Difference between revisions of "Naturally Hard Copper Alloys"

From Electrical Contacts
Jump to: navigation, search
(Copper-Silver-(Cadmium) Alloys (Silver Bronze))
(5.1.4.2 Copper-Tin Alloys (Tin Bronze))
(50 intermediate revisions by 5 users not shown)
Line 1: Line 1:
Alloys like brasses (CuZn), tin bronzes (CuSN) and German silver (CuNiZn), for which the required hardness is achieved by cold working, are defined as naturally hard alloys. Included in this group are also the silver bronzes (CuAg) with 2 – 6 wt% of Ag.  
+
Alloys like brasses (CuZn), tin bronzes (CuSN), and German silver (CuNiZn), for which the required hardness is achieved by cold working are defined as naturally hard alloys. Included in this group are also the silver bronzes (CuAg) with 2 – 6 wt% of Ag.  
  
====<!--5.1.4.1-->Copper-Zinc Alloys Test (Brasses)====
+
====5.1.4.1 Copper-Zinc Alloys (Brasses)====
  
Copper-zinc alloys are widely used as contact carrier materials in switching devices for electrical power engineering because of their high electrical conductivity, the higher mechanical strength combined with good formability compared to pure copper (<xr id="tab:Physical_Properties_of_ Selected_Copper_Zinc_Alloys"/><!--(Tab. 5.7)--> and <xr id="tab:Mechanical_Properties_of_Selected_Copper_Zinc_Alloys"/><!--(Tab. 5.8)-->), and at the same time their reasonable economic costs. Especially suitable are the brasses with up to 37 wt% Zn content which are according to the phase diagram all made up from the &alpha; -phase of the CuZn system (<xr id="fig:Phase_diagram_of_copper_zinc_for_the_range_of_0_60_wt_zinc"/><!--(Fig. 5.5)-->). It is important to note the strong dependence of the electrical conductivity and mechanical strength on the zinc content (<xr id="fig:Mechanical_properties_of_brass_ depending_on_the_copper_content_after_cold_working_of_0_and_50"/><!--(Fig. 5.6)-->).
+
Copper-zinc alloys are widely used as contact carrier materials in switching devices for electrical power engineering because of their high electrical conductivity, the higher mechanical strength combined with good formability compared to pure copper <xr id="tab:tab5.7"/> (Tab. 5.7) and <xr id="tab:tab5.8"/> (Tab. 5.8), and at the same time their reasonable economic costs. Especially suitable are the brasses with up to 37 wt% Zn content which are according to the phase diagram all made up from the " -phase of the CuZn system <xr id="fig:Phase diagram of copper-zinc for the range of 0-60 wt% zinc"/>(Fig. 5.5). It is important to note the strong dependence of the electrical conductivity and mechanical strength on the zinc content <xr id="fig:Mechanical properties of brass depending on the copper content (after cold working of 0 and 50%)"/>(Fig. 5.6).
  
<figtable id="tab:Physical_Properties_of_ Selected_Copper_Zinc_Alloys">
+
 
<caption>'''<!--Table 5.7:-->Physical Properties of Selected Copper-Zinc Alloys'''</caption>
+
<figtable id="tab:tab5.7">
 +
'''Table 5.7: Physical Properties of Selected Copper-Zinc Alloys'''  
  
 
{| class="twocolortable" style="text-align: left; font-size: 12px"
 
{| class="twocolortable" style="text-align: left; font-size: 12px"
Line 13: Line 14:
 
!Composition<br />[wt%]
 
!Composition<br />[wt%]
 
!Density<br />[g/cm<sup>3</sup>]
 
!Density<br />[g/cm<sup>3</sup>]
!colspan="2" style="text-align:center"|Electrical<br />Conductivity
+
!colspan="2" style="text-align:center"|Electrical<br />Conductivity<br />[MS/m]  [% IACS]
 
!Electrical<br />Resistivity<br />[μΩ·cm]
 
!Electrical<br />Resistivity<br />[μΩ·cm]
 
!Thermal<br />Conductivity<br />[W/(m·K)]
 
!Thermal<br />Conductivity<br />[W/(m·K)]
Line 20: Line 21:
 
!Softening Temperature<br />(approx. 10% loss in<br />strength)<br />[°C]
 
!Softening Temperature<br />(approx. 10% loss in<br />strength)<br />[°C]
 
!Melting<br />Temp Range<br />[°C]
 
!Melting<br />Temp Range<br />[°C]
|-
 
!
 
!
 
!
 
![MS/m] 
 
![% IACS]
 
!
 
!
 
!
 
!
 
!
 
!
 
 
|-
 
|-
 
|CuZn5<br />CW500L<br />C21000
 
|CuZn5<br />CW500L<br />C21000
Line 120: Line 109:
  
  
<figtable id="tab:Mechanical_Properties_of_Selected_Copper_Zinc_Alloys">
+
<figtable id="tab:tab5.8">
<caption>'''<!--Table 5.8:-->Mechanical Properties of Selected Copper-Zinc Alloys'''</caption>
+
'''Table 5.8: Mechanical Properties of Selected Copper-Zinc Alloys'''
  
 
{| class="twocolortable" style="text-align: left; font-size: 12px"
 
{| class="twocolortable" style="text-align: left; font-size: 12px"
Line 216: Line 205:
 
<sup>1)</sup> t: Strip thickness max. 0.5 mm
 
<sup>1)</sup> t: Strip thickness max. 0.5 mm
  
The main disadvantages of these alloys are with increasing zinc content, the also increasing tendency towards tension crack corrosion and the poorer stress relaxation properties, compared to other copper alloys.
+
The main disadvantages of these alloys are with increasing zinc content the also increasing tendency towards tension crack corrosion and the poorer stress relaxation properties compared to other copper alloys.
  
 
One of the special brass alloys used as a contact carrier material is CuSn23Al3Co. This material exhibits significantly higher mechanical strength
 
One of the special brass alloys used as a contact carrier material is CuSn23Al3Co. This material exhibits significantly higher mechanical strength
than the standard brass alloys. Even so, this material is a naturally hardening alloy, a suitable heat treatment allows to further increase its strength.
+
than the standard brass alloys. Even so this material is a naturally hardening alloy, a suitable heat treatment allows to further increase its strength.
 +
 
 +
<xr id="fig:Phase diagram of copper-zinc for the range of 0-60 wt% zinc"/> Fig. 5.5: Strain hardening of Ag 99.95 by cold working
 +
 
 +
<xr id="fig:Mechanical properties of brass depending on the copper content (after cold working of 0 and 50%)"/> Fig. 5.6: Mechanical properties of brass depending on the copper content (after cold working of 0 and 50%)
 +
 
 +
<xr id="fig:Strain hardening of CuZn36 by cold forming"/> Fig. 5.7: Strain hardening of CuZn36 by cold forming
 +
 
