Difference between revisions of "Werkstoffe auf Silber-Basis"

From Electrical Contacts
Jump to: navigation, search
(temp edit)
(61 intermediate revisions by 2 users not shown)
Line 14: Line 14:
 
Kurzschlüsse verursachen.
 
Kurzschlüsse verursachen.
  
Einen Überblick über die gebräuchlichen Silber-Qualitäten gibt (<xr id="tab:Overview_of_the_Most_Widely_Used_Silver_Grades"/><!--(Table 2.11)-->). Silber
+
<xr id="tab:Overview_of_the_Most_Widely_Used_Silver_Grades"/><!--(Table 2.11)--> shows the typically available quality grades of silver. In certain economic areas, i.e. China, there are additional grades with varying amounts of impurities available on the market. In powder form silver is used for a wide variety of silver based composite contact materials. Different manufacturing processes result in different grades of Ag powder as shown in <xr id="tab:Quality_Criteria_of_Differently_Manufactured_Silver_Powders"/><!--Table 2.12-->. additional properties of silver powders and their usage are described in [[ Precious Metal Powders and Preparations#Precious_Metal_Powders|Precious Metal Powders ]] und [[Precious_Metal_Powders_and_Preparations|Table Different Types of Silver Powders.]]<!--(Tab. 8.1.)-->
in Pulverform dient vor allem als Ausgangsmaterial für die Herstellung von Silber-
 
Verbundwerkstoffen. Je nach Herstellung werden Silber-Pulver mit unterschiedlichen
 
Qualitätsmerkmalen gewonnen (<xr id="tab:Quality_Criteria_of_Differently_Manufactured_Silver_Powders"/><!--Table 2.12-->). Weitere Angaben zu den verschiedenen
 
Silber-Pulvern sind in Kap. [[ Edelmetallpulver_und_-präparate|Edelmetallpulver und -präparate]] enthalten.
 
 
   
 
   
Silber ist in Form von Halbzeugen gut warm- und kaltumformbar und lässt sich
+
Semi-finished silver materials can easily be warm or cold formed and can be clad to the usual base materials. For attachment of silver to contact carrier materials welding of wire or profile cut-offs and brazing are most widely applied. Besides these mechanical processes such as wire insertion (wire staking) and the riveting (staking) of solid or composite contact rivets are used in the manufacture of contact components.
problemlos mit den üblichen Trägerwerkstoffen durch Plattieren verbinden (<xr id="fig:Strain hardening of Ag bei cold working"/> und <xr id="fig:Softening of Ag after annealing after different degrees"/>).
 
Als Fügeverfahren kommen vor allem das Widerstandsschweißen von Silber-
 
Drähten und -Profilen sowie das Hartlöten zum Einsatz. Daneben werden vielfach
 
auch mechanische Verfahren, wie das Einpressen von Drahtabschnitten
 
und massiven oder plattierten Kontaktnieten angewandt.
 
  
Kontakte aus Feinsilber werden in unterschiedlichen Formen z.B. in Relais,
+
Contacts made from fine silver are applied in various electrical switching devices such as relays, pushbuttons, appliance and control switches for
Tastern, Geräte- und Hilfsstromschaltern bei Stromstärken < 2A eingesetzt (<xr id="tab:Application Examples and Forms of Supply for Silver and Silver Alloys"/><!--(Table 2.16)-->). Als galvanischer Überzug findet Silber zur Verringerung des
+
currents < 2 A <xr id="tab:Application Examples and Forms of Supply for Silver and Silver Alloys"/><!--(Table 2.16)-->. Electroplated silver coatings are widely used to reduce the contact resistance and improve the brazing behavior of other contact materials and components.
Kontaktwiderstandes und zur Verbesserung der Lötbarkeit von Kontaktteilen
 
verbreitet Anwendung.
 
  
  
 
<figtable id="tab:Overview_of_the_Most_Widely_Used_Silver_Grades">
 
<figtable id="tab:Overview_of_the_Most_Widely_Used_Silver_Grades">
<caption>'''<!--Table 2.11:-->Überblick über die gebräuchlichsten Silber-Qualitäten'''</caption>
+
<caption>'''<!--Table 2.11:-->Overview of the Most Widely Used Silver Grades'''</caption>
 
<table class="twocolortable">
 
<table class="twocolortable">
<tr><th><p class="s12">Bezeichnung</p></th><th><p class="s12">Zusammensetzung Ag (Mindestanteil)</p></th><th><p class="s12">Beimengungen</p><p class="s12">[ppm]</p></th><th><p class="s12">Hinweise für die Verwendung</p></th></tr><tr><td><p class="s12">Spektralreines</p><p class="s12">Silber</p></td><td><p class="s11">99.999</p></td><td><p class="s11">Cu &lt; 3</p><p class="s11">Zn &lt; 1</p><p class="s11">Si  &lt; 1</p><p class="s11">Ca &lt; 2</p><p class="s11">Fe &lt; 1</p><p class="s11">Mg &lt; 1</p><p class="s11">Cd &lt; 1</p></td><td><p class="s12">Bleche, Bänder, Stangen, Drähte für elektronische Bauelemente</p></td></tr><tr><td><p class="s12">Hochreines Silber, sauerstofffrei</p></td><td><p class="s11">99.995</p></td><td><p class="s11">Cu &lt; 30</p><p class="s11">Zn &lt; 2</p><p class="s11">Si  &lt; 5</p><p class="s11">Ca &lt; 10</p><p class="s11">Fe &lt; 3</p><p class="s11">Mg &lt; 5</p><p class="s11">Cd &lt; 3</p></td><td><p class="s12">Barren und Granalien für Legierungszwecke</p></td></tr></table>
+
<tr><th><p class="s12">Designation</p></th><th><p class="s12">Composition minimum Ag [wt%]</p></th><th><p class="s12">Impurities</p><p class="s12">[ppm]</p></th><th><p class="s12">Notes on Usage</p></th></tr><tr><td><p class="s12">Spectroscopically</p><p class="s12">Pure Ag</p></td><td><p class="s11">99.999</p></td><td><p class="s11">Cu &lt; 3</p><p class="s11">Zn &lt; 1</p><p class="s11">Si  &lt; 1</p><p class="s11">Ca &lt; 2</p><p class="s11">Fe &lt; 1</p><p class="s11">Mg &lt; 1</p><p class="s11">Cd &lt; 1</p></td><td><p class="s12">Sheets, strips, rods, wires for electronic applications</p></td></tr><tr><td><p class="s12">High Purity Ag, oxygen-free</p></td><td><p class="s11">99.995</p></td><td><p class="s11">Cu &lt; 30</p><p class="s11">Zn &lt; 2</p><p class="s11">Si  &lt; 5</p><p class="s11">Ca &lt; 10</p><p class="s11">Fe &lt; 3</p><p class="s11">Mg &lt; 5</p><p class="s11">Cd &lt; 3</p></td><td><p class="s12">Ingots, bars, granulate for alloying</p><p class="s12">purposes</p></td></tr></table>
 
</figtable>
 
</figtable>
  
  
 
<figtable id="tab:Quality_Criteria_of_Differently_Manufactured_Silver_Powders">
 
<figtable id="tab:Quality_Criteria_of_Differently_Manufactured_Silver_Powders">
<caption>'''<!--Table 2.12:-->Qualitätsmerkmale verschieden hergestellter Silber-Pulver'''</caption>
+
<caption>'''<!--Table 2.12:-->Quality Criteria of Differently Manufactured Silver Powders'''</caption>
  
 
{| class="twocolortable" style="text-align: left; font-size: 12px"
 
