Changes

Jump to: navigation, search

Werkstoffe aus Platin-Metallen

1,515 bytes removed, 14:17, 19 December 2022
no edit summary
teuren Gold. Zwischenzeitlich hatte der Palladiumpreis ein Niveau erreicht, das
über dem des Goldes lag, so dass der Einsatz von Pd für Kontaktzwecke stark
rückläufig war. Heute (2011Dez. 2021) liegt der Palladiumpreis bei ca. 50% des Goldpreises2600 Euro/oz.
Die Legierungen des Pt mit Ru, Ir, Ni und W wurden vor allem in elektromechanischen
Bauelementen der Fernmeldetechnik und in hochwertigen Zündunterbrechern
verbreitet eingesetzt (<xr id="tab:Physical Properties of platinum metalsPhysikalische Eigenschaften von Platin-Metallen und deren Legierungen"/><!--(Tab. 2.7)-->).
<figtable id="tab:Physical Properties of platinum metalsPhysikalische Eigenschaften von Platin-Metallen und deren Legierungen">[[File<caption>'''<!--Table 2.7:Physical Properties of platinum metals.jpg|right|thumb|-->Physikalische Eigenschaften von Platin-Metallen und deren Legierungen'''</caption>  {| class="twocolortable" style="text-align: left; font-size: 12px"|-!Material!Platin/Palladium<br/>Content<br/>[gew.%]!Dichte<br/>[g/cm<sup>3</sup>]!Schmelzpunkt oder<br/>Schmelzbereich<br/>[°C]!Elekrische<br/>Widerstandskraft<br/>[µΩ*cm]!Elektrische<br/>Leitfähigkeit<br/>[MS/m]!Thermische<br/>Leitfähigkeit<br/>[W/m*K]!Temperaturkoeffizient des<br/>elektrischen Widerstands<br/>[10<sup>3</sup>/K]!Elastizitätsmodul<br/>[Gpa]|-|Pt (99,95)| >99,95|21,5|1772|10,6|9,5|72|3,9|173|-|PtIr5|95|21,5|1774 - 1776|22,2|4,5|42||190|-|PtIr10|90|21,6|1780 - 1785|17,9|5,6|29|2,0|220|-|PtRu10|90|20,6|ca. 1800|33,3|3,0||0,83|235|-|PtNi6|92|19,2|1670 - 1710|30|3,3||1,5|180|-|PtW5|95|21,3|1830 - 1860|43,4|2,3||0,7|185|-|Pd (99,95)| >99,95|12,0|1554|10,8|9,3|72|3,8|124|-|PdCu15|85|11,3|1370 - 1400|38,5|2,6|17|0,49|175|-|PdCu40|60|10,5|1200 - 1230|33,3|3,0|38|0,28|175|-|PdNi5|95|11,8|1455 - 1485|16,9|5,9||2,47|175|-|}
</figtable>
Today these components have been replaced in many applications by solid state technology and the usage of these materials is greatly reduced. Pd alloys however have a more significant importance. PdCu15 is widely used for example in automotive flasher relays. Because of their resistance to sulfide formation PdAg alloys are applied in various relay designs. The ability to thermally precipitation harden some multi component alloys based on PdAgAuPt they find special usage in wear resistant sliding contact applications. Pd44Ag38Cu15PtAuZn is a standard alloy in this group <xr id="tab:Mechanical_Properties_of_the_Platinum_Metals_and_their_Alloys"/><!--(Tab 2.8)--> und <xr id="tab:Contact_and_Switching_Properties_of_the_Platinum_Metals_and_their_Alloys"/><!--(Tab. 2.9)-->
Platinum and palladium alloys are mainly used similar to the gold based materials Heute werden diese Werkstoffe ausPreisgründen nur noch selten verwendet. Pd-Legierungen haben dagegenwesentlich größere Bedeutung. So ist z.B. PdCu15 für Blinkgeber im Kfz weitverbreitet. PdAg-Legierungen werden aufgrund ihrer Beständigkeit gegenüberSulfidbildung in the form of welded wire and profile segments but rarely as contact rivetsder Relaistechnik häufig eingesetzt. Thermisch aushärtbareMehrkomponentenlegierungen z.B. Because of the high precious metal prices joining technologies are used that allow the most economic application of the contact alloy auf PdAgAuPt-Basis kommen aufgrund ihrerherausragenden mechanischen Eigenschaften in the area where functionally neededGleitkontaktsystemen zur Anwendung.Pd44Ag38Cu15 PtAuZn gilt dabei als Standardlegierung dieserWerkstoffgruppe (<xr id="tab:Mechanical_Properties_of_the_Platinum_Metals_and_their_Alloys"/><!