|220
|-
|CuSn6
|R 350<br />R 420<br />R 500<br />R 560<br />R 640<br />R 720
|350 - 420<br />420 - 520<br />500 - 590<br />560 - 650<br />640 - 730<br />&ge; 720
|&le; 300<br />&ge; 260<br />&ge; 450<br />&ge; 500<br />&ge; 600<br />&ge; 690
|45<br />20<br />10<br />7<br />4
|80 - 110<br />125 - 165<br />160 - 190<br />180 - 210<br />200 - 230<br />&ge; 220
|0 x t<br />0 x t<br />0 x t<br />0 x t<br />1 x t
|0 x t<br />0 x t<br />0 x t<br />1 x t<br />2 x t
|480
|230
|-
|CuSn8
|R 370<br />R 450<br />R 540<br />R 600<br />R 660<br />R 740
|370 - 450<br />450 - 550<br />540 - 630<br />600 - 690<br />660 - 750<br />&ge; 740
|&le; 300<br />&ge; 280<br />&ge; 460<br />&ge; 530<br />&ge; 620<br />&ge; 700
|50<br />23<br />15<br />7<br />4
|90 - 120<br />135 - 175<br />170 - 200<br />190 - 220<br />210 - 240<br />&ge; 230
|0 x t<br />0 x t<br />0 x t<br />1 x t<br />2 x t
|0 x t<br />0 x t<br />0 x t<br />1 x t<br />2 x t
|520
|240
|-
|CuSn3Zn9
|R 320<br />R 380<br />R 430<br />R 510<br />R 580<br />R 660
|320 - 380<br />380 - 430<br />430 - 520<br />510 - 600<br />580 - 690<br />&ge; 660
|&le; 230<br />&ge; 200<br />&ge; 330<br />&ge; 430<br />&ge; 520<br />&ge; 610
|25<br />18<br />6<br />3<br />4
|80 - 110<br />110 - 140<br />140 - 170<br />160 - 190<br />180 - 210<br />&ge; 200
|0 x t<br />0 x t<br />0 x t<br />0 x t<br />1 x t
|0 x t<br />0 x t<br />0 x t<br />1 x t<br />2 x t
|500
|210
|}
</figtable>
<sup>1)</sup> t: Strip thickness max. 0.5 mm

<xr id="fig:Softening of CuZn36 50"/><!--Fig. 5.9:--> Softening of CuZn36 after 3 hrs annealing after 50% cold working)

<xr id="fig:Phase diagram of the Cu-Sn system for the range of 0 – 30 wt% Sn"/><!--Fig. 5.10:--> Phase diagram of the Cu-Sn system for the range of 0 – 30 wt% Sn)

<xr id="fig:Mechanical properties of tin bronze depending on the tin content (cold working 0 and 50%)"/><!--Fig. 5.11:--> Mechanical properties of tin bronze depending on the tin content (cold working 0 and 50%)

<xr id="fig:Strain hardening of CuSn8 by cold working"/><!--Fig. 5.12:--> Strain hardening of CuSn8 by cold working

<xr id="fig:Softening of CuSn8 after 3 hrs annealing after 50% cold working"/><!--Fig. 5.13:--> Softening of CuSn8 after 3 hrs annealing after 50% cold working

<div class="multiple-images">

<figure id="fig:Softening of CuZn36 50">
[[File:Softening of CuZn36 50.jpg|left|thumb|<caption>Softening of CuZn36 after 3 hrs annealing after 50% cold working</caption>]]
</figure>

<figure id="fig:Phase diagram of the Cu-Sn system for the range of 0 – 30 wt% Sn">
[[File:Phase diagram of the Cu Sn system.jpg|left|thumb|<caption>Phase diagram of the Cu-Sn system for the range of 0 – 30 wt% Sn</caption>]]
</figure>