{| class="twocolortable" style="text-align: left; font-size: 12px"
 
|-
 
|-
!colspan="2" |Verunreinigungen
+
!colspan="2" |Impurities
 
!Ag-Chem.*
 
!Ag-Chem.*
 
!Ag-ES**
 
!Ag-ES**
Line 104: Line 93:
 
|
 
|
 
|-
 
|-
!colspan="5" |Partikelverteilung (Siebanalyse)
+
!colspan="5" |Particle Size Distribution (screen analysis)
 
|-
 
|-
 
|> 100 μm  
 
|> 100 μm  
Line 124: Line 113:
 
|< 75
 
|< 75
 
|-
 
|-
|Schüttdichte
+
|Apparent Density
 
|g/cm<sup>3</sup>
 
|g/cm<sup>3</sup>
 
|1.0 - 1.6
 
|1.0 - 1.6
Line 130: Line 119:
 
|3 - 4
 
|3 - 4
 
|-
 
|-
|Stampfvolumen
+
|Tap Density
 
|ml/100g
 
|ml/100g
 
|40 - 50
 
|40 - 50
Line 136: Line 125:
 
|15 - 25
 
|15 - 25
 
|-
 
|-
!colspan="5" |Press-/Sinterverhalten
+
!colspan="5" |Press/Sintering Behavior
 
|-
 
|-
|Pressdichte
+
|Press Density
 
|g/cm<sup>3</sup>
 
|g/cm<sup>3</sup>
 
|5.6 - 6.5
 
|5.6 - 6.5
Line 144: Line 133:
 
|6.5 - 8.5
 
|6.5 - 8.5
 
|-
 
|-
|Sinterdichte
+
|Sinter Density
 
|g/cm<sup>3</sup>
 
|g/cm<sup>3</sup>
 
|> 9
 
|> 9
Line 150: Line 139:
 
|> 8
 
|> 8
 
|-
 
|-
|Volumenschrumpfung
+
|Volume Shrinkage
 
|%
 
|%
 
|> 34
 
|> 34
Line 156: Line 145:
 
|> 0
 
|> 0
 
|-
 
|-
|Glühverlust
+
|Annealing Loss
 
|%
 
|%
 
|< 2
 
|< 2
Line 164: Line 153:
 
</figtable>
 
</figtable>
  
<nowiki>*</nowiki> hergestellt durch chemische Fällung <br />
+
<nowiki>*</nowiki> Manufactured by chemical precipitation <br />
<nowiki>**</nowiki> hergestellt durch Elektrolyse <br />
+
<nowiki>**</nowiki> Manufactured by electrolytic deposition <br />
<nowiki>***</nowiki> hergestellt durch Verdüsen einer Schmelze
+
<nowiki>***</nowiki> Manufactured by atomizing of a melt
 +
 
 +
 
 +
<xr id="fig:Strain hardening of Ag bei cold working"/><!--Fig. 2.45:--> Strain hardening of Ag 99.95 by cold working
 +
 
 +
<xr id="fig:Softening of Ag after annealing after different degrees"/><!--Fig. 2.46:--> Softening of Ag 99.95 after annealing for 1 hr after different degrees of strain hardening
  
  
Line 172: Line 166:
  
 
<figure id="fig:Strain hardening of Ag bei cold working">
 
<figure id="fig:Strain hardening of Ag bei cold working">
[[File:Strain hardening of Ag bei cold working.jpg|left|thumb|<caption>Verfestigungsverhalten von Ag 99,95 durch Kaltumformung</caption>]]
+
[[File:Strain hardening of Ag bei cold working.jpg|left|thumb|<caption>Strain hardening of Ag 99.95 bei cold working</caption>]]
 
</figure>
 
</figure>
  
 
<figure id="fig:Softening of Ag after annealing after different degrees">
 
<figure id="fig:Softening of Ag after annealing after different degrees">
[[File:Softening of Ag after annealing after different degrees.jpg|left|thumb|<caption>Erweichungsverhalten von Ag 99,95 nach 1h Glühdauer und unterschiedlicher Kaltumformung</caption>]]
+
[[File:Softening of Ag after annealing after different degrees.jpg|left|thumb|<caption>Softening of Ag 99.95 after annealing for 1 hr after different degrees of strain hardening</caption>]]
 
</figure>
 
</figure>
 
</div>
 
</div>
 
<div class="clear"></div>
 
<div class="clear"></div>
  
===Silber-Legierungen===
+
===Silver Alloys===
Auf dem Schmelzwege hergestellte Silber-Legierungen finden in solchen Fällen
+
To improve the physical and contact properties of fine silver melt-metallurgical produced silver alloys are used <xr id="tab:Physical Properties of Silver and Silver Alloys"/><!--(Table 2.13)-->. By adding metal components the mechanical properties such as hardness and tensile strength as well as typical contact properties such as erosion resistance, and resistance against material transfer in DC circuits are increased <xr id="tab:Mechanical Properties of Silver and Silver Alloys"/><!--(Table 2.14)-->. On the other hand however, other properties such as electrical conductivity and chemical corrosion resistance can be negatively impacted by alloying <xr id="fig:Influence of 1 10 atom of different alloying metals"/><!--(Fig. 2.47)--> and <xr id="fig:Electrical resistivity p of AgCu alloys"/><!--(Fig. 2.48)-->.
Anwendung, in denen die physikalischen und kontaktspezifischen Eigenschaften
 
von Feinsilber nicht ausreichen (<xr id="tab:Physical Properties of Silver and Silver Alloys"/><!--(Table 2.13)-->). Durch die metallische Zusatzkomponente
 
werden sowohl die mechanische Eigenschaften wie Härte und
 
Festigkeit als auch typische Kontakteigenschaften wie Abbrandfestigkeit und
 
Resistenz gegenüber Materialwanderung in Gleichstromkreisen erhöht (<xr id="tab:Mechanical Properties of Silver and Silver Alloys"/><!--(Table 2.14)-->). Allerdings können durch Legierungsbildung andere Eigenschaften wie
 
elektrische Leitfähigkeit und chemische Beständigkeit verschlechtert werden
 
(<xr id="fig:Influence of 1 10 atom of different alloying metals"/><!--(Fig. 2.47)--> und <xr id="fig:Electrical resistivity p of AgCu alloys"/><!--(Fig. 2.48)-->).
 
  
 
<figtable id="tab:Physical Properties of Silver and Silver Alloys">
 
<figtable id="tab:Physical Properties of Silver and Silver Alloys">
<caption>'''<!--Table 2.13:-->Physikalische Eigenschaften von Silber und Silberlegierungen'''</caption>
+
<caption>'''<!--Table 2.13:-->Physical Properties of Silver and Silver Alloys'''</caption>
  
 
{| class="twocolortable" style="text-align: left; font-size: 12px"
 
{| class="twocolortable" style="text-align: left; font-size: 12px"
 
|-
 
|-
!Werkstoff<br />  
+
!Material/<br />DODUCO-<br />Designation
!Silber-Anteil<br />[wt%]
+
!Silver Content<br />[wt%]
!Dichte<br />[g/cm<sup>3</sup>]
+
!Density<br />[g/cm<sup>3</sup>]
!Schmelzpunkt<br />bzw.-intervall<br />[°C]
+
!Melting Point<br />or Range<br />[°C]
!Spez. elektr.
+
!Electrical<br />Resistivity<br />[μΩ·cm]
Widerstand<br />[μΩ·cm]
+
!Electrical<br />Conductivity<br />[MS/m]
!Elektrische
+
!Thermal<br />Conductivity<br />[W/mK]
Leitfähigkeit<br />[MS/m]
+
!Temp. Coefficient of<br />the Electr.Resistance<br />[10<sup>-3</sup>/K]
!Wärmeleitfähigkeit<br />[W/mK]
+
!Modulus of<br />Elasticity<br />[GPa]
!Temp. Koeff.d.el.
 