 +
<xr id="fig:Softening of CuZn36 after 3 hrs annealing after 25% cold working"/> Fig. 5.8: Softening of CuZn36 after 3 hrs annealing after 25% cold working
  
 
<div class="multiple-images">
 
<div class="multiple-images">
  
<figure id="fig:Phase_diagram_of_copper_zinc_for_the_range_of_0_60_wt_zinc">
+
<figure id="fig:Phase diagram of copper-zinc for the range of 0-60 wt% zinc">
 
[[File:Phase diagram of copper zinc.jpg|left|thumb|<caption>Phase diagram of copper-zinc for the range of 0-60 wt% zinc</caption>]]
 
[[File:Phase diagram of copper zinc.jpg|left|thumb|<caption>Phase diagram of copper-zinc for the range of 0-60 wt% zinc</caption>]]
 
</figure>
 
</figure>
  
<figure id="fig:Mechanical_properties_of_brass_ depending_on_the_copper_content_after_cold_working_of_0_and_50">
+
<figure id="fig:Mechanical properties of brass depending on the copper content (after cold working of 0 and 50%)">
 
[[File:Mechanical properties of brass depending on the copper content.jpg|left|thumb|<caption>Mechanical properties of brass depending on the copper content (after cold working of 0 and 50%)</caption>]]
 
[[File:Mechanical properties of brass depending on the copper content.jpg|left|thumb|<caption>Mechanical properties of brass depending on the copper content (after cold working of 0 and 50%)</caption>]]
 
</figure>
 
</figure>
Line 241: Line 238:
 
<div class="clear"></div>
 
<div class="clear"></div>
  
====<!--5.1.4.2-->Copper-Tin Alloys (Tin Bronze)====
+
====5.1.4.2 Copper-Tin Alloys (Tin Bronze)====
  
Because of their good elastic spring properties and formability, the copper-tin alloys CuSn6 and CuSn8 are standard materials for spring contact elements in electromechanical components, such as connectors, switches and relays (<xr id="tab:Physical Properties of Copper-Tin Alloys"/><!--(Tab. 5.9)--> and <xr id="tab:Mechanical Properties of Copper-Tin Alloys"/><!--(Tab.5.10)-->). Besides these, other alloys such as CuSn4, CuSn5 and the multi-metal tin bronze CuSn3Zn9 have significant usage – mainly in North America. <!--5.10-->
+
Because of their good elastic spring properties and formability the copper-tin alloys CuSn6 and CuSn8 are standard materials for spring contact elements in electrome-chanical components such as connectors, switches, and relays <xr id="tab:tab5.9"/> (Tab. 5.9) and <xr id="tab:tab5.10"/>(Tab.5.10). Besides these other alloys such as CuSn4 and CuSn5 and the multi-metal tin bronze CuSn3Zn9 have significant usage – mainly in North America.
<xr id="fig:Phase diagram of the Cu-Sn system for the range of 0 – 30 wt% Sn"/> shows the copper rich side of the phase diagram for the CuSn system. The mechanical property values achieved by cold forming are superior to these of the brass alloys (<xr id="fig:Mechanical properties of tin bronze depending on the tin content (cold working 0 and 50%)"/><!--(Fig. 5.11)-->). They increase significantly with increasing Sn content. The work hardening and softening behavior are shown for the example of CuSn8 in <xr id="fig:Strain hardening of CuSn8 by cold working"/><!--Figures 5.12--> and <xr id="fig:Softening of CuSn8 after 3 hrs annealing after 50% cold working"/><!--Fig. 5.13-->. The stress relaxation properties for CuSn alloys are good for up to 100°C, deteriorate however quickly for temperatures above 150°C.
+
Figure 5.10 <xr id="fig:Phase diagram of the Cu-Sn system for the range of 0 – 30 wt% Sn"/> shows the copper rich side of the phase diagram for the CuSn system. The mechanical property values achieved by cold forming are superior to these of the brass alloys <xr id="fig:Mechanical properties of tin bronze depending on the tin content (cold working 0 and 50%)"/>(Fig. 5.11). They increase significantly with increasing Sn content. The work hardening and softening
 +
behavior are shown for the example of CuSn8 in <xr id="fig:Strain hardening of CuSn8 by cold working"/> Figures 5.12 and <xr id="fig:Softening of CuSn8 after 3 hrs annealing after 50% cold working"/> 5.13. The stress relaxation properties for CuSn alloys are good for up to 100°C, deteriorate however quickly for temperatures above 150°C.
 +
 
 +
Fig. 5.9: Softening of CuZn36 after 3 hrs annealing after 50% cold working (im Text nicht zu finden!)
 +
[[File:Softening of CuZn36 50.jpg|right|thumb|Softening of CuZn36 after 3 hrs annealing after 50% cold working]]
 +
 
 +
<figure id="fig:Phase diagram of the Cu-Sn system for the range of 0 – 30 wt% Sn">
 +
[[File:Phase diagram of the Cu Sn system.jpg|right|thumb|Phase diagram of the Cu-Sn system for the range of 0 – 30 wt% Sn]]
 +
</figure>
  
 
   
 
   
  
<figtable id="tab:Physical Properties of Copper-Tin Alloys">
+
<figtable id="tab:tab5.9">
<caption>'''<!--Table 5.9:-->Physical Properties of Copper-Tin Alloys'''</caption>
+
'''Table 5.9: Physical Properties of Copper-Tin Alloys'''  
  
 
{| class="twocolortable" style="text-align: left; font-size: 12px"
 
{| class="twocolortable" style="text-align: left; font-size: 12px"
Line 256: Line 261:
 
!Composition<br />[wt%]
 
!Composition<br />[wt%]
 
!Density<br />[g/cm<sup>3</sup>]
 
!Density<br />[g/cm<sup>3</sup>]
!colspan="2" style="text-align:center"|Electrical<br />Conductivity  
+
!colspan="2" style="text-align:center"|Electrical<br />Conductivity<br />[MS/m]  [% IACS]
 
!Electrical<br />Resistivity<br />[μΩ·cm]
 
!Electrical<br />Resistivity<br />[μΩ·cm]
 
!Thermal<br />Conductivity<br />[W/(m·K)]
 
!Thermal<br />Conductivity<br />[W/(m·K)]
Line 263: Line 268:
 
!Softening Temperature<br />(approx. 10% loss in<br />strength)<br />[°C]
 
!Softening Temperature<br />(approx. 10% loss in<br />strength)<br />[°C]
 
!Melting<br />Temp Range<br />[°C]
 
!Melting<br />Temp Range<br />[°C]
|-
 
!
 
!
 
!
 
![MS/m] 
 
![% IACS]
 
!
 
!
 
!
 
!
 
!
 