<figure id="fig:Mechanical properties of tin bronze depending on the tin content (cold working 0 and 50%)">
[[File:Mechanical properties of tin bronze depending on the tin content.jpg|left|thumb|<caption>Mechanical properties of tin bronze depending on the tin content (cold working 0 and 50%)</caption>]]
</figure>

<figure id="fig:Strain hardening of CuSn8 by cold working">
[[File:Strain hardening of CuSn8 by cold working.jpg|left|thumb|<caption>Strain hardening of CuSn8 by cold working</caption>]]
</figure>

<figure id="fig:Softening of CuSn8 after 3 hrs annealing after 50% cold working">
[[File:Softening of CuSn8 50.jpg|left|thumb|<caption>Softening of CuSn8 after 3 hrs annealing after 50% cold working</caption>]]
</figure>
</div>
<div class="clear"></div>

====<!--5.1.4.3-->Copper-Nickel-Zinc Alloys (German Silver)====

Despite its lower electrical conductivity, the good spring properties, high corrosion resistance, and the good workability make copper-nickel-zinc alloys a frequently used spring contact carrier in switches and relays. As illustrated in the phase diagram the most commonly used materials are in the &alpha; -range which means that they are single-phase alloys <xr id="fig:Copper rich region of the ternary copper-nickel-zinc phase diagram with indication of the more commonly available german silver materials"/><!--(Fig. 5.14)-->. The formability and strength properties of german silver are comparable to those of the copper-tin alloys. The work hardening and softening behavior is illustrated on the example of CuNi12Zn24 in <xr id="fig:Strain hardening of CuNi12Zn24 by cold working"/><!--Figures 5.15--> and <xr id="fig:Softening of CuNi12Zn24 after 3 hrs annealing after 50% cold working"/><!--5.16-->.

The relaxation behavior of Cu-Ni-Zn alloys is superior to the one for the tin bronzes. Additional advantages are the very good weldability, brazing
properties, and the high corrosion resistance of these copper-nickel-zinc alloys.


<figtable id="tab:tab5.11">
<caption>'''<!--Table 5.11:-->Physical Properties of Copper-Nickel-Zinc Alloys'''</caption>

{| class="twocolortable" style="text-align: left; font-size: 12px"
|-
!Material<br />Designation<br />EN UNS
!Composition<br />[wt%]
!Density<br />[g/cm<sup>3</sup>]
!colspan="2" style="text-align:center"|Electrical<br />Conductivity
!Electrical<br />Resistivity<br />[μΩ·cm]
!Thermal<br />Conductivity<br />[W/(m·K)]
!Coeff. of Linear<br />Thermal<br />Expansion<br />[10<sup>-6</sup>/K]
!Modulus of<br />Elasticity<br />[GPa]
!Softening Temperature<br />(approx. 10% loss in<br />strength)<br />[°C]
!Melting<br />Temp Range<br />[°C]
|-
!
!
!
![MS/m]
![% IACS]
!
!
!
!
!
!
|-
|CuNi12Zn24<br />CW403J<br />C75700
|Cu 63- 66<br />Ni 11 - 13<br />Mn 0.5<br />Fe 0.3<br />Zn Rest
|8.67
|4.4
|7
|30
|42
|18
|125
|ca. 400
|1020 - 1065
|-
|CuNi18Zn20<br />CW409J<br />C76400
|Cu 60 - 63<br />Ni 17 - 19<br />Mn 0.5<br />Fe 0.3<br />Zn Rest
|8.73
|3.3
|5
|23
|33
|17.7
|135
|ca. 440
|1055 - 1105
|-
|CuNi18Zn27<br />CW410J<br />C77000
|Cu 53 - 56<br />Ni 17 - 19<br />Mn 0.5<br />Fe 0.3<br />Zn Rest
|8.70
|3.3
|5
|23
|32
|17.7
|135
|ca. 440
|1050 - 1100
|}
</figtable>



<figtable id="tab:tab5.12">
<caption>'''<!--Table 5.12:-->Mechanical Properties of Copper-Nickel-Zinc Alloys'''</caption>