Widerstandes<br />[10<sup>-3</sup>/K]
 
!E-Modul<br />[GPa]
 
 
|-
 
|-
 
|Ag
 
|Ag
Line 219: Line 203:
 
|80
 
|80
 
|-
 
|-
|AgNi 0,15<br />
+
|AgNi 0,15<br />ARGODUR-Spezial
 
|99.85
 
|99.85
 
|10.5
 
|10.5
Line 289: Line 273:
 
|92
 
|92
 
|-
 
|-
|Ag99,5NiMg<br />ARGODUR 32<br />unvergütet
+
|AgCd10
 +
|89 - 91
 +
|10.3
 +
|910 - 925
 +
|4.35
 +
|23
 +
|150
 +
|1.4
 +
|60
 +
|-
 +
|Ag99,5NiMg<br />ARGODUR 32<br />Not heat treated
 
|99.5
 
|99.5
 
|10.5
 
|10.5
Line 299: Line 293:
 
|80
 
|80
 
|-
 
|-
|ARGODUR 32<br />vergütet
+
|ARGODUR 32<br />Heat treated
 
|99.5
 
|99.5
 
|10.5
 
|10.5
Line 311: Line 305:
 
</figtable>
 
</figtable>
  
 +
<xr id="fig:Influence of 1 10 atom of different alloying metals"/><!--Fig. 2.47:--> Influence of 1-10 atom% of different alloying metals on the electrical resistivity of silver
  
 +
<xr id="fig:Electrical resistivity p of AgCu alloys"/><!--Fig. 2.48:--> Electrical resistivity p of AgCu alloys
  
 
<div class="multiple-images">
 
<div class="multiple-images">
  
 
<figure id="fig:Influence of 1 10 atom of different alloying metals">
 
<figure id="fig:Influence of 1 10 atom of different alloying metals">
[[File:Influence of 1 10 atom of different alloying metals.jpg|left|thumb|<caption>Einfluss von 1-10 Atom-% verschiedener Zusatzmetalle auf den spez. elektrischen Widerstand p von Silber</caption>]]
+
[[File:Influence of 1 10 atom of different alloying metals.jpg|left|thumb|<caption>Influence of 1-10 atom% of different alloying metals on the electrical resistivity of silver</caption>]]
 
</figure>
 
</figure>
  
 
<figure id="fig:Electrical resistivity p of AgCu alloys">
 
<figure id="fig:Electrical resistivity p of AgCu alloys">
[[File:Electrical resistivity p of AgCu alloys.jpg|left|thumb|<caption>Spez. elektrischer Widerstand p von AgCu-Legierungen mit 0-20 Massen-% Cu im weichgeglühten und angelassenen Zustand
+
[[File:Electrical resistivity p of AgCu alloys.jpg|left|thumb|<caption>Electrical resistivity p of AgCu alloys with 0-20 weight% Cu in the soft annealed and tempered stage a) Annealed and quenched b) Tempered at 280°C</caption>]]
a) geglüht und abgeschreckt
 
b) bei 280°C angelassen</caption>]]
 
 
</figure>
 
</figure>
 
</div>
 
</div>
 
<div class="clear"></div>
 
<div class="clear"></div>
  
<figtable id="tab:Mechanical Properties of Silver and Silver Alloys">
+
====Fine-Grain Silver====
<caption>'''<!--Table 2.14:-->Festigkeitseigenschaften von Silber und Silberlegierungen'''</caption>
+
Fine-Grain Silver (ARGODUR-Spezial) is defined as a silver alloy with an addition of 0.15 wt% of Nickel. Silver and nickel are not soluble in each other in solid form. In liquid silver only a small amount of nickel is soluble as the phase diagram <xr id="fig:Phase diagram of silver nickel"/> <!--(Fig. 2.51)--> illustrates. During solidification of the melt this nickel addition gets finely dispersed in the silver matrix and eliminates the pronounce coarse grain growth after prolonged influence of elevated temperatures <xr id="fig:Coarse grain micro structure of Ag"/><!--(Fig. 2.49)--> and <xr id="fig:Fine grain microstructure of AgNiO"/><!--(Fig. 2.50)-->.
<table class="twocolortable">
 
<tr><th><p class="s12">Werkstoff</p><p class="s12"></p></th><th><p class="s12">Festigkeitszustand</p></th><th><p class="s12">Zugfestigkeit</p><p class="s12">R<span class="s31">m  </span>[MPa]</p></th><th><p class="s12">Dehnung A [%] min.</p></th><th><p class="s12">Vickershärte</p><p class="s12">HV 10</p></th></tr><tr><td><p class="s12">Ag</p></td><td><p class="s12">R 200</p><p class="s12">R 250</p><p class="s12">R 300</p><p class="s12">R 360</p></td><td><p class="s12">200 - 250</p><p class="s12">250 - 300</p><p class="s12">300 - 360</p><p class="s12">&gt; 360</p></td><td><p class="s12">30</p><p class="s12">8</p><p class="s12">3</p><p class="s12">2</p></td><td><p class="s12">30</p><p class="s12">60</p><p class="s12">80</p><p class="s12">90</p></td></tr><tr><td><p class="s12">AgNi 0,15</p><p class="s12"></p></td><td><p class="s12">R 220</p><p class="s12">R 270</p><p class="s12">R 320</p><p class="s12">R 360</p></td><td><p class="s12">220 - 270</p><p class="s12">270 - 320</p><p class="s12">320 - 360</p><p class="s12">&gt; 360</p></td><td><p class="s12">25</p><p class="s12">6</p><p class="s12">2</p><p class="s12">1</p></td><td><p class="s12">40</p><p class="s12">70</p><p class="s12">85</p><p class="s12">100</p></td></tr><tr><td><p class="s12">AgCu3</p></td><td><p class="s12">R 250</p><p class="s12">R 330</p><p class="s12">R 400</p><p class="s12">R 470</p></td><td><p class="s12">250 - 330</p><p class="s12">330 - 400</p><p class="s12">400 - 470</p><p class="s12">&gt; 470</p></td><td><p class="s12">25</p><p class="s12">4</p><p class="s12">2</p><p class="s12">1</p></td><td><p class="s12">45</p><p class="s12">90</p><p class="s12">115</p><p class="s12">120</p></td></tr><tr><td><p class="s12">AgCu5</p></td><td><p class="s12">R 270</p><p class="s12">R 350</p><p class="s12">R 460</p><p class="s12">R 550</p></td><td><p class="s12">270 - 350</p><p class="s12">350 - 460</p><p class="s12">460 - 550</p><p class="s12">&gt; 550</p></td><td><p class="s12">20</p><p class="s12">4</p><p class="s12">2</p><p class="s12">1</p></td><td><p class="s12">55</p><p class="s12">90</p><p class="s12">115</p><p class="s12">135</p></td></tr><tr><td><p class="s12">AgCu10</p></td><td><p class="s12">R 280</p><p class="s12">R 370</p><p class="s12">R 470</p><p class="s12">R 570</p></td><td><p class="s12">280 - 370</p><p class="s12">370 - 470</p><p class="s12">470 - 570</p><p class="s12">&gt; 570</p></td><td><p class="s12">15</p><p class="s12">3</p><p class="s12">2</p><p class="s12">1</p></td><td><p class="s12">60</p><p class="s12">95</p><p class="s12">130</p><p class="s12">150</p></td></tr><tr><td><p class="s12">AgCu28</p></td><td><p class="s12">R 300</p><p class="s12">R 380</p><p class="s12">R 500</p><p class="s12">R 650</p></td><td><p class="s12">300 - 380</p><p class="s12">380 - 500</p><p class="s12">500 - 650</p><p class="s12">&gt; 650</p></td><td><p class="s12">10</p><p class="s12">3</p><p class="s12">2</p><p class="s12">1</p></td><td><p class="s12">90</p><p class="s12">120</p><p class="s12">140</p><p class="s12">160</p></td></tr><tr><td><p class="s12">Ag98CuNi</p><p class="s12">ARGODUR 27</p></td><td><p class="s12">R 250</p><p class="s12">R 310</p><p class="s12">R 400</p><p class="s12">R 450</p></td><td><p class="s12">250 - 310</p><p class="s12">310 - 400</p><p class="s12">400 - 450</p><p class="s12">&gt; 450</p></td><td><p class="s12">20</p><p class="s12">5</p><p class="s12">2</p><p class="s12">1</p></td><td><p class="s12">50</p><p class="s12">85</p><p class="s12">110</p><p class="s12">120</p></td></tr><tr><td><p class="s12">AgCu24,5Ni0,5</p></td><td><p class="s12">R 300</p><p class="s12">R 600</p></td><td><p class="s12">300 - 380</p><p class="s12">&gt; 600</p></td><td><p class="s12">10</p><p class="s12">1</p></td><td><p class="s12">105</p><p class="s12">180</p></td></tr><tr><td><p  class="s12">Ag99,5NiMg</p><p class="s12">ARGODUR 32</p><p class="s12">Not heat treated</p></td><td><p class="s12">R 220</p><p class="s12">R 260</p><p class="s12">R 310</p><p class="s12">R 360</p></td><td><p class="s12">220</p><p class="s12">260</p><p class="s12">310</p><p class="s12">360</p></td><td><p class="s12">25</p><p class="s12">5</p><p class="s12">2</p><p class="s12">1</p></td><td><p class="s12">40</p><p class="s12">70</p><p class="s12">85</p><p class="s12">100</p></td></tr><tr><td><p class="s12">ARGODUR 32 Heat treated</p></td><td><p class="s12">R 400</p></td><td><p class="s12">400</p></td><td><p class="s12">2</p></td><td><p class="s12">130-170</p></td></tr></table>
 