!
 
 
|-
 
|-
 
|CuSn4<br />CW450K<br />C51100
 
|CuSn4<br />CW450K<br />C51100
Line 287: Line 280:
 
|ca. 260
 
|ca. 260
 
|960 - 1060
 
|960 - 1060
|-
 
|CuSn5<br />CW451K<br />C51000
 
|Sn 4.5 - 5.5<br />P 0.01 - 0.4<br />Cu Rest
 
|8.85
 
|10.0
 
|17
 
|10.0
 
|96
 
|18.0
 
|120
 
|ca. 260
 
|940 - 1050
 
|-
 
|CuSn6<br />CW452K<br />C51900
 
|Sn 5.5 - 7.0<br />P 0.01 - 0.4<br />Cu Rest
 
|8.80
 
|9.0
 
|15
 
|11.1
 
|75
 
|18.5
 
|118
 
|ca. 280
 
|910 - 1040
 
|-
 
|CuSn8<br />CW453K<br />C52100
 
|Sn 7.5 - 8.5<br />P 0.01 - 0.4<br />Cu Rest
 
|8.80
 
|7.5
 
|13
 
|13.3
 
|67
 
|18.5
 
|115
 
|ca. 320
 
|875 - 1025
 
|-
 
|CuSn3Zn9<br />CW454K<br />C42500
 
|Zn 7.5 - 10<br />Sn 1.5 - 3.5<br />P 0.2<br />Ni 0.2<br />Cu Rest
 
|8.75
 
|12
 
|28
 
|6.2
 
|120
 
|18.4
 
|126
 
|ca. 250
 
|900 - 1015
 
 
|}
 
|}
 
</figtable>
 
</figtable>
  
 +
'''Table 5.10: Mechanical Properties of Copper-Tin Alloys'''
  
 +
2 teile!
  
<figtable id="tab:Mechanical Properties of Copper-Tin Alloys">
+
<xr id="fig:Mechanical properties of tin bronze depending on the tin content (cold working 0 and 50%)"/> Fig. 5.11: Mechanical properties of tin bronze depending on the tin content (cold working 0 and 50%)
<caption>'''<!--Table 5.10:-->Mechanical Properties of Copper-Tin Alloys'''</caption> 
 
  
{| class="twocolortable" style="text-align: left; font-size: 12px"
+
<xr id="fig:Strain hardening of CuSn8 by cold working"/> Fig. 5.12: Strain hardening of CuSn8 by cold working
|-
+
 
!Material
+
<xr id="fig:Softening of CuSn8 after 3 hrs annealing after 50% cold working"/> Fig. 5.13: Softening of CuSn8 after 3 hrs annealing after 50% cold working
!Hardness<br />Condition
 
!Tensile Strength R<sub>m</sub><br />[MPa]
 
!0,2% Yield Strength<br />R<sub>p02</sub><br />[MPa]
 
!Elongation<br />A<sub>50</sub><br />[%]
 
!Vickers<br />Hardness<br />HV
 
!Bend Radius<sup>1)</sup><br />perpendicular to<br />rolling direction
 
!Bend Radius<sup>1)</sup><br />parallel to<br />rolling direction
 
!Spring Bending<br />Limit σ<sub>FB</sub><br />[MPa]
 
!Spring Fatigue<br />Limit σ<sub>BW</sub><br />[MPa]
 
|-
 
|CuSn4
 
|R 290<br />R 390<br />R 480<br />R 540<br />R 610
 
|290 - 390<br />390 - 490<br />480 - 570<br />540 - 630<br />&ge; 610
 
|&le; 190<br />&ge; 210<br />&ge; 420<br />&ge; 490<br />&ge; 540
 
|40<br />13<br />5<br />4<br />2
 
|70 - 100<br />115 - 155<br />150 - 180<br />170 - 200<br />&ge; 190
 
|0 x t<br />0 x t<br />0 x t<br />0 x t
 
|0 x t<br />0 x t<br />0 x t<br />1 x t
 
|420
 
|200
 
|-
 
|CuSn5
 
|R 310<br />R 400<br />R 490<br />R 550<br />R 630<br />R 690
 
|310 - 390<br />400 - 500<br />490 - 580<br />550 - 640<br />630 - 720<br />&ge; 690
 
|&le; 250<br />&ge; 240<br />&ge; 430<br />&ge; 510<br />&ge; 600<br />&ge; 670
 
|45<br />17<br />10<br />6<br />3
 
|75 - 105<br />120 - 160<br />160 - 190<br />180 - 210<br />200 - 230<br />&ge; 220
 
|0 x t<br />0 x t<br />0 x t<br />0 x t<br />1 x t
 
|0 x t<br />0 x t<br />0 x t<br />1 x t<br />2 x t
 
|460
 
|220
 
|-
 
|CuSn6
 
|R 350<br />R 420<br />R 500<br />R 560<br />R 640<br />R 720
 
|350 - 420<br />420 - 520<br />500 - 590<br />560 - 650<br />640 - 730<br />&ge; 720
 
|&le; 300<br />&ge; 260<br />&ge; 450<br />&ge; 500<br />&ge; 600<br />&ge; 690
 
|45<br />20<br />10<br />7<br />4
 
|80 - 110<br />125 - 165<br />160 - 190<br />180 - 210<br />200 - 230<br />&ge; 220
 
|0 x t<br />0 x t<br />0 x t<br />0 x t<br />1 x t
 
|0 x t<br />0 x t<br />0 x t<br />1 x t<br />2 x t
 
|480
 
|230
 
|-
 
|CuSn8
 
|R 370<br />R 450<br />R 540<br />R 600<br />R 660<br />R 740
 
|370 - 450<br />450 - 550<br />540 - 630<br />600 - 690<br />660 - 750<br />&ge; 740
 
|&le; 300<br />&ge; 280<br />&ge; 460<br />&ge; 530<br />&ge; 620<br />&ge; 700
 
|50<br />23<br />15<br />7<br />4
 
|90 - 120<br />135 - 175<br />170 - 200<br />190 - 220<br />210 - 240<br />&ge; 230
 
|0 x t<br />0 x t<br />0 x t<br />1 x t<br />2 x t
 
|0 x t<br />0 x t<br />0 x t<br />1 x t<br />2 x t
 
|520
 
|240
 
|-
 
|CuSn3Zn9
 
|R 320<br />R 380<br />R 430<br />R 510<br />R 580<br />R 660
 
|320 - 380<br />380 - 430<br />430 - 520<br />510 - 600<br />580 - 690<br />&ge; 660
 
|&le; 230<br />&ge; 200<br />&ge; 330<br />&ge; 430<br />&ge; 520<br />&ge; 610
 
|25<br />18<br />6<br />3<br />4
 
|80 - 110<br />110 - 140<br />140 - 170<br />160 - 190<br />180 - 210<br />&ge; 200
 
|0 x t<br />0 x t<br />0 x t<br />0 x t<br />1 x t
 
|0 x t<br />0 x t<br />0 x t<br />1 x t<br />2 x t
 
|500
 
|210
 
|}
 
</figtable>
 
<sup>1)</sup> t: Strip thickness max. 0.5 mm
 
  
 