{| class="twocolortable" style="text-align: left; font-size: 12px"
|-
!Material
!Hardness<br />Condition
!Tensile Strength R<sub>m</sub><br />[MPa]
!0,2% Yield Strength<br />R<sub>p02</sub><br />[MPa]
!Elongation<br />A<sub>50</sub><br />[%]
!Vickers<br />Hardness<br />HV
!Bend Radius<sup>1)</sup><br />perpendicular to<br />rolling direction
!Bend Radius<sup>1)</sup><br />parallel to<br />rolling direction
!Spring Bending<br />Limit σ<sub>FB</sub><br />[MPa]
!Spring Fatigue<br />Limit σ<sub>BW</sub><br />[MPa]
|-
|CuNi12Zn24
|R 360<br />R 430<br />R 490<br />R 550<br />R &ge; 610
|360 - 430<br />430 - 510<br />490 - 580<br />550 - 640<br />&ge; 580
|&le; 230<br />&ge; 230<br />&ge; 400<br />&ge; 480<br />&ge; 580
|35<br />8<br />6<br />3<br />2
|80 - 110<br />110 - 150<br />150 - 180<br />170 - 200<br />&ge; 190
|0 x t<br />0 x t<br />0 x t<br />0 x t
|0 x t<br />0 x t<br />0 x t<br />0 x t
|480
|210
|-
|CuNi18Zn20
|R 380<br />R 450<br />R 500<br />R 580<br />R &ge; 640
|380 - 450<br />450 - 520<br />500 - 590<br />580 - 670<br />&ge; 640
|&le; 250<br />&ge; 250<br />&ge; 410<br />&ge; 510<br />&ge; 600
|27<br />9<br />5<br />2
|85 - 115<br />115 - 160<br />160 - 190<br />180 - 210<br />&ge; 220
|0 x t<br />0 x t<br />0 x t<br />0 x t
|0 x t<br />0 x t<br />0 x t<br />0 x t
|520
|220
|-
|CuNi18Zn27
|R 390<br />R 470<br />R 540<br />R 600<br />R &ge; 700
|390 - 470<br />470 - 540<br />540 - 630<br />600 - 700<br />&ge; 700
|&le; 280<br />&ge; 280<br />&ge; 450<br />&ge; 550<br />&ge; 680
|30<br />11<br />5<br />2
|90 - 120<br />120 - 170<br />170 - 200<br />190 - 220<br />&ge; 220
|0 x t<br />0 x t<br />0 x t<br />0 x t
|0 x t<br />0 x t<br />0 x t<br />1 x t
|550
|250
|}
</figtable>
<sup>1)</sup> t: Strip thickness max. 0.5 mm

<xr id="fig:Copper rich region of the ternary copper-nickel-zinc phase diagram with indication of the more commonly available german silver materials"/><!--Fig. 5.14:--> Copper rich region of the ternary copper-nickel-zinc phase diagram with indication of the more commonly available german silver materials

<xr id="fig:Strain hardening of CuNi12Zn24 by cold working"/><!--Fig. 5.15:--> Strain hardening of CuNi12Zn24 by cold working

<xr id="fig:Softening of CuNi12Zn24 after 3 hrs annealing after 50% cold working"/><!--Fig. 5.16:--> Softening of CuNi12Zn24 after 3 hrs annealing after 50% cold working

<div class="multiple-images">

<figure id="fig:Copper rich region of the ternary copper-nickel-zinc phase diagram with indication of the more commonly available german silver materials">
[[File:Copper rich region of the termary copper nickel zinc phase diagram.jpg|right|thumb|Copper rich region of the ternary copper-nickel-zinc phase diagram with indication of the more commonly available german silver materials]]
</figure>

<figure id="fig:Strain hardening of CuNi12Zn24 by cold working">
[[File:Strain hardening of CuNi 12Zn24 by cold working.jpg|left|thumb|<caption>Strain hardening of CuNi12Zn24 by cold working</caption>]]
</figure>