</figtable>
 
 
 
====Feinkornsilber====
 
Unter Feinkornsilber versteht man eine Silberlegierung mit
 
einem Zusatz von 0,15 Massen-% Nickel. Silber und Nickel sind im festen Zustand
 
ineinander völlig unlöslich. Im flüssigen Silber lässt sich nur ein geringer
 
Nickelanteil lösen, wie aus dem entsprechenden Zustandsdiagramm hervorgeht
 
(<xr id="fig:Phase diagram of silver nickel"/><!--(Fig. 2.51)-->). Durch diesen Nickelzusatz, der sich beim Abkühlen der Schmelze
 
feindispers in der Silbermatrix ausscheidet, gelingt es, die Neigung des Silbers
 
zu ausgeprägter Grobkornbildung nach längerer Wärmeeinwirkung zu unterbinden
 
(<xr id="fig:Coarse grain micro structure of Ag"/><!--(Fig. 2.49)--> und <xr id="fig:Fine grain microstructure of AgNiO"/><!--(Fig. 2.50)-->).
 
  
 
<div class="multiple-images">
 
<div class="multiple-images">
  
 
<figure id="fig:Coarse grain micro structure of Ag">
 
<figure id="fig:Coarse grain micro structure of Ag">
[[File:Coarse grain micro structure of Ag.jpg|left|thumb|<caption>Grobkörniges Gefüge von Ag 99,97
+
[[File:Coarse grain micro structure of Ag.jpg|left|thumb|<caption>Coarse grain micro structure of Ag 99.97 after 80% cold working and 1 hr annealing at 600°C</caption>]]
nach 80% Kaltumformung und 1h Glühdauer
 
bei 600°C</caption>]]
 
 
</figure>
 
</figure>
  
 
<figure id="fig:Fine grain microstructure of AgNiO">
 
<figure id="fig:Fine grain microstructure of AgNiO">
[[File:Fine grain microstructure of AgNiO.jpg|left|thumb|<caption>Feinkörniges Gefüge von AgNi0,15
+
[[File:Fine grain microstructure of AgNiO.jpg|left|thumb|<caption>Fine grain microstructure of AgNi0.15 after 80% cold working and 1 hr annealing at 600°C</caption>]]
nach 80% Kaltumformung und 1h Glühdauer
 
bei 600°C</caption>]]
 
 
</figure>
 
</figure>
  
 
<figure id="fig:Phase diagram of silver nickel">
 
<figure id="fig:Phase diagram of silver nickel">
[[File:Phase diagram of silver nickel.jpg|left|thumb|<caption>Zustandsdiagramm
+
[[File:Phase diagram of silver nickel.jpg|left|thumb|<caption>Phase diagram of silver nickel</caption>]]
von Silber-Nickel</caption>]]
 
 
</figure>
 
</figure>
 
</div>
 
</div>
 
<div class="clear"></div>
 
<div class="clear"></div>
  
Feinkornsilber zeichnet sich durch eine ähnlich hohe chemische Beständigkeit
+
Fine-grain silver has almost the same chemical corrosion resistance as fine silver. Compared to pure silver it exhibits a slightly increased hardness and tensile strength <xr id="tab:Mechanical Properties of Silver and Silver Alloys"/><!--(Table 2.14)-->. The electrical conductivity is just slightly decreased by this low nickel addition. Because of its significantly improved contact properties fine grain silver has replaced pure silver in many applications.
wie Feinsilber aus. Gegenüber Silber weist es eine etwas höhere Härte und
 
Festigkeit auf (<xr id="tab:Mechanical Properties of Silver and Silver Alloys"/><!--(Table 2.14)-->). Die elektrische Leitfähigkeit wird durch den geringen
 
Nickelzusatz nur geringfügig verschlechtert. Aufgrund seiner teilweise deutlich
 
günstigeren Kontakteigenschaften hat bei schaltenden Kontakten Feinkornsilber
 
das Feinsilber in vielen Anwendungsfällen abgelöst.
 
  
====Hartsilber-Legierungen====
+
====Hard-Silver Alloys====
Durch Kupfer als Legierungspartner werden die Festigkeitseigenschaften des
+
Using copper as an alloying component increases the mechanical stability of silver significantly. The most important among the binary AgCu alloys is that of AgCu3, known in europe also under the name of hard-silver. This material still has a chemical corrosion resistance close to that of fine silver. In comparison to pure silver and fine-grain silver AgCu3 exhibits increased mechanical strength as well as higher arc erosion resistance and mechanical wear resistance <xr id="tab:Mechanical Properties of Silver and Silver Alloys"/><!--(Table 2.14)-->.
Silbers deutlich erhöht (<xr id="fig:Strain hardening of AgCu3 by cold working"/>, <xr id="fig:Softening of AgCu3 after annealing"/> und <xr id="fig:Strain hardening of AgCu5 by cold working"/>).
 
Die größte Bedeutung unter den binären AgCu-Legierungen
 
hat der unter dem Namen Hartsilber bekannte Werkstoff AgCu3 erlangt,
 
der sich hinsichtlich chemischer Resistenz noch ähnlich verhält wie Feinsilber.
 
Verglichen mit Feinsilber und Feinkornsilber weist AgCu3 eine höhere Härte und
 
Festigkeit sowie höhere Abbrandfestigkeit und mechanische Verschleißfestigkeit
 
auf.
 