<div class="multiple-images">
 
<div class="multiple-images">
 
<figure id="fig:Softening of CuZn36 50">
 
[[File:Softening of CuZn36 50.jpg|left|thumb|<caption>Softening of CuZn36 after 3 hrs annealing after 50% cold working</caption>]]
 
</figure>
 
 
<figure id="fig:Phase diagram of the Cu-Sn system for the range of 0 – 30 wt% Sn">
 
[[File:Phase diagram of the Cu Sn system.jpg|left|thumb|<caption>Phase diagram of the Cu-Sn system for the range of 0 – 30 wt% Sn</caption>]]
 
</figure>
 
  
 
<figure id="fig:Mechanical properties of tin bronze depending on the tin content (cold working 0 and 50%)">
 
<figure id="fig:Mechanical properties of tin bronze depending on the tin content (cold working 0 and 50%)">
Line 438: Line 309:
 
<div class="clear"></div>
 
<div class="clear"></div>
  
====<!--5.1.4.3-->Copper-Nickel-Zinc Alloys (German Silver)====
+
====5.1.4.3 Copper-Nickel-Zinc Alloys (German Silver)====
  
Despite its lower electrical conductivity, the good spring properties, high corrosion resistance and the good workability make copper-nickel-zinc alloys a frequently used spring contact carrier in switches and relays. As illustrated in the phase diagram, the most commonly used materials are in the &alpha; -range which means that they are single-phase alloys (<xr id="fig:Copper rich region of the ternary copper-nickel-zinc phase diagram with indication of the more commonly available german silver materials"/><!--(Fig. 5.14)-->). The formability and strength properties of german silver are comparable to those of the copper-tin alloys. The work hardening and softening behavior is illustrated on the example of CuNi12Zn24 in <xr id="fig:Strain hardening of CuNi12Zn24 by cold working"/><!--Figures 5.15--> and <xr id="fig:Softening of CuNi12Zn24 after 3 hrs annealing after 50% cold working"/><!--5.16-->.
+
Despite its lower electrical conductivity, the good spring properties, high corrosion resistance, and the good workability make copper-nickel-zinc alloys a frequently used spring contact carrier in switches and relays. As illustrated in the phase diagram the most commonly used materials are in the " -range which means that they are single-phase alloys <xr id="fig:Copper rich region of the ternary copper-nickel-zinc phase diagram with indication of the more commonly available german silver materials"/> (Fig. 5.14). The formability and strength properties of german silver are comparable to those of the copper-tin alloys. The work hardening and softening behavior is illustrated on the example of CuNi12Zn24 in <xr id="fig:Strain hardening of CuNi12Zn24 by cold working"/> Figures 5.15 and <xr id="fig:Softening of CuNi12Zn24 after 3 hrs annealing after 50% cold working"/> 5.16.
  
 
The relaxation behavior of Cu-Ni-Zn alloys is superior to the one for the tin bronzes. Additional advantages are the very good weldability, brazing
 
The relaxation behavior of Cu-Ni-Zn alloys is superior to the one for the tin bronzes. Additional advantages are the very good weldability, brazing
properties and the high corrosion resistance of these copper-nickel-zinc alloys.
+
properties, and the high corrosion resistance of these copper-nickel-zinc alloys.
  
 +
<figure id="fig:Copper rich region of the ternary copper-nickel-zinc phase diagram with indication of the more commonly available german silver materials">
 +
Fig. 5.14: Copper rich region of the ternary copper-nickel-zinc phase diagram with indication of the more commonly available german silver materials
 +
[[File:Copper rich region of the termary copper nickel zinc phase diagram.jpg|right|thumb|Copper rich region of the ternary copper-nickel-zinc phase diagram with indication of the more commonly available german silver materials]]
 +
</figure>
  
<figtable id="tab:tab5.11">
+
'''Table 5.11: Physical Properties of Copper-Nickel-Zinc Alloys'''
<caption>'''<!--Table 5.11:-->Physical Properties of Copper-Nickel-Zinc Alloys'''</caption>
 
  
{| class="twocolortable" style="text-align: left; font-size: 12px"
+
2 teile!
|-
 
!Material<br />Designation<br />EN UNS
 
!Composition<br />[wt%]
 
!Density<br />[g/cm<sup>3</sup>]
 
!colspan="2" style="text-align:center"|Electrical<br />Conductivity
 
!Electrical<br />Resistivity<br />[μΩ·cm]
 
!Thermal<br />Conductivity<br />[W/(m·K)]
 
!Coeff. of Linear<br />Thermal<br />Expansion<br />[10<sup>-6</sup>/K]
 
!Modulus of<br />Elasticity<br />[GPa]
 
!Softening Temperature<br />(approx. 10% loss in<br />strength)<br />[°C]
 
!Melting<br />Temp Range<br />[°C]
 
|-
 
!
 
!
 
!
 
![MS/m] 
 
![% IACS]
 
!
 
!
 
!
 
!
 
!
 
!
 
|-
 
|CuNi12Zn24<br />CW403J<br />C75700
 
|Cu 63- 66<br />Ni 11 - 13<br />Mn 0.5<br />Fe 0.3<br />Zn Rest
 
|8.67
 
|4.4
 
|7
 
|30
 
|42
 
|18
 
|125
 
|ca. 400
 
|1020 - 1065
 
|-
 
|CuNi18Zn20<br />CW409J<br />C76400
 
|Cu 60 - 63<br />Ni 17 - 19<br />Mn 0.5<br />Fe 0.3<br />Zn Rest
 
|8.73
 
|3.3
 
|5
 
|23
 
|33
 
|17.7
 
|135
 
|ca. 440
 
|1055 - 1105
 
|-
 
|CuNi18Zn27<br />CW410J<br />C77000
 
|Cu 53 - 56<br />Ni 17 - 19<br />Mn 0.5<br />Fe 0.3<br />Zn Rest
 
|8.70
 
|3.3
 
|5
 
|23
 
|32
 
|17.7
 
|135
 
|ca. 440
 
|1050 - 1100
 
|}
 
</figtable>
 
  
 +
'''Table 5.12: Mechanical Properties of Copper-Nickel-Zinc Alloys'''
  
 +
2 teile!
  