<figure id="fig:Softening of CuNi12Zn24 after 3 hrs annealing after 50% cold working">
[[File:Softening of CuNi12Zn24 50.jpg|left|thumb|<caption>Softening of CuNi12Zn24 after 3 hrs annealing after 50% cold working</caption>]]
</figure>
</div>
<div class="clear"></div>

====<!--5.1.4.4-->Copper-Silver-(Cadmium) Alloys (Silver Bronze)====

Besides the low-allowed CuAg0.1 other copper materials with higher silver contents (2-6 wt%) are also used as contacts carrier materials. Some of them contain additionally 1.5 wt% Cd. The phase diagram <xr id="fig:Phase diagram of copper-silver for the range of 0 – 40 wt% silver"/><!--(Fig. 5.17)--> shows that in principle the CuAg alloys can be precipitation hardened, but the possible increase in mechanical strength is rather small.

Copper-silver alloys have good spring properties and compared to other spring materials have a high electrical conductivity <xr id="tab:tab5.13"/> <!--(Tab. 5.13)--> and <xr id="tab:tab5.14"/><!--(Tab. 5.14)-->. The mechanical strength values in the strongly worked condition are comparable to those of the copper-tin alloys. Work hardening and softening behavior are shown for the example of CuAg2 [[#figures5|(Figs. 13 – 15)]]<!--(Figs. 5.18 – 5.20)-->. For the relaxation behavior the silver bronzes are superior to German silver and tin bronze.

Because of their good spring properties combined with high electrical conductivity silver bronzes are suitable for the use contact springs in relays
under higher current loads. Taking advantage of their high temperature stability they are also used as current carrying contacts in high voltage switchgear and as electrode material for resistance welding.



<figtable id="tab:tab5.13">
<caption>'''<!--Table 5.13:-->Physical Properties of Selected Copper-Silver-(Cadmium) Alloys'''</caption>

{| class="twocolortable" style="text-align: left; font-size: 12px"
|-
!Material<br />Designation<br />EN UNS
!Composition<br />[wt%]
!Density<br />[g/cm<sup>3</sup>]
!colspan="2" style="text-align:center"|Electrical<br />Conductivity
!Electrical<br />Resistivity<br />[μΩ·cm]
!Thermal<br />Conductivity<br />[W/(m·K)]
!Coeff. of Linear<br />Thermal<br />Expansion<br />[10<sup>-6</sup>/K]
!Modulus of<br />Elasticity<br />[GPa]
!Softening Temperature<br />(approx. 10% loss in<br />strength)<br />[°C]
!Melting<br />Temp Range<br />[°C]
|-
!
!
!
![MS/m]
![% IACS]
!
!
!
!
!
!
|-
|CuAg2<br />not standardized<br />
|Ag 2<br />Cu Rest<br />
|9.0
|49
|85
|2.0
|330
|17.5
|123
|ca. 330
|1050 - 1075
|-
|CuAg2Cd1,5<br />not standardized<br />
|Ag 2<br />Cd1,5<br />Cu Rest
|9.0
|43
|74
|2.3
|260
|17.8
|121
|ca. 350
|970 - 1055
|-
|CuAg6<br />not standardized<br />
|Ag 6<br />Cu Rest
|9.2
|38
|66
|2.4
|270
|17.5
|120
|
|960 - 1050
|}
</figtable>



<figtable id="tab:tab5.14">
<caption>'''<!--Table 5.14:-->Mechanical Properties of Selected Copper-Silver-(Cadmium) Alloys'''</caption>