  
 +
<figtable id="tab:Mechanical Properties of Silver and Silver Alloys">
 +
<caption>'''<!--Table 2.14:-->Mechanical Properties of Silver and Silver Alloys'''</caption>
 +
<table class="twocolortable">
 +
<tr><th><p class="s12">Material/</p><p class="s12">DODUCO-Designation</p></th><th><p class="s12">Hardness</p><p class="s12">Condition</p></th><th><p class="s12">Tensile Strength</p><p class="s12">R<span class="s31">m  </span>[MPa]</p></th><th><p class="s12">Elongation A [%] min.</p></th><th><p class="s12">Vickers Hardness</p><p class="s12">HV 10</p></th></tr><tr><td><p class="s12">Ag</p></td><td><p class="s12">R 200</p><p class="s12">R 250</p><p class="s12">R 300</p><p class="s12">R 360</p></td><td><p class="s12">200 - 250</p><p class="s12">250 - 300</p><p class="s12">300 - 360</p><p class="s12">&gt; 360</p></td><td><p class="s12">30</p><p class="s12">8</p><p class="s12">3</p><p class="s12">2</p></td><td><p class="s12">30</p><p class="s12">60</p><p class="s12">80</p><p class="s12">90</p></td></tr><tr><td><p class="s12">AgNi 0,15</p><p class="s12">ARGODUR Special</p></td><td><p class="s12">R 220</p><p class="s12">R 270</p><p class="s12">R 320</p><p class="s12">R 360</p></td><td><p class="s12">220 - 270</p><p class="s12">270 - 320</p><p class="s12">320 - 360</p><p class="s12">&gt; 360</p></td><td><p class="s12">25</p><p class="s12">6</p><p class="s12">2</p><p class="s12">1</p></td><td><p class="s12">40</p><p class="s12">70</p><p class="s12">85</p><p class="s12">100</p></td></tr><tr><td><p class="s12">AgCu3</p></td><td><p class="s12">R 250</p><p class="s12">R 330</p><p class="s12">R 400</p><p class="s12">R 470</p></td><td><p class="s12">250 - 330</p><p class="s12">330 - 400</p><p class="s12">400 - 470</p><p class="s12">&gt; 470</p></td><td><p class="s12">25</p><p class="s12">4</p><p class="s12">2</p><p class="s12">1</p></td><td><p class="s12">45</p><p class="s12">90</p><p class="s12">115</p><p class="s12">120</p></td></tr><tr><td><p class="s12">AgCu5</p></td><td><p class="s12">R 270</p><p class="s12">R 350</p><p class="s12">R 460</p><p class="s12">R 550</p></td><td><p class="s12">270 - 350</p><p class="s12">350 - 460</p><p class="s12">460 - 550</p><p class="s12">&gt; 550</p></td><td><p class="s12">20</p><p class="s12">4</p><p class="s12">2</p><p class="s12">1</p></td><td><p class="s12">55</p><p class="s12">90</p><p class="s12">115</p><p class="s12">135</p></td></tr><tr><td><p class="s12">AgCu10</p></td><td><p class="s12">R 280</p><p class="s12">R 370</p><p class="s12">R 470</p><p class="s12">R 570</p></td><td><p class="s12">280 - 370</p><p class="s12">370 - 470</p><p class="s12">470 - 570</p><p class="s12">&gt; 570</p></td><td><p class="s12">15</p><p class="s12">3</p><p class="s12">2</p><p class="s12">1</p></td><td><p class="s12">60</p><p class="s12">95</p><p class="s12">130</p><p class="s12">150</p></td></tr><tr><td><p class="s12">AgCu28</p></td><td><p class="s12">R 300</p><p class="s12">R 380</p><p class="s12">R 500</p><p class="s12">R 650</p></td><td><p class="s12">300 - 380</p><p class="s12">380 - 500</p><p class="s12">500 - 650</p><p class="s12">&gt; 650</p></td><td><p class="s12">10</p><p class="s12">3</p><p class="s12">2</p><p class="s12">1</p></td><td><p class="s12">90</p><p class="s12">120</p><p class="s12">140</p><p class="s12">160</p></td></tr><tr><td><p class="s12">Ag98CuNi</p><p class="s12">ARGODUR 27</p></td><td><p class="s12">R 250</p><p class="s12">R 310</p><p class="s12">R 400</p><p class="s12">R 450</p></td><td><p class="s12">250 - 310</p><p class="s12">310 - 400</p><p class="s12">400 - 450</p><p class="s12">&gt; 450</p></td><td><p class="s12">20</p><p class="s12">5</p><p class="s12">2</p><p class="s12">1</p></td><td><p class="s12">50</p><p class="s12">85</p><p class="s12">110</p><p class="s12">120</p></td></tr><tr><td><p class="s12">AgCu24,5Ni0,5</p></td><td><p class="s12">R 300</p><p class="s12">R 600</p></td><td><p class="s12">300 - 380</p><p class="s12">&gt; 600</p></td><td><p class="s12">10</p><p class="s12">1</p></td><td><p class="s12">105</p><p class="s12">180</p></td></tr><tr><td><p class="s12">AgCd10</p></td><td><p class="s12">R 200</p><p class="s12">R 280</p><p class="s12">R 400</p><p class="s12">R 450</p></td><td><p class="s12">200 - 280</p><p class="s12">280 - 400</p><p class="s12">400 - 450</p><p class="s12">&gt; 450</p></td><td><p class="s12">15</p><p class="s12">3</p><p class="s12">2</p><p class="s12">1</p></td><td><p class="s12">36</p><p class="s12">75</p><p class="s12">100</p><p class="s12">115</p></td></tr><tr><td><p class="s12">Ag99,5NiMg</p><p class="s12">ARGODUR 32</p><p class="s12">Not heat treated</p></td><td><p class="s12">R 220</p><p class="s12">R 260</p><p class="s12">R 310</p><p class="s12">R 360</p></td><td><p class="s12">220</p><p class="s12">260</p><p class="s12">310</p><p class="s12">360</p></td><td><p class="s12">25</p><p class="s12">5</p><p class="s12">2</p><p class="s12">1</p></td><td><p class="s12">40</p><p class="s12">70</p><p class="s12">85</p><p class="s12">100</p></td></tr><tr><td><p class="s12">ARGODUR 32 Heat treated</p></td><td><p class="s12">R 400</p></td><td><p class="s12">400</p></td><td><p class="s12">2</p></td><td><p class="s12">130-170</p></td></tr></table>
 +
</figtable>
  
Mit steigendem Kupferanteil nehmen einerseits Härte und Festigkeit der AgCu-
 
Legierung zu, andererseits wird die Neigung zur Oxidbildung erhöht, was im
 
Schaltbetrieb unter Lichtbogenbildung zu einem Anwachsen des Kontaktwiderstandes
 
mit zunehmender Schaltspielzahl führt. Weiterhin wirken sich höhere
 
Kupferanteile vorteilhaft auf Abbrand und Materialwanderung aus. In Sonderfällen,
 
in denen optimale mechanische Eigenschaften erwünscht sind und
 
gleichzeitig eine verminderte chemische Beständigkeit zugelassen werden kann, findet die eutektische Silber-Kupfer-Legierung (28 Massen-% Cu)
 
Anwendung (<xr id="fig:Phase diagram of silver copper"/><!--(Fig. 2.52)-->). AgCu10, auch als Münzsilber bezeichnet, wurde in vielen
 
Anwendungen durch andere Silber-Legierungen ersetzt, während Sterlingsilber
 
(AgCu7,5) seine Bedeutung bei Tafelgeschirr und Schmuck nie auf industrielle
 
Anwendungen für elektrische Kontakte ausweiten konnte.
 
  
Neben den binären AgCu-Legierungen kommen auch ternäre AgCuNi-
+
Increasing the Cu content further also increases the mechanical strength of AgCu alloys and improves arc erosion resistance and resistance against material transfer while at the same time however the tendency to oxide formation becomes detrimental. This causes during switching under arcing conditions an increase in contact resistance with rising numbers of operation. In special applications where highest mechanical strength is recommended and a reduced chemical resistance can be tolerated, the eutectic AgCu alloy with 28 wt% of copper <xr id="fig:Phase diagram of silver copper"/><!--(Fig. 2.52)--> is used. AgCu10 also known as coin silver has been replaced in many applications by composite silver-based materials while sterling silver (AgCu7.5) has never extended its important usage from decorative table wear and jewelry to industrial applications in electrical contacts.
Legierungen zum Einsatz. Von dieser Werkstoffgruppe hat ARGODUR 27, eine
 
Legierung mit 98 Massen-% Ag und Anteilen von Cu und Ni, neben AgCu3 die
 
größte praktische Bedeutung erlangt. Dieser Werkstoff zeichnet sich durch hohe
 
Oxidationsbeständigkeit und geringe Neigung zur Rekristallisation unter der Einwirkung
 
hoher Temperaturen aus. Neben einer hohen mechanischen Verschleißfestigkeit
 
weist die AgCuNi-Legierung auch eine erhöhte Abbrandfestigkeit auf.
 
Die Legierung AgCu24,5Ni0,5 hat aufgrund ihrer geringen Neigung zur Materialwanderung
 
bei Gleichstrombelastung vor allem in Nordamerika über lange Zeit
 
breite Anwendung in der Automobiltechnik gefunden. Im Zuge der Miniaturisierung
 
elektromechanischer Bauelemente und den damit verbundenen geringeren
 
Kontaktkräften in Relais und Schaltern kommt diese Legierung wegen ihrer
 
erhöhten Neigung zur Oxidbildung heute deutlich weniger zum Einsatz.
 
  
Die verwendeten Verbindungsverfahren entsprechen weitgehend denen, die auch
+
Besides these binary alloys, ternary AgCuNi alloys are used in electrical contact applications. From this group the material ARGODUR 27, an alloy of 98 wt% Ag with a 2 wt% Cu and nickel addition has found practical importance close to that of AgCu3. This material is characterized by high resistance to oxidation and low tendency to re-crystallization during exposure to high temperatures. Besides high mechanical stability this AgCuNi alloy also exhibits a strong resistance against arc erosion. Because of its high resistance against material transfer the alloy AgCu24.5Ni0.5 has been used in the automotive industry for an extended time in the North American market. Caused by miniaturization and the related reduction in available contact forces in relays and switches this material has been replaced widely because of its tendency to oxide formation.
bei Feinsilber angewandt werden.
 