<figtable id="tab:tab5.12">
+
<xr id="fig:Strain hardening of CuNi12Zn24 by cold working"/> Fig. 5.15: Strain hardening of CuNi12Zn24 by cold working
<caption>'''<!--Table 5.12:-->Mechanical Properties of Copper-Nickel-Zinc Alloys'''</caption> 
 
  
{| class="twocolortable" style="text-align: left; font-size: 12px"
+
<xr id="fig:Softening of CuNi12Zn24 after 3 hrs annealing after 50% cold working"/> Fig. 5.16: Softening of CuNi12Zn24 after 3 hrs annealing after 50% cold working
|-
 
!Material
 
!Hardness<br />Condition
 
!Tensile Strength R<sub>m</sub><br />[MPa]
 
!0,2% Yield Strength<br />R<sub>p02</sub><br />[MPa]
 
!Elongation<br />A<sub>50</sub><br />[%]
 
!Vickers<br />Hardness<br />HV
 
!Bend Radius<sup>1)</sup><br />perpendicular to<br />rolling direction
 
!Bend Radius<sup>1)</sup><br />parallel to<br />rolling direction
 
!Spring Bending<br />Limit σ<sub>FB</sub><br />[MPa]
 
!Spring Fatigue<br />Limit σ<sub>BW</sub><br />[MPa]
 
|-
 
|CuNi12Zn24
 
|R 360<br />R 430<br />R 490<br />R 550<br />R &ge; 610
 
|360 - 430<br />430 - 510<br />490 - 580<br />550 - 640<br />&ge; 580
 
|&le; 230<br />&ge; 230<br />&ge; 400<br />&ge; 480<br />&ge; 580
 
|35<br />8<br />6<br />3<br />2
 
|80 - 110<br />110 - 150<br />150 - 180<br />170 - 200<br />&ge; 190
 
|0 x t<br />0 x t<br />0 x t<br />0 x t
 
|0 x t<br />0 x t<br />0 x t<br />0 x t
 
|480
 
|210
 
|-
 
|CuNi18Zn20
 
|R 380<br />R 450<br />R 500<br />R 580<br />R &ge; 640
 
|380 - 450<br />450 - 520<br />500 - 590<br />580 - 670<br />&ge; 640
 
|&le; 250<br />&ge; 250<br />&ge; 410<br />&ge; 510<br />&ge; 600
 
|27<br />9<br />5<br />2
 
|85 - 115<br />115 - 160<br />160 - 190<br />180 - 210<br />&ge; 220
 
|0 x t<br />0 x t<br />0 x t<br />0 x t
 
|0 x t<br />0 x t<br />0 x t<br />0 x t
 
|520
 
|220
 
|-
 
|CuNi18Zn27
 
|R 390<br />R 470<br />R 540<br />R 600<br />R &ge; 700
 
|390 - 470<br />470 - 540<br />540 - 630<br />600 - 700<br />&ge; 700
 
|&le; 280<br />&ge; 280<br />&ge; 450<br />&ge; 550<br />&ge; 680
 
|30<br />11<br />5<br />2
 
|90 - 120<br />120 - 170<br />170 - 200<br />190 - 220<br />&ge; 220
 
|0 x t<br />0 x t<br />0 x t<br />0 x t
 
|0 x t<br />0 x t<br />0 x t<br />1 x t
 
|550
 
|250
 
|}
 
</figtable>
 
<sup>1)</sup> t: Strip thickness max. 0.5 mm
 
  
 
<div class="multiple-images">
 
<div class="multiple-images">
 
<figure id="fig:Copper rich region of the ternary copper-nickel-zinc phase diagram with indication of the more commonly available german silver materials">
 
[[File:Copper rich region of the termary copper nickel zinc phase diagram.jpg|right|thumb|Figure 10: Copper rich region of the ternary copper-nickel-zinc phase diagram with indication of the more commonly available german silver materials]]
 
</figure>
 
  
 
<figure id="fig:Strain hardening of CuNi12Zn24 by cold working">
 
<figure id="fig:Strain hardening of CuNi12Zn24 by cold working">
Line 582: Line 345:
 
<div class="clear"></div>
 
<div class="clear"></div>
  
====<!--5.1.4.4-->Copper-Silver-(Cadmium) Alloys (Silver Bronze)====
+
====5.1.4.4 Copper-Silver-(Cadmium) Alloys (Silver Bronze)====
  
Besides the low-allowed CuAg0.1, other copper materials with higher silver contents (2-6 wt%) are also used as contacts carrier materials. Some of them contain additional 1.5 wt% Cd. The phase diagram <xr id="fig:Phase diagram of copper-silver for the range of 0 – 40 wt% silver"/><!--(Fig. 5.17)--> shows that in principle the CuAg alloys can be precipitation hardened, but the possible increase in mechanical strength is rather small.
+
Besides the low-allowed CuAg0.1 other copper materials with higher silver contents (2-6 wt%) are also used as contacts carrier materials. Some of them contain additionally 1.5 wt% Cd. The phase diagram <xr id="fig:Phase diagram of copper-silver for the range of 0 – 40 wt% silver"/> (Fig. 5.17) shows that in principle the CuAg alloys can be precipitation hardened, but the possible increase in mechanical strength is rather small.
  
Copper-silver alloys have good spring properties and compared to other spring materials have a high electrical conductivity (<xr id="tab:tab5.13"/><!--(Tab. 5.13)--> and <xr id="tab:tab5.14"/><!--(Tab. 5.14)-->). The mechanical strength values in the strongly worked condition are comparable to those of the copper-tin alloys. Work hardening and softening behavior are shown for the example of CuAg2 [[#figures5|(Figs. 13 – 15)]]<!--(Figs. 5.18 – 5.20)-->. For the relaxation behavior, the silver bronzes are superior to German silver and tin bronze.
+
Copper-silver alloys have good spring properties and compared to other spring materials have a high electrical conductivity ''(Tables 5.13 and 5.14)''. The mechanical strength values in the strongly worked condition are comparable to those of the copper-tin alloys. Work hardening and softening behavior are shown for the example of CuAg2 [[#figures5|(Figs. 13 – 15)]](Figs. 5.18 – 5.20). For the relaxation behavior the silver bronzes are superior to German silver and tin bronze.
 
 
Because of their good spring properties combined with high electrical conductivity, silver bronzes are suitable for the use contact springs in relays
 
under higher current loads. Taking advantage of their high temperature stability, they are also used as current carrying contacts in high voltage switchgear and as electrode material for resistance welding.
 
  
 +
Because of their good spring properties combined with high electrical conductivity silver bronzes are suitable for the use contact springs in relays
 +
under higher current loads. Taking advantage of their high temperature stability they are also used as current carrying contacts in high voltage switchgear and as electrode material for resistance welding.
  