--(Tab 2.8)--> und <xr id="tab:Contact_and_Switching_Properties_of_the_Platinum_Metals_and_their_Alloys"/><!--(Tab. Because of their resistance to material transfer they are used for DC applications and due to their higher arc erosion resistance they are applied for medium electrical loads up to about 30W 2.9)-->). Platin- und Palladium-Legierungen kommen ähnlich wie Gold-Legierungenüblicherweise als geschweißte Draht- und Profilabschnitte, seltener alsKontaktniete zum Einsatz. Aufgrund der sehr hohen Edelmetallpreise werdensolche Verbindungsverfahren verwendet, bei denen ein sparsamer Edelmetalleinsatzgewährleistet ist. Platin- und Palladium-Werkstoffe werden wegen ihrerBeständigkeit gegenüber Materialwanderung in Gleichstromkreisen und ihrerverglichen mit Gold-Legierungen höheren Abbrandfestigkeit in relays and switches Relais undSchaltern bei mittlerer elektrischer Belastung bis etwa 30 Watt eingesetzt (<xr id="fig:Application_Examples_and_Form_of_Supply_for_Platinum_Metals_and_their_Alloys"/><!--(Table 2.10)-->). MultiMehrkomponentenlegierungen auf Pd-component alloys based on Pd with higher hardness and wear resistance are mainly used as spring arms Basis finden wegen ihrer hohenmechanischen Verschleißfestigkeit verbreitet Anwendung als Schleiffedern in sliding contact systems and DC miniature motorsGleitkontaktsystemen und Gleichstrom-Kleinstmotoren.
<figtable id="tab:Mechanical_Properties_of_the_Platinum_Metals_and_their_Alloys">
<caption>'''<!Festigkeitseigenschaften von Platin--Table 2.8:-->Mechanical Properties of the Platinum Metals and their AlloysMetallen und deren Legierungen'''</caption>
<table class="twocolortable">
<tr>
<th rowspan="2">MaterialWerkstoff</th><th colspan="2">Tensile Strength Zugfestigkeit [MPa]</th><th colspan="2">Elongation Dehnung A [%]</th><th colspan="2">Vickers Hardness Vickershärte HV 1</th></tr><tr><th>softweich</th><th>70% cold worketverformt</th><th>softweich</th><th>70% cold worketverformt</th><th>softweich</th><th>70% cold worketverformt</th></tr>
<tr><td>Pt (99,95)</td><td>150</td><td>360</td><td>40</td><td>3</td><td>40</td><td>120</td></tr>
<tr><td>PtIr5</td><td>260</td><td>550</td><td>25</td><td>2</td><td>85</td><td>160</td></tr>
</figtable>
*maximum hardnessmaximal erreichbare Härte
<figtable id="tab:Contact_and_Switching_Properties_of_the_Platinum_Metals_and_their_Alloys">
<table class="twocolortable">
<caption> '''<!--Table 2.9:-->Contact and Switching Properties of the Platinum Metals and their AlloysKontakt- und Schalteigenschaften von Platin-Metallen und deren Legierungen'''</caption><tr><th><p class="s11">MaterialWerkstoff</p></th><th><p class="s12">PropertiesEigenschaften<th colspan="2"></p></th></tr><tr><td><p class="s11">Pt</p></td><td><p class="s12">Very high corrosion resistanceSehr hohe Korrosionsbeständigkeit</p></td><td/></tr><tr><td><p class="s11">PtIr5 - 10</p></td><td><p class="s12">Very high corrosion resistanceSehr hohe Korrosionsbeständigkeit, low contact resistanceniedriger Kontaktwiderstand</p></td><td><p class="s12">High arc erosion resistancehohe Abbrandfestigkeit, high hardnessniedriger Kontaktwiderstand hohe Härte</p></td></tr><tr><td><p class="s11">PtRu10</p></td><td><p class="s12">Very high corrosion resistanceSehr hohe Korrosionsbeständigkeit, low welding tendencygeringe Schweißneigung</p></td><td><p class="s12">Low contact resistanceniedriger Kontaktwiderstand, very</p><p class="s12">high hardnesssehr hohe Härte</p></td></tr><tr><td><p class="s11">PtNi8</p></td><td><p class="s12">Low material transfer tendencyGeringe Neigung zu Materialwanderung</p></td><td><p class="s12">Very high hardnesssehr