  
Hartsilberlegierungen finden verbreitet Anwendung in vielen Wechsel- und Gleichstromschaltern
+
The attachment methods used for the hard silver materials are mostly close to those applied for fine silver and fine grain silver.
für Informations- und Energietechnik bei Schaltströmen bis 10A,
 
vereinzelt auch bei höheren Strömen (<xr id="tab:Application Examples and Forms of Supply for Silver and Silver Alloys"/><!--(Table 2.16)-->).
 
  
Dispersionsgehärtete Legierungen des Silbers mit 0,5 Massen-% MgO und NiO (ARGODUR 32) werden durch innere Oxidation hergestellt. Während sich die
+
Hard-silver alloys are widely used for switching applications in the information and energy technology for currents up to 10 A, in special cases also for higher current ranges <xr id="tab:Application Examples and Forms of Supply for Silver and Silver Alloys"/><!--(Table 2.16)-->.
schmelztechnisch hergestellte Ausgangslegierung gut umformen lässt, ist der
 
dispersionsgehärtete Werkstoff sehr spröde und kaum verformbar. Gegenüber
 
Feinsilber und Hartsilber weist er eine wesentlich höhere Warmfestigkeit auf, so
 
dass mit diesem dispersionsgehärteten Werkstoff auch Hartlötungen bei Temperaturen bis ca. 800°C ohne Einbuße an Härte und Festigkeit durchführbar
 
sind. Aufgrund seiner günstigen Festigkeitseigenschaften und seiner hohen
 
elektrischen Leitfähigkeit eignet sich ARGODUR 32 vor allem für thermisch und
 
mechanisch hoch beanspruchte Kontaktfedern in Relais und Schützen in der
 
Luft- und Raumfahrt.
 
  
 +
Dispersion hardened alloys of silver with 0.5 wt% MgO and NiO (ARGODUR 32) are produced by internal oxidation. While the melt-metallurgical alloy is easy to cold-work and form the material becomes very hard and brittle after dispersion hardening. Compared to fine silver and hard-silver this material has a greatly improved temperature stability and can be exposed to brazing temperatures up to 800°C without decreasing its hardness and tensile strength.
 +
Because of these mechanical properties and its high electrical conductivity ARGODUR 32 is mainly used in the form of contact springs that are exposed to high thermal and mechanical stresses in relays, and contactors for aeronautic applications.
 +
 +
 +
<xr id="fig:Phase diagram of silver copper"/><!--Fig. 2.52:--> Phase diagram of silver-copper
 +
 +
<xr id="fig:Phase diagram of silver cadmium"/><!--Fig. 2.53:--> Phase diagram of silver-cadmium
 +
 +
<xr id="fig:Strain hardening of AgCu3 by cold working"/><!--Fig. 2.54:--> Strain hardening of AgCu3 by cold working
 +
 +
<xr id="fig:Softening of AgCu3 after annealing"/><!--Fig. 2.55:--> Softening of AgCu3 after annealing for 1 hr after 80% cold working
 +
 +
<xr id="fig:Strain hardening of AgCu5 by cold working"/><!--Fig. 2.56:--> Strain hardening of AgCu5 by cold working
 +
 +
<xr id="fig:Softening of AgCu5 after annealing"/><!--Fig. 2.57:--> Softening of AgCu5 after annealing for 1 hr after 80% cold working
 +
 +
<xr id="fig:Strain hardening of AgCu 10 by cold working"/><!--Fig. 2.58:--> Strain hardening of AgCu 10 by cold working
 +
 +
<xr id="fig:Softening of AgCu10 after annealing"/><!--Fig. 2.59:--> Softening of AgCu10 after annealing for 1 hr after 80% cold working
 +
 +
<xr id="fig:Strain hardening of AgCu28 by cold working"/><!--Fig. 2.60:--> Strain hardening of AgCu28 by cold working
 +
 +
<xr id="fig:Softening of AgCu28 after annealing"/><!--Fig. 2.61:--> Softening of AgCu28 after annealing for 1 hr after 80% cold working
 +
 +
<xr id="fig:Strain hardening of AgNiO15 by cold working"/><!--Fig. 2.62:--> Strain hardening of AgNi0.15 by cold working
 +
 +
<xr id="fig:Softening of AgNiO15 after annealing"/><!--Fig. 2.63:--> Softening of AgNi0.15 after annealing for 1 hr after 80% cold working
 +
 +
<xr id="fig:Strain hardening of ARGODUR 27"/><!--Fig. 2.64:--> Strain hardening of ARGODUR 27 by cold working
 +
 +
<xr id="fig:Softening of ARGODUR 27 after annealing"/><!--Fig. 2.65:--> Softening of ARGODUR 27 after annealing for 1 hr after 80% cold working
  
 
<div class="multiple-images">
 
<div class="multiple-images">
  
 
<figure id="fig:Phase diagram of silver copper">  
 
<figure id="fig:Phase diagram of silver copper">  
[[File:Phase diagram of silver copper.jpg|left|thumb|<caption>Zustandsdiagramm
+
[[File:Phase diagram of silver copper.jpg|left|thumb|<caption>Phase diagram of silver-copper</caption>]]
von Silber-Kupfer</caption>]]
+
</figure>
 +
 
 +
<figure id="fig:Phase diagram of silver cadmium">
 +
[[File:Phase diagram of silver cadmium.jpg|left|thumb|<caption>Phase diagram of silver-cadmium</caption>]]
 
</figure>
 
</figure>
  
 
<figure id="fig:Strain hardening of AgCu3 by cold working">  
 
<figure id="fig:Strain hardening of AgCu3 by cold working">  
[[File:Strain hardening of AgCu3 by cold working.jpg|left|thumb|<caption>Verfestigungsverhalten
+
[[File:Strain hardening of AgCu3 by cold working.jpg|left|thumb|<caption>Strain hardening of AgCu3 by cold working</caption>]]
von AgCu3 durch Kaltumformung</caption>]]
 
 
</figure>
 
</figure>
  
 
<figure id="fig:Softening of AgCu3 after annealing">  
 
<figure id="fig:Softening of AgCu3 after annealing">  
[[File:Softening of AgCu3 after annealing.jpg|left|thumb|<caption>Erweichungsverhalten von AgCu3
+
[[File:Softening of AgCu3 after annealing.jpg|left|thumb|<caption>Softening of AgCu3 after annealing for 1 hr after 80% cold working</caption>]]
nach 1h Glühdauer und einer
 
Kaltumformung von 80%</caption>]]
 
 
</figure>
 
</figure>
  
 
<figure id="fig:Strain hardening of AgCu5 by cold working">  
 
<figure id="fig:Strain hardening of AgCu5 by cold working">  
[[File:Strain hardening of AgCu5 by cold working.jpg|left|thumb|<caption>Verfestigungsverhalten
+
[[File:Strain hardening of AgCu5 by cold working.jpg|left|thumb|<caption>Strain hardening of AgCu5 by cold working</caption>]]
von AgCu5
 
durch Kaltumformung</caption>]]
 
 
</figure>
 
</figure>
  
 
<figure id="fig:Softening of AgCu5 after annealing">  
 
<figure id="fig:Softening of AgCu5 after annealing">  
[[File:Softening of AgCu5 after annealing.jpg|left|thumb|<caption>Erweichungsverhalten von AgCu5
+
[[File:Softening of AgCu5 after annealing.jpg|left|thumb|<caption>Softening of AgCu5 after annealing for 1 hr after 80% cold working</caption>]]
nach 1h Glühdauer und einer Kaltumformung
 
von 80%</caption>]]
 
 
</figure>  
 
</figure>  
  
 
<figure id="fig:Strain hardening of AgCu 10 by cold working">  
 
<figure id="fig:Strain hardening of AgCu 10 by cold working">  
[[File:Strain hardening of AgCu 10 by cold working.jpg|left|thumb|<caption>Verfestigungsverhalten von AgCu10
+
[[File:Strain hardening of AgCu 10 by cold working.jpg|left|thumb|<caption>Strain hardening of AgCu 10 by cold working</caption>]]
durch Kaltumformung</caption>]]
 