 +
<figure id="fig:Phase diagram of copper-silver for the range of 0 – 40 wt% silver">
 +
Fig. 5.17: Phase diagram of copper-silver for the range of 0 – 40 wt% silver
 +
[[File:Phase diagram of copper silver.jpg|right|thumb|Phase diagram of copper-silver for the range of 0 – 40 wt% silver]]
 +
</figure>
  
<figtable id="tab:tab5.13">
+
'''Table 5.13: Physical Properties of Selected Copper-Silver-(Cadmium) Alloys'''  
<caption>'''<!--Table 5.13:-->Physical Properties of Selected Copper-Silver-(Cadmium) Alloys'''</caption>
 
  
{| class="twocolortable" style="text-align: left; font-size: 12px"
+
2 teile!
|-
 
!Material<br />Designation<br />EN UNS
 
!Composition<br />[wt%]
 
!Density<br />[g/cm<sup>3</sup>]
 
!colspan="2" style="text-align:center"|Electrical<br />Conductivity
 
!Electrical<br />Resistivity<br />[μΩ·cm]
 
!Thermal<br />Conductivity<br />[W/(m·K)]
 
!Coeff. of Linear<br />Thermal<br />Expansion<br />[10<sup>-6</sup>/K]
 
!Modulus of<br />Elasticity<br />[GPa]
 
!Softening Temperature<br />(approx. 10% loss in<br />strength)<br />[°C]
 
!Melting<br />Temp Range<br />[°C]
 
|-
 
!
 
!
 
!
 
![MS/m] 
 
![% IACS]
 
!
 
!
 
!
 
!
 
!
 
!
 
|-
 
|CuAg2<br />not standardized<br />
 
|Ag 2<br />Cu Rest<br />
 
|9.0
 
|49
 
|85
 
|2.0
 
|330
 
|17.5
 
|123
 
|ca. 330
 
|1050 - 1075
 
|-
 
|CuAg2Cd1,5<br />not standardized<br />
 
|Ag 2<br />Cd1,5<br />Cu Rest
 
|9.0
 
|43
 
|74
 
|2.3
 
|260
 
|17.8
 
|121
 
|ca. 350
 
|970 - 1055
 
|-
 
|CuAg6<br />not standardized<br />
 
|Ag 6<br />Cu Rest
 
|9.2
 
|38
 
|66
 
|2.4
 
|270
 
|17.5
 
|120
 
|
 
|960 - 1050
 
|}
 
</figtable>
 
  
 +
'''Table 5.14: Mechanical Properties of Selected Copper-Silver-(Cadmium) Alloys'''
  
 +
2 teile!
  
<figtable id="tab:tab5.14">
+
<div id="figures5">
<caption>'''<!--Table 5.14:-->Mechanical Properties of Selected Copper-Silver-(Cadmium) Alloys'''</caption>
+
<xr id="fig:Strain hardening of CuAg2 by cold working"/> Fig. 5.18: Strain hardening of CuAg2 by cold working
  
{| class="twocolortable" style="text-align: left; font-size: 12px"
+
<xr id="fig:Softening of CuAg2 after 1 hr annealing after 40% cold working"/> Fig. 5.19: Softening of CuAg2 after 1 hr annealing after 40% cold working
|-
 
!Material
 
!Hardness<br />Condition
 
!Tensile Strength R<sub>m</sub><br />[MPa]
 
!0,2% Yield Strength<br />R<sub>p02</sub><br />[MPa]
 
!Elongation<br />A<sub>50</sub><br />[%]
 
!Vickers<br />Hardness<br />HV
 
!Bend Radius<sup>1)</sup><br />perpendicular to<br />rolling direction
 
!Bend Radius<sup>1)</sup><br />parallel to<br />rolling direction
 
!Spring Bending<br />Limit σ<sub>FB</sub><br />[MPa]
 
!Spring Fatigue<br />Limit σ<sub>BW</sub><br />[MPa]
 
|-
 
|CuAg2
 
|R 280<br />R 380<br />R 450<br />R 550
 
|280 - 380<br />380 - 460<br />450 - 570<br />&ge; 550
 
|&le; 180<br />&ge; 300<br />&ge; 420<br />&ge; 500
 
|30<br />6<br />3<br />1
 
|50 - 110<br />100 - 140<br />130 - 165<br />&ge; 160
 
|0 x t<br />0 x t<br />1 x t
 
|0 x t<br />0 x t<br />1 x t
 
|400
 
|190
 
|-
 
|CuAg2Cd1,5
 
|R 300<br />R 380<br />R 480<br />R 600
 
|300 - 380<br />380 - 490<br />480 - 620<br />&ge; 600
 
|&le; 190<br />&ge; 310<br />&ge; 440<br />&ge; 550
 
|30<br />8<br />3<br />1
 
|55 - 110<br />100 - 145<br />130 - 170<br />&ge; 160
 
|0 x t<br />0 x t<br />1 x t
 
|0 x t<br />0 x t<br />1 x t
 
|440
 
|220
 
|-
 
|CuAg6
 
|R 320<br />R 400<br />R 500<br />R 650
 
|320 - 400<br />400 - 510<br />500 - 660<br />&ge; 650
 
|&le; 210<br />&ge; 330<br />&ge; 460<br />&ge; 610
 
|30<br />6<br />3<br />1
 
|70 - 120<br />110 - 150<br />145 - 175<br />&ge; 175
 
|0 x t<br />0 x t<br />1 x t
 
|0 x t<br />0 x t<br />1 x t
 
|460
 
|230
 
|}
 
</figtable>
 
<sup>1)</sup> t: Strip thickness max. 0.5 mm
 
  
 +
<xr id="fig:Softening of CuAg2 after 1 hr annealing after 80% cold working"/> Fig. 5.20: Softening of CuAg2 after 1 hr annealing after 80% cold working
 +
</div>
  
 
<div class="multiple-images">
 
<div class="multiple-images">
 
<figure id="fig:Phase diagram of copper-silver for the range of 0 – 40 wt% silver">
 
[[File:Phase diagram of copper silver.jpg|left|thumb|<caption>Phase diagram of copper-silver for the range of 0 – 40 wt% silver</caption>]]
 
</figure>
 
  
 
<figure id="fig:Strain hardening of CuAg2 by cold working">
 
<figure id="fig:Strain hardening of CuAg2 by cold working">
[[File:Strain hardening of CuAg2 by cold working.jpg|left|thumb|<caption>Strain hardening of CuAg2 by cold working</caption>]]
+
[[File:Strain hardening of CuAg2 by cold working.jpg|right|thumb|Strain hardening of CuAg2 by cold working]]
 
</figure>
 
</figure>
  
 
<figure id="fig:Softening of CuAg2 after 1 hr annealing after 40% cold working">
 
<figure id="fig:Softening of CuAg2 after 1 hr annealing after 40% cold working">
[[File:Softening of CuAg2 40.jpg|left|thumb|<caption>Softening of CuAg2 after 1 hr annealing after 40% cold working</caption>]]
+
[[File:Softening of CuAg2 40.jpg|right|thumb|Softening of CuAg2 after 1 hr annealing after 40% cold working]]
 