{| class="twocolortable" style="text-align: left; font-size: 12px"
|-
!Material
!Hardness<br />Condition
!Tensile Strength R<sub>m</sub><br />[MPa]
!0,2% Yield Strength<br />R<sub>p02</sub><br />[MPa]
!Elongation<br />A<sub>50</sub><br />[%]
!Vickers<br />Hardness<br />HV
!Bend Radius<sup>1)</sup><br />perpendicular to<br />rolling direction
!Bend Radius<sup>1)</sup><br />parallel to<br />rolling direction
!Spring Bending<br />Limit σ<sub>FB</sub><br />[MPa]
!Spring Fatigue<br />Limit σ<sub>BW</sub><br />[MPa]
|-
|CuAg2
|R 280<br />R 380<br />R 450<br />R 550
|280 - 380<br />380 - 460<br />450 - 570<br />&ge; 550
|&le; 180<br />&ge; 300<br />&ge; 420<br />&ge; 500
|30<br />6<br />3<br />1
|50 - 110<br />100 - 140<br />130 - 165<br />&ge; 160
|0 x t<br />0 x t<br />1 x t
|0 x t<br />0 x t<br />1 x t
|400
|190
|-
|CuAg2Cd1,5
|R 300<br />R 380<br />R 480<br />R 600
|300 - 380<br />380 - 490<br />480 - 620<br />&ge; 600
|&le; 190<br />&ge; 310<br />&ge; 440<br />&ge; 550
|30<br />8<br />3<br />1
|55 - 110<br />100 - 145<br />130 - 170<br />&ge; 160
|0 x t<br />0 x t<br />1 x t
|0 x t<br />0 x t<br />1 x t
|440
|220
|-
|CuAg6
|R 320<br />R 400<br />R 500<br />R 650
|320 - 400<br />400 - 510<br />500 - 660<br />&ge; 650
|&le; 210<br />&ge; 330<br />&ge; 460<br />&ge; 610
|30<br />6<br />3<br />1
|70 - 120<br />110 - 150<br />145 - 175<br />&ge; 175
|0 x t<br />0 x t<br />1 x t
|0 x t<br />0 x t<br />1 x t
|460
|230
|}
</figtable>
<sup>1)</sup> t: Strip thickness max. 0.5 mm

<div id="figures5">

<xr id="fig:Phase diagram of copper-silver for the range of 0 – 40 wt% silver"/><!--Fig. 5.17:--> Phase diagram of copper-silver for the range of 0 – 40 wt% silver

<xr id="fig:Strain hardening of CuAg2 by cold working"/><!--Fig. 5.18:--> Strain hardening of CuAg2 by cold working

<xr id="fig:Softening of CuAg2 after 1 hr annealing after 40% cold working"/><!--Fig. 5.19:--> Softening of CuAg2 after 1 hr annealing after 40% cold working

<xr id="fig:Softening of CuAg2 after 1 hr annealing after 80% cold working"/><!--Fig. 5.20:--> Softening of CuAg2 after 1 hr annealing after 80% cold working
</div>

<div class="multiple-images">

<figure id="fig:Phase diagram of copper-silver for the range of 0 – 40 wt% silver">
[[File:Phase diagram of copper silver.jpg|left|thumb|<caption>Phase diagram of copper-silver for the range of 0 – 40 wt% silver</caption>]]
</figure>

<figure id="fig:Strain hardening of CuAg2 by cold working">
[[File:Strain hardening of CuAg2 by cold working.jpg|left|thumb|<caption>Strain hardening of CuAg2 by cold working</caption>]]
</figure>

<figure id="fig:Softening of CuAg2 after 1 hr annealing after 40% cold working">
[[File:Softening of CuAg2 40.jpg|left|thumb|<caption>Softening of CuAg2 after 1 hr annealing after 40% cold working</caption>]]
</figure>

<figure id="fig:Softening of CuAg2 after 1 hr annealing after 80% cold working">
[[File:Softening of CuAg2 80.jpg|left|thumb|<caption>Softening of CuAg2 after 1 hr annealing after 80% cold working</caption>]]
</figure>
</div>
<div class="clear"></div>

==Referenzen==
[[Trägerwerkstoffe#Referenzen|Referenzen]]

[[en:Naturally_Hard_Copper_Alloys]]

Navigation menu

Powered by