hohe Härte</p></td></tr><tr><td><p class="s11">PtW5</p></td><td><p class="s12">Low material transfer tendencyGeringe Neigung zu Materialwanderung</p></td><td><p class="s12">High hardnesshohe Härte</p></td></tr><tr><td><p class="s11">Pd</p></td><td><p class="s12">Strong tendency to “Brown Powder” formationStarke Neigung zu „brown powder“- Bildung</p></td><td><p class="s12">Less arc erosion resistant than weniger abbrandfest als Pt</p></td></tr><tr><td><p class="s11">PdCu15</p><p class="s11">PdCu40</p></td><td><p class="s12">Tendency to “Brown Powder” formationNeigung zu „brown powder“- Bildung</p></td><td><p class="s12">Mostly resistant to materialweitgehend beständig gegenüber Materialwanderung,</p><p class="s12">transfer, high hardnesshohe Härte</p></td></tr><tr><td><p class="s11">PdNi5</p></td><td><p class="s12">Strong tendency to “Brown Powder” formationStarke Neigung zu „brown powder“- Bildung</p></td><td><p class="s12">Low welding tendencygeringe Schweißneigung</p></td></tr><tr><td><p class="s11">Pd44Ag38Cu15</p><p class="s11">PtAuZn</p></td><td><p class="s12">High mechanical wear resistanceHohe mechanische Verschleißfestigkeit</p></td><td><p class="s12">Standard material for slidingStandardwerkstoff für</p><p class="s12">contact brushesSchleifkontakte</p></td></tr></table>
</figtable>
<figtable id="fig:Application_Examples_and_Form_of_Supply_for_Platinum_Metals_and_their_Alloys">
<table class="twocolortable">
<caption>'''<!--Table 2.10:-->Application Examples and Form of Supply for Platinum Metals and their AlloysAnwendungsbeispiele und Lieferformen von Platin-Metallen und deren Legierungen'''</caption><tr><th><p class="s11">MaterialWerkstoff</p></th><th><p class="s12">Application ExamplesAnwendungsbeispiele</p></th><th><p class="s12">Forms of SupplyLieferformen</p></th></tr><tr><td><p class="s11">Pt (99,95)</p></td><td><p class="s12">RelaysRelais</p></td><td><p class="s12">Contact rivetsKontaktniete, welded contact partsgeschweißte Kontaktteile</p></td></tr><tr><td><p class="s11">PtIr5</p><p class="s11">PtIr10</p><p class="s11">PtRu10</p><p class="s11">PtNi8</p><p class="s11">PtW5</p></td><td><p class="s12">RelaysRelais, sliding contact systemsGleitkontaktsysteme,</p><p class="s12">automotive ignition breaker pointsZündunterbrecher für Kfz</p></td><td><p class="s12">'''Semi-finished Contact MaterialsKontakthalbzeuge:''':</p><p class="s12">WireDrähte, seam-welded contact profilesrollennahtgeschweißte Profile</p><p class="s12">'''Contact PartsKontaktteile:'''</p><p class="s12">TipsPlättchen, wire-formed partsDrahtformteile, massive Kontaktniete, solid and composite contact rivetsBimetallniete, welded contact partsgeschweißte Kontaktteile</p></td></tr><tr><td><p class="s11">Pd (99,95)</p><p class="s11">PdNi5</p></td><td><p class="s12">RelaysRelais</p></td><td><p class="s12">Micro-profiles (weld tapes)Miniprofile, contact rivetsKontaktniete, welded contact partsgeschweißte Kontaktteile</p></td></tr><tr><td><p class="s11">PdCu15</p><p class="s11">PdCu40</p></td><td><p class="s12">Automotive flasher relaysBlinkrelais für Kfz</p></td><td><p class="s12">Micro-profilesMiniprofile, composite contact rivetsBimetallniete</p></td></tr><tr><td><p class="s11">Pd35AuAgPt</p><p class="s11">Pd44Ag38Cu15</p><p class="s11">PtAuZn</p><p class="s11">Pd40Co40W20</p></td><td><p class="s12">PotentiometersPotentiometer, slip ringsSchleifringübertrager, miniature</p><p class="s12">DC motors-Kleinstmotoren</p></td><td><p class="s12">Wire-formed partsDrahtformteile, welded wire segmentsgeschweißte Drahtabschnitte, multi-arm sliding contact brushesVieldrahtschleifer</p></td></tr></table>
</figtable>
 