</figure>
 
</figure>
  
 
<figure id="fig:Softening of CuAg2 after 1 hr annealing after 80% cold working">
 
<figure id="fig:Softening of CuAg2 after 1 hr annealing after 80% cold working">
[[File:Softening of CuAg2 80.jpg|left|thumb|<caption>Softening of CuAg2 after 1 hr annealing after 80% cold working</caption>]]
+
[[File:Softening of CuAg2 80.jpg|right|thumb|Softening of CuAg2 after 1 hr annealing after 80% cold working]]
 
</figure>
 
</figure>
 
</div>
 
</div>
Line 736: Line 393:
 
==References==
 
==References==
 
[[Contact Carrier Materials#References|References]]
 
[[Contact Carrier Materials#References|References]]
 
[[de:Naturharte_Kupfer-Legierungen]]
 

Revision as of 17:30, 18 March 2014

Alloys like brasses (CuZn), tin bronzes (CuSN), and German silver (CuNiZn), for which the required hardness is achieved by cold working are defined as naturally hard alloys. Included in this group are also the silver bronzes (CuAg) with 2 – 6 wt% of Ag.

5.1.4.1 Copper-Zinc Alloys (Brasses)

Copper-zinc alloys are widely used as contact carrier materials in switching devices for electrical power engineering because of their high electrical conductivity, the higher mechanical strength combined with good formability compared to pure copper Table 1 (Tab. 5.7) and Table 2 (Tab. 5.8), and at the same time their reasonable economic costs. Especially suitable are the brasses with up to 37 wt% Zn content which are according to the phase diagram all made up from the " -phase of the CuZn system Figure 1(Fig. 5.5). It is important to note the strong dependence of the electrical conductivity and mechanical strength on the zinc content Figure 2(Fig. 5.6).


Table 5.7: Physical Properties of Selected Copper-Zinc Alloys
Material/
Designation
EN UNS
Composition
[wt%]
Density
[g/cm3]
Electrical
Conductivity
[MS/m] [% IACS]
Electrical
Resistivity
[μΩ·cm]
Thermal
Conductivity
[W/(m·K)]
Coeff. of Linear
Thermal
Expansion
[10-6/K]
Modulus of
Elasticity
[GPa]
Softening Temperature
(approx. 10% loss in
strength)
[°C]
Melting
Temp Range
[°C]
CuZn5
CW500L
C21000
Cu 94 - 96
Zn Rest
8.87 33 57 3.8 243 18.0 127 1055 - 1065
CuZn10
CW501L
C22000
Cu 89 - 91
Zn Rest
8.79 25 43 4.0 184 18.2 125 1030 - 1045
CuZn15
CW502L
C23000
Cu 84 - 86
Zn Rest
8.75 21 36 4.8 159 18.5 122 ca. 250 1005 - 1025
CuZn20
CW503L
C24000
Cu 79 - 81
Zn Rest
8.67 19 33 5.3 142 18.8 120 ca. 240 980 - 1000
CuZn30
CW505L
C26000
Cu 69 - 71
Zn Rest
8.53 16 28 6.3 124 19.8 114 ca. 230 910 - 940
CuZn37
CW508L
C27200
Cu 62 - 64
Zn Rest
8.45 15.5 27 6.5 121 20.2 110 ca. 220 900 - 920
CuZn23Al3Co
CW703R
C68800
Cu 73.5
Al 3.4
Co 0.4
Zn Rest
8.23 9.8 17 10.2 78 18.2 116 ca. 280 950 - 1000


Table 5.8: Mechanical Properties of Selected Copper-Zinc Alloys
Material Hardness
Condition
Tensile Strength Rm
[MPa]
0,2% YieldStrength
Rp02
[MPa]
Elongation
A50
[%]
Vickers
Hardness
HV
Bend Radius1)
perpendicular to
rolling direction
Bend Radius1)
parallel to
rolling direction
Spring Bending
Limit σFB
[MPa]
Spring Fatigue
Limit σBW
[MPa]
CuZn5 R 230
R 270
R 340
230 - 280
270 -350
340 - 440
≤ 130
≥ 200
≥ 280
36
12
4
45 - 90
70 - 120
110 - 160
0 x t
0 x t
0 x t
0 x t
250 130
CuZn10 R 240
R 280
R 350
240 - 290
280 - 360
350 - 450
≤ 140
≥ 200
≥ 290
36
13
4
50 - 100
80 - 130
110 - 160
0 x t
0 x t
0 x t
0 x t
260 140
CuZn15 R 300
R 350
R 410
R 480
R 550
300 - 370
350 - 420
410 - 490
480 - 560
≥ 550
≤ 150
≥ 270
≥ 360
≥ 420
≥ 480
16
8
3
1
85 - 120
100 - 150
125 - 155
150 - 180
≥ 170
0 x t
0 x t
0 x t
1 x t
0 x t
0 x t
1 x t
3 x t
300 160
CuZn20 R 270
R 320
R 400
R 480
270 - 320
320 - 400
400 - 480
480 - 570
≤ 150
≥ 200
≥ 320
≥ 440
38
20
5
3
55 - 105
95 - 155
120 - 180
≥ 150
0 x t
0 x t
0 x t
0 x t
0 x t
0 x t
320 180
CuZn30 R 270
R 350
R 410
R 480
270 - 350
350 - 430
410 - 490
480 - 580
≤ 160
≥ 200
≥ 430
≥ 430
40
21
9
4
95 - 125
120 - 155
150 - 180
170 - 200
0 x t
0 x t
0 x t
1 x t
0 x t
1 x t
2 x t
3 x t
330 180
CuZn37 R 300
R 350
R 410
R 480
R 550
300 - 370
350 - 440
410 - 490
480 - 560
550 - 640
≤ 180
≥ 200
≥ 260
≥ 430
≥ 500
38
19
8
3
55 - 105
95 - 155
120 - 190
≥ 150
≥ 170
0 x t
0 x t
0 x t
0.5 x t
1 x t
0 x t
0 x t
0 x t
1 x t
3 x t
350 190
CuZn23Al3Co R 660
R 740
R 820
660 - 750
740 - 830
≥ 820
≥ 580
≥ 660
≥ 780
10
3
2
190 - 220
210 - 240
≥ 235
0 x t
1 x t
0 x t
2 x t
≥ 400 230

1) t: Strip thickness max. 0.5 mm

The main disadvantages of these alloys are with increasing zinc content the also increasing tendency towards tension crack corrosion and the poorer stress relaxation properties compared to other copper alloys.

One of the special brass alloys used as a contact carrier material is CuSn23Al3Co. This material exhibits significantly higher mechanical strength than the standard brass alloys. Even so this material is a naturally hardening alloy, a suitable heat treatment allows to further increase its strength.