 
</figure>  
 
</figure>  
  
 
<figure id="fig:Softening of AgCu10 after annealing">  
 
<figure id="fig:Softening of AgCu10 after annealing">  
[[File:Softening of AgCu10 after annealing.jpg|left|thumb|<caption>Erweichungsverhalten von AgCu10
+
[[File:Softening of AgCu10 after annealing.jpg|left|thumb|<caption>Softening of AgCu10 after annealing for 1 hr after 80% cold working</caption>]]
nach 1h Glühdauer und einer Kaltumformung
 
von 80%</caption>]]
 
 
</figure>   
 
</figure>   
  
 
<figure id="fig:Strain hardening of AgCu28 by cold working">  
 
<figure id="fig:Strain hardening of AgCu28 by cold working">  
[[File:Strain hardening of AgCu28 by cold working.jpg|left|thumb|<caption>Verfestigungsverhalten
+
[[File:Strain hardening of AgCu28 by cold working.jpg|left|thumb|<caption>Strain hardening of AgCu28 by cold working</caption>]]
von AgCu28 durch Kaltumformung</caption>]]
 
 
</figure>  
 
</figure>  
  
 
<figure id="fig:Softening of AgCu28 after annealing">  
 
<figure id="fig:Softening of AgCu28 after annealing">  
[[File:Softening of AgCu28 after annealing.jpg|left|thumb|<caption>Erweichungsverhalten von AgCu28
+
[[File:Softening of AgCu28 after annealing.jpg|left|thumb|<caption>Softening of AgCu28 after annealing for 1 hr after 80% cold working</caption>]]
nach 1h Glühdauer und einer
 
Kaltumformung von 80%</caption>]]
 
 
</figure>  
 
</figure>  
  
 
<figure id="fig:Strain hardening of AgNiO15 by cold working">  
 
<figure id="fig:Strain hardening of AgNiO15 by cold working">  
[[File:Strain hardening of AgNiO15 by cold working.jpg|left|thumb|<caption>Verfestigungsverhalten von AgNi0,15
+
[[File:Strain hardening of AgNiO15 by cold working.jpg|left|thumb|<caption>Strain hardening of AgNiO15 by cold working</caption>]]
durch Kaltumformung</caption>]]
 
 
</figure>  
 
</figure>  
  
 
<figure id="fig:Softening of AgNiO15 after annealing">  
 
<figure id="fig:Softening of AgNiO15 after annealing">  
[[File:Softening of AgNiO15 after annealing.jpg|left|thumb|<caption>Erweichungsverhalten von AgNi0,15
+
[[File:Softening of AgNiO15 after annealing.jpg|left|thumb|<caption>Softening of AgNiO15 after annealing</caption>]]
nach 1h Glühdauer und einer Kaltumformung
 
von 80%</caption>]]
 
 
</figure>  
 
</figure>  
  
 
<figure id="fig:Strain hardening of ARGODUR 27">  
 
<figure id="fig:Strain hardening of ARGODUR 27">  
[[File:Strain hardening of ARGODUR 27.jpg|left|thumb|<caption>Verfestigungsverhalten
+
[[File:Strain hardening of ARGODUR 27.jpg|left|thumb|<caption>Strain hardening of ARGODUR 27 by cold working</caption>]]
von ARGODUR 27
 
durch Kaltumformung</caption>]]
 
 
</figure>  
 
</figure>  
  
 
<figure id="fig:Softening of ARGODUR 27 after annealing">  
 
<figure id="fig:Softening of ARGODUR 27 after annealing">  
[[File:Softening of ARGODUR 27 after annealing.jpg|left|thumb|<caption>Erweichungsverhalten
+
[[File:Softening of ARGODUR 27 after annealing.jpg|left|thumb|<caption>Softening of ARGODUR 27 after annealing for 1 hr after 80% cold working</caption>]]
von ARGODUR 27 nach 1h Glühdauer und
 
einer Kaltumformung von 80%</caption>]]
 
 
</figure>
 
</figure>
 
</div>
 
</div>
Line 506: Line 455:
  
 
<figtable id="tab:Contact and Switching Properties of Silver and Silver Alloys">
 
<figtable id="tab:Contact and Switching Properties of Silver and Silver Alloys">
<caption>'''<!--Table 2.15:-->Kontakt- und Schalteigenschaften von Silber und Silberlegierungen'''</caption>
+
<caption>'''<!--Table 2.15:-->Contact and Switching Properties of Silver and Silver Alloys'''</caption>
  
 
{| class="twocolortable" style="text-align: left; font-size: 12px"
 
{| class="twocolortable" style="text-align: left; font-size: 12px"
 
|-
 
|-
!Werkstoff
+
!Material
!colspan="2" | Eigenschaften
+
!colspan="2" | Properties
 
|-
 
|-
|Ag<br />AgNi0,15<br />
+
|Ag<br />AgNi0,15<br />ARGODUR-Special
|Höchste elektrische und thermische Leitfähigkeit, hohe Affinität zu Schwefel (Sulfidbildung), geringe Verschweißresistenz, niedriger Kontaktwiderstand, sehr gute Verformbarkeit
+
|Highest electrical and thermal conductivity, high affinity to sulfur (sulfide formation), low welding resistance, low contact resistance, very good formability
|oxidationsbeständig, bei höheren Einschaltströmen begrenzte Abbrandfestigkeit, Neigung zur Materialwanderung in Gleichstromkreisen, gute Löt- und Schweißbarkeit
+
|Oxidation resistant at higher make currents, limited arc erosion resistance, tendency to material transfer in DC circuits, easy to braze and weld to carrier materials
 
|-
 
|-
|Ag-Legierungen
+
|Ag Alloys
|Mit zunehmendem Kupferanteil Anstieg des Kontaktwiderstandes, höhere Abbrandfestigkeit gegenüber Feinsilber, geringere Neigung zu Materialwanderung, höhere mechanische Festigkeit gegenüber Feinsilber
+
|Increasing contact resistance with increasing
|gute Verformbarkeit, gute Löt- und Schweißbarkeit
+
Cu content, compared to fine Ag higher arc erosion resistance and mechanical strength, lower tendency to material
 +
|Good formability, good brazing and welding properties
 
|}
 
|}
 
</figtable>
 
</figtable>
Line 525: Line 475:
  
 
<figtable id="tab:Application Examples and Forms of Supply for Silver and Silver Alloys">
 
<figtable id="tab:Application Examples and Forms of Supply for Silver and Silver Alloys">
<caption>'''<!--Table 2.16:-->Anwendungsbeispiele und Lieferformen von Silber und Silberlegierungen'''</caption>
+
<caption>'''<!--Table 2.16:-->Application Examples and Forms of Supply for Silver and Silver Alloys'''</caption>
  
 
{| class="twocolortable" style="text-align: left; font-size: 12px"
 
{| class="twocolortable" style="text-align: left; font-size: 12px"
 
|-
 
|-
!Werkstoff
+
!Material
!Anwendungsbeispiele
+
!Application Examples
!Lieferformen
+
!Form of Supply
 
|-
 
|-
|Ag<br />AgNi0,15<br /><br />AgCu3<br />AgNi98NiCu2<br />ARGODUR 27<br />AgCu24,5Ni0,5
+
|Ag<br />AgNi0,15<br />ARGODUR-Spezial<br />AgCu3<br />AgNi98NiCu2<br />ARGODUR 27<br />AgCu24,5Ni0,5
|Relais,<br />Mikroschalter,<br />Hilfsstromschalter,<br />Befehlsschalter,<br />Schalter für Hausgeräte,<br />Lichtschalter (&le; 20A),<br />Hauptschalter
+
|Relays,<br />Micro switches,<br />Auxiliary current switches,<br />Control circuit devices,<br />Appliance switches,<br />Wiring devices (&le; 20A),<br />Main switches
|'''Halbzeuge:''' <br />Bänder, Drähte, Kontaktprofile, Kontaktbimetalle, Toplay-Profile, rollennahtgeschweißte Profile<br />'''Kontaktteile:'''<br />Kontaktauflagen, massive- und Bimetallniete, Aufschweißkontakte, plattierte, geschweißte und genietete Kontaktteile
+
|'''Semi-finished Materials:''' <br />Strips, wires, contact profiles, clad contact strips, toplay profiles, seam- welded strips<br />'''Contact Parts:'''<br />Contact tips, solid and composite rivets, weld buttons; clad, welded and riveted contact parts
 