 
<xr id="fig:Influence_of_1-20_atom%_of_different_additive_metals_on_the_electrical_resistivit_ p_of_platinum_(Degussa)"/>Influence of 1-20 atom% of different additive metals on the electrical resistivity p of platinum (Degussa)
 
<xr id="fig:Influence_of_1-20_atom%_of_different_additive_metals_on_the_electrical_resistivit_ p_of_platinum"/>
Influence of 1-22 atom% of different additive metals on the electrical resistivity p of palladium
 
<xr id="fig:Phase_diagram_of_platinum-iridium"/>Fig. 2.27: Phase diagram of platinum-iridium
 
<xr id="fig:Phase_diagram_of_platinum-nickel"/>
Fig. 2.28: Phase diagram of platinum-nickel
 
<xr id="fig:Phase_diagram_of_platinum-tungsten"/>
Fig. 2.29: Phase diagram of platinum-tungsten
 
<xr id="fig:Phase_diagram_of_platinum-copper"/>
Fig. 2.30: Phase diagram of palladium-copper
 
<xr id="fig:Strain_hardening_of_Pt_by_cold_working"/>
Fig. 2.31: Strain hardening of Pt by cold working
 
<xr id="fig:Softening_of_Pt_after_annealing_for_0.5_hrs_after_80%_cold_working"/>
Fig. 2.32: Softening of Pt after annealing for 0.5 hrs after 80% cold working
 
<xr id="fig:Strain_hardening_of_PtIr5_by_cold_working"/>
Fig. 2.33: Strain hardening of PtIr5 by cold working
 
<xr id="fig:Softening_of_PtIr5_after_annealing_for_1_hr_after_different degrees_of_cold_working"/>
Fig. 2.34: Softening of PtIr5 after annealing for 1 hr after different degrees of cold working
 
<xr id="fig:Strain_hardening_of_PtNi8_by_cold_working"/>Fig. 2.35: Strain hardening of PtNi8 by cold working
 
<xr id="fig:Softening_of_PtNi8_after_annealing_for_1_hr_after_80%_cold_working"/>
Fig. 2.36: Softening of PtNi8 after annealing for 1 hr after 80% cold working
 
<xr id="fig:Strain_hardening_of_PtW5_by_cold_working"/>Fig. 2.37: Strain hardening of PtW5 by cold working
 
<xr id="fig:Softening_of_PtW5_after_annealing_for_1_hr_after_80%_cold_working"/>Fig. 2.38: Softening of PtW5 after annealing for 1hr after 80% cold working
 
<xr id="fig:Strain_hardening_of_Pd_99.99_by_cold_working"/>Fig. 2.39: Strain hardening of Pd 99.99 by cold working
 