Figure 1 Fig. 5.5: Strain hardening of Ag 99.95 by cold working

Figure 2 Fig. 5.6: Mechanical properties of brass depending on the copper content (after cold working of 0 and 50%)

Figure 3 Fig. 5.7: Strain hardening of CuZn36 by cold forming

Figure 4 Fig. 5.8: Softening of CuZn36 after 3 hrs annealing after 25% cold working

Figure 1: Phase diagram of copper-zinc for the range of 0-60 wt% zinc
Figure 2: Mechanical properties of brass depending on the copper content (after cold working of 0 and 50%)
Figure 3: Strain hardening of CuZn36 by cold forming
Figure 4: Softening of CuZn36 after 3 hrs annealing after 25% cold working

5.1.4.2 Copper-Tin Alloys (Tin Bronze)

Because of their good elastic spring properties and formability the copper-tin alloys CuSn6 and CuSn8 are standard materials for spring contact elements in electrome-chanical components such as connectors, switches, and relays Table 3 (Tab. 5.9) and ???(Tab.5.10). Besides these other alloys such as CuSn4 and CuSn5 and the multi-metal tin bronze CuSn3Zn9 have significant usage – mainly in North America. Figure 5.10 Figure 5 shows the copper rich side of the phase diagram for the CuSn system. The mechanical property values achieved by cold forming are superior to these of the brass alloys Figure 6(Fig. 5.11). They increase significantly with increasing Sn content. The work hardening and softening behavior are shown for the example of CuSn8 in Figure 7 Figures 5.12 and Figure 8 5.13. The stress relaxation properties for CuSn alloys are good for up to 100°C, deteriorate however quickly for temperatures above 150°C.

Fig. 5.9: Softening of CuZn36 after 3 hrs annealing after 50% cold working (im Text nicht zu finden!)

Softening of CuZn36 after 3 hrs annealing after 50% cold working
Phase diagram of the Cu-Sn system for the range of 0 – 30 wt% Sn


Table 5.9: Physical Properties of Copper-Tin Alloys
Material
Designation
EN UNS
Composition
[wt%]
Density
[g/cm3]
Electrical
Conductivity
[MS/m] [% IACS]
Electrical
Resistivity
[μΩ·cm]
Thermal
Conductivity
[W/(m·K)]
Coeff. of Linear
Thermal
Expansion
[10-6/K]
Modulus of
Elasticity
[GPa]
Softening Temperature
(approx. 10% loss in
strength)
[°C]
Melting
Temp Range
[°C]
CuSn4
CW450K
C51100
Sn 3.5 - 4.5
P 0.01 - 0.4
Cu Rest
8.85 12.0 20 8.3 118 18.0 120 ca. 260 960 - 1060

Table 5.10: Mechanical Properties of Copper-Tin Alloys

2 teile!

Figure 6 Fig. 5.11: Mechanical properties of tin bronze depending on the tin content (cold working 0 and 50%)

Figure 7 Fig. 5.12: Strain hardening of CuSn8 by cold working

Figure 8 Fig. 5.13: Softening of CuSn8 after 3 hrs annealing after 50% cold working

Figure 6: Mechanical properties of tin bronze depending on the tin content (cold working 0 and 50%)
Figure 7: Strain hardening of CuSn8 by cold working
Figure 8: Softening of CuSn8 after 3 hrs annealing after 50% cold working

5.1.4.3 Copper-Nickel-Zinc Alloys (German Silver)

Despite its lower electrical conductivity, the good spring properties, high corrosion resistance, and the good workability make copper-nickel-zinc alloys a frequently used spring contact carrier in switches and relays. As illustrated in the phase diagram the most commonly used materials are in the " -range which means that they are single-phase alloys Figure 9 (Fig. 5.14). The formability and strength properties of german silver are comparable to those of the copper-tin alloys. The work hardening and softening behavior is illustrated on the example of CuNi12Zn24 in Figure 10 Figures 5.15 and Figure 11 5.16.

The relaxation behavior of Cu-Ni-Zn alloys is superior to the one for the tin bronzes. Additional advantages are the very good weldability, brazing properties, and the high corrosion resistance of these copper-nickel-zinc alloys.

Fig. 5.14: Copper rich region of the ternary copper-nickel-zinc phase diagram with indication of the more commonly available german silver materials
Copper rich region of the ternary copper-nickel-zinc phase diagram with indication of the more commonly available german silver materials

Table 5.11: Physical Properties of Copper-Nickel-Zinc Alloys

2 teile!

Table 5.12: Mechanical Properties of Copper-Nickel-Zinc Alloys

2 teile!

Figure 10 Fig. 5.15: Strain hardening of CuNi12Zn24 by cold working

Figure 11 Fig. 5.16: Softening of CuNi12Zn24 after 3 hrs annealing after 50% cold working

Figure 10: Strain hardening of CuNi12Zn24 by cold working
Figure 11: Softening of CuNi12Zn24 after 3 hrs annealing after 50% cold working

5.1.4.4 Copper-Silver-(Cadmium) Alloys (Silver Bronze)

Besides the low-allowed CuAg0.1 other copper materials with higher silver contents (2-6 wt%) are also used as contacts carrier materials. Some of them contain additionally 1.5 wt% Cd. The phase diagram Figure 12 (Fig. 5.17) shows that in principle the CuAg alloys can be precipitation hardened, but the possible increase in mechanical strength is rather small.

Copper-silver alloys have good spring properties and compared to other spring materials have a high electrical conductivity (Tables 5.13 and 5.14). The mechanical strength values in the strongly worked condition are comparable to those of the copper-tin alloys. Work hardening and softening behavior are shown for the example of CuAg2 (Figs. 13 – 15)(Figs. 5.18 – 5.20). For the relaxation behavior the silver bronzes are superior to German silver and tin bronze.

Because of their good spring properties combined with high electrical conductivity silver bronzes are suitable for the use contact springs in relays under higher current loads. Taking advantage of their high temperature stability they are also used as current carrying contacts in high voltage switchgear and as electrode material for resistance welding.

Fig. 5.17: Phase diagram of copper-silver for the range of 0 – 40 wt% silver
Phase diagram of copper-silver for the range of 0 – 40 wt% silver

Table 5.13: Physical Properties of Selected Copper-Silver-(Cadmium) Alloys

2 teile!

Table 5.14: Mechanical Properties of Selected Copper-Silver-(Cadmium) Alloys

2 teile!

Figure 13 Fig. 5.18: Strain hardening of CuAg2 by cold working

Figure 14 Fig. 5.19: Softening of CuAg2 after 1 hr annealing after 40% cold working

Figure 15 Fig. 5.20: Softening of CuAg2 after 1 hr annealing after 80% cold working

Strain hardening of CuAg2 by cold working
Softening of CuAg2 after 1 hr annealing after 40% cold working
Softening of CuAg2 after 1 hr annealing after 80% cold working

References

References