|-
 
|-
 
|AgCu5<br />AgCu10<br />AgCu28  
 
|AgCu5<br />AgCu10<br />AgCu28  
|Spezielle Anwendungen
+
|Special applications
|'''Halbzeuge:'''<br />Bänder, Drähte, Kontaktprofile, Kontaktbimetalle, rollennahtgeschweißte Profile<br />'''Kontaktteile:'''<br />Kontaktauflagen, massive Kontaktniete, Aufschweißkontakte, plattierte, geschweißte und genietete Kontaktteile
+
|'''Semi-finished Materials:'''<br />Strips, wires, contact profiles, clad contact strips, seam-welded strips<br />'''Contact parts:'''<br />Contact tips, solid contact rivets, weld buttons; clad, welded and riveted contact parts
 
|-
 
|-
|Ag99,5NiOMgO<br />ARGODUR 32
+
|Ag99, 5NiOMgO<br />ARGODUR 32
|Miniaturrelais, Schütze und Relais in Flugzeugen, Erodierdrähte für Einspritzdüsen
+
|Miniature relays, aerospace relays and contactors, erosion wire for injection nozzles
|Kontaktfedern, Kontaktträgerteile
+
|Contact springs, contact carrier parts
 
|}
 
|}
 
</figtable>
 
</figtable>
  
====Silber-Palladium-Legierungen====
+
====Silver-Palladium Alloys====
Durch Zulegieren von 30 Massen-% Pd wird neben den mechanischen Eigenschaften
+
The addition of 30 wt% Pd increases the mechanical properties as well as the resistance of silver against the influence of sulfur and sulfur containing compounds significantly <xr id="tab:Physical Properties of Silver-Palladium Alloys"/><!--(Tab 2.17)--> and <xr id="tab:Mechanical Properties of Silver-Palladium Alloys"/><!--(Tab.2.18)-->. Alloys with 40-60 wt% Pd have an even higher resistance against silver sulfide formation. At these percentage ranges however the catalytic properties of palladium can influence the contact resistance behavior negatively. The formability also decreases with increasing Pd contents.
vor allem die Beständigkeit des Silbers gegenüber der Einwirkung von
+
 
Schwefel und schwefelhaltigen Verbindungen entscheidend verbessert
+
AgPd alloys are hard, arc erosion resistant, and have a lower tendency towards material transfer under DC loads <xr id="tab:Contact and Switching Properties of Silver-Palladium Alloys"/><!--(Table 2.19)-->. On the other hand the electrical conductivity is decreased at higher Pd contents. The ternary alloy AgPd30Cu5 has an even higher hardness which makes it suitable for use in sliding contact systems.
(<xr id="tab:Physical Properties of Silver-Palladium Alloys"/><!--(Tab 2.17)--> und <xr id="tab:Mechanical Properties of Silver-Palladium Alloys"/><!--(Tab.2.18)-->). Eine noch höhere Resistenz gegenüber Silber-Sulfid-Bildung
 
weisen Legierungen mit 40-60 Massen-% Pd auf. Bei diesen Pd-Anteilen
 
können sich allerdings die katalytischen Eigenschaften des Palladiums nachteilig
 
auf das Kontaktwiderstandsverhalten auswirken. Auch die Verformbarkeit nimmt
 
mit zunehmenden Pd-Gehalt ab.
 
  
AgPd-Legierungen sind hart, abbrandfest und weisen eine etwas geringere
+
AgPd alloys are mostly used in relays for the switching of medium to higher loads (> 60V, > 2A) as shown in <xr id="tab:Application Examples and Forms of Suppl for Silver-Palladium Alloys"/><!--(Table 2.20)-->. Because of the high palladium price these formerly solid contacts have been widely replaced by multi-layer designs such as AgNi0.15 or AgNi10 with a thin Au surface layer. A broader field of application for AgPd alloys remains in the wear resistant sliding contact systems.
Neigung zur Materialwanderung bei Gleichstromlast auf (<xr id="tab:Contact and Switching Properties of Silver-Palladium Alloys"/><!--(Table 2.19)-->). Allerdings
 
wird die elektrische Leitfähigkeit durch hohe Pd-Gehalte stark verringert.
 
Die ternäre AgPd30Cu5-Legierung ermöglicht eine weitere Steigerung der
 
Festigkeitswerte, was sich vor allem bei Gleitkontaktsystemen vorteilhaft
 
auswirkt.
 
  
AgPd-Legierungen sind bei Pd-Gehalten bis 30 Massen-% gut plattierbar.
 
Als Verbindungstechnik kommen üblicherweise das Aufschweißen von Draht- oder
 
Profilabschnitten oder die Verwendung von Kontaktnieten in Frage.
 
  
AgPd-Legierungen kommen z.B. in Relais beim Schalten mittlerer bis höherer
+
<xr id="fig:Phase diagram of silver palladium"/><!--Fig. 2.66:--> Phase diagram of silver-palladium
elektrischer Belastung ( <60V; <2A) zum Einsatz (<xr id="tab:Application Examples and Forms of Suppl for Silver-Palladium Alloys"/><!--(Table 2.20)-->). Aufgrund des hohen
+
 
Palladiumpreises werden diese allerdings vielfach durch Mehrschichtwerkstoffe,
+
<xr id="fig:Strain hardening of AgPd30 by cold working"/><!--Fig. 2.67:--> Strain hardening of AgPd30 by cold working
z.B. AgNi0,15 oder Ag/Ni90/10 jeweils mit einer dünnen Au-Auflage ersetzt.
+
 
Ein breites Anwendungsfeld haben AgPd-Legierungen als verschleißfeste Gleitkontakte
+
<xr id="fig:Strain hardening of AgPd50 by cold working"/><!--Fig. 2.68:--> Strain hardening of AgPd50 by cold working
gefunden.
+
 
 +
<xr id="fig:Strain hardening of AgPd30Cu5 by cold working"/><!--Fig. 2.69:--> Strain hardening of AgPd30Cu5 by cold working
 +
 
 +
<xr id="fig:Softening of AgPd30 AgPd50 AgPd30Cu5"/><!--Fig. 2.70:--> Softening of AgPd30, AgPd50, and AgPd30Cu5 after annealing of 1 hr after 80% cold working
  
 
<div class="multiple-images">
 
<div class="multiple-images">
 
<figure id="fig:Phase diagram of silver palladium">
 
<figure id="fig:Phase diagram of silver palladium">
[[File:Phase diagram of silver palladium.jpg|left|thumb|<caption>Zustandsdiagramm von Silber-Palladium</caption>]]
+
[[File:Phase diagram of silver palladium.jpg|left|thumb|<caption>Phase diagram of silver-palladium</caption>]]
 
</figure>
 
</figure>
  
 
<figure id="fig:Strain hardening of AgPd30 by cold working">
 
<figure id="fig:Strain hardening of AgPd30 by cold working">
[[File:Strain hardening of AgPd30 by cold working.jpg|left|thumb|<caption>Verfestigungsverhalten
+
[[File:Strain hardening of AgPd30 by cold working.jpg|left|thumb|<caption>Strain hardening of AgPd30 by cold working</caption>]]
von AgPd30 durch Kaltumformung</caption>]]
 
 
</figure>
 
</figure>
  
 
<figure id="fig:Strain hardening of AgPd50 by cold working">
 
<figure id="fig:Strain hardening of AgPd50 by cold working">
[[File:Strain hardening of AgPd50 by cold working.jpg|left|thumb|<caption>Verfestigungsverhalten
+
[[File:Strain hardening of AgPd50 by cold working.jpg|left|thumb|<caption>Strain hardening of AgPd50 by cold working</caption>]]
von AgPd50 durch Kaltumformung</caption>]]
 
 
</figure>
 
</figure>
  
 
<figure id="fig:Strain hardening of AgPd30Cu5 by cold working">
 
<figure id="fig:Strain hardening of AgPd30