<xr id="fig:Strain_hardening_of_PdCu15_by_cold_working"/>Fig. 2.40: Strain hardening of PdCu15 by cold working
 
<xr id="fig:Softening_of_PdCu15_after_annealing_for_0.5_hrs"/>Fig. 2.41: Softening of PdCu15 after annealing for 0.5 hrs
 
<xr id="fig:Strain_hardening_of_PdCu40_by_cold_working"/>Fig. 2.42: Strain hardening of PdCu40 by cold working
 
<xr id="fig:Softening_of_PdCu40_after_annealing_for_0.5_hrs_after_80%_cold_working"/>Fig. 2.43: Softening of PdCu40 after annealing for 0.5 hrs after 80% cold working
 
<xr id="fig:Electrical_resistivity_p_of_PdCu_alloys"/>Fig. 2.44: Electrical resistivity p of PdCu alloys with and without an annealing step for forming an ordered phase
 
<figure id="fig:Influence_of_1-20_atom%_of_different_additive_metals_on_the_electrical_resistivit_ p_of_platinum_(Degussa)">
[[File:Influence of platinum degussa.jpg|left|thumb|<caption>Influence of Einfluss von 1- 20 atomAtom-% of different additive metals on the electrical resistivity verschiedener Zusatzmetalle auf den spez. elektrischen Widerstand p of platinum von Platin (Degussa)</caption>]]
</figure>
<figure id="fig:Influence_of_1-20_atom%_of_different_additive_metals_on_the_electrical_resistivit_ p_of_platinum">
[[File:Influence of palladium.jpg|left|thumb|<caption>Influence of Einfluss von 1-22 atomAtom-% of different additive metals on the electrical resistivity verschiedener Zusatzmetalle auf den spezifischen elektrischen Widerstand p of palladiumvon Palladium (Degussa)</caption>]]
</figure>
<figure id="fig:Phase_diagram_of_platinum-iridium">
[[File:Phase diagram of platinum iridium.jpg|left|thumb|<caption>Fig. 2.27:Phase diagram of platinumZustandsdiagramm von Platin-iridiumIridium</caption>]]
</figure>
<figure id="fig:Phase_diagram_of_platinum-nickel">
[[File:Phase diagram of platinum nickel.jpg|left|thumb|<caption>Fig. 2.28:Phase diagram of platinumZustandsdiagramm von Platin-nickelNickel</caption>]]
</figure>
<figure id="fig:Phase_diagram_of_platinum-tungsten">
[[File:Phase diagram of palladium copper.jpg|left|thumb|<caption>Fig. 2.29:Phase diagram of platinumZustandsdiagramm von Platin-tungstenWolfram</caption>]]
</figure>
<figure id="fig:Phase_diagram_of_platinum-copper">
[[File:Phase diagram of palladium copper2.jpg|left|thumb|<caption>Fig. 2.30: Phase diagram of palladiumZustandsdiagramm von Palladium-copperKupfer</caption>]]
</figure>
<figure id="fig:Strain_hardening_of_Pt_by_cold_working">
[[File:Strain hardening of Pt by cold working.jpg|left|thumb|<caption>Fig. 2.31: Strain hardening of Verfestigungsverhalten von Pt by cold workingdurch Kaltumformung</caption>]]
</figure>
<figure id="fig:Softening_of_Pt_after_annealing_for_0.5_hrs_after_80%_cold_working">
[[File:Softening of Pt after annealing.jpg|left|thumb|<caption>Fig. 2.32: Softening of Erweichungsverhalten von Pt after annealing for nach 0.5 hrs after ,5h Glühdauer und einer Kaltumformung von 80% cold working</caption>]]
</figure>
<figure id="fig:Strain_hardening_of_PtIr5_by_cold_working">
[[File:Strain hardening of PtIr5 by cold working.jpg|left|thumb|<caption>Fig. 2.33: Strain hardening of Verfestigungsverhalten von PtIr5 by cold workingdurch Kaltumformung</caption>]]
</figure>
<figure id="fig:Softening_of_PtIr5_after_annealing_for_1_hr_after_different degrees_of_cold_working">
[[File:Softening of PtIr5 after annealing.jpg|left|thumb|<caption>Fig. 2.34: Softening of Erweichungsverhalten von PtIr5 after annealing for 1 hr after different degrees of cold workingnach 1h Glühdauer mit unterschiedlicher Kaltumformung</caption>]]
</figure>
<figure id="fig:Strain_hardening_of_PtNi8_by_cold_working">
[[File:Strain hardening of PtNi8 by cold working.jpg|left|thumb|<caption>Fig. 2.35: Strain hardening of Verfestigungsverhalten von PtNi8 by cold workingdurch Kaltumformung</caption>]]
</figure>
<figure id="fig:Softening_of_PtNi8_after_annealing_for_1_hr_after_80%_cold_working">
[[File:Softening of PtNi8 after annealing.jpg|left|thumb|<caption>Fig. 2.36: Softening of Erweichungsverhalten von PtNi8 after annealing for 1 hr after nach 1h Glühdauer und einer Kaltumformung von 80% cold working</caption>]]
</figure>
<figure id="fig:Strain_hardening_of_PtW5_by_cold_working">
[[File:Strain hardening of PtW5 by cold working.jpg|left|thumb|<caption>Fig. 2.37: Strain hardening of Verfestigungsverhalten von PtW5 by cold workingdurch Kaltumformung</caption>]]
</figure>
<figure id="fig:Softening_of_PtW5_after_annealing_for_1_hr_after_80%_cold_working">
[[File:Softening of PtW5 after annealing.jpg|left|thumb|<caption>Fig. 2.38: Softening of Erweichungsverhalten von PtW5 after annealing for 1 hr after nach 1h Glühdauer und einer Kaltumformung von 80% cold working</caption>]]
</figure>
<figure id="fig:Strain_hardening_of_Pd_99.99_by_cold_working">
[[File:Strain hardening of Pd-99 99by cold working.jpg|left|thumb|<caption>Fig. 2.39: Strain hardening of Verfestigungsverhalten von Pd 99.,99 by cold workingdurch Kaltumformung</caption>]]
</figure>
<figure id="fig:Strain_hardening_of_PdCu15_by_cold_working">
[[File:Strain hardening of PdCu15 by cold working.jpg|left|thumb|<caption>Fig. 2.40: Strain hardening of Verfestigungsverhalten von PdCu15 by cold workingdurch Kaltumformung</caption>]]
</figure>
<figure id="fig:Softening_of_PdCu15_after_annealing_for_0.5_hrs">
[[File:Softening of PdCu15 after annealing.jpg|left|thumb|<caption>Softening of Erweichungsverhalten von PdCu15 after annealing for nach 0.5 hrs,5h Glühdauer und einer Kaltumformung von 80%</caption>]]
</figure>
<figure id="fig:Strain_hardening_of_PdCu40_by_cold_working">
[[File:Strain hardening of PdCu40 by cold working.jpg|left|thumb|<caption>Strain hardening of Verfestigungsverhalten von PdCu40 by cold workingdurch Kaltumformung</caption>]]
</figure>
<figure id="fig:Softening_of_PdCu40_after_annealing_for_0.5_hrs_after_80%_cold_working">
[[File:Softening of PdCu40 after annealing.jpg|left|thumb|<caption>Softening of Erweichungsverhalten von PdCu40 after annealing for nach 0.5 hrs after ,5h Glühdauer und einer Kaltumformung von 80% cold working</caption>]]
</figure>
<figure id="fig:Electrical_resistivity_p_of_PdCu_alloys">
[[File:Electrical resistivity p of PdCu alloys.jpg|left|thumb|<caption>Electrical resistivity Spez. elektrischer Widerstand p of von PdCu alloys with and without an annealing step for forming an ordered phase-Legierungen ohne und mit einer Glühbehandlung zur Ausbildung einer geordneten Phase</caption>]]
</figure>

Navigation menu

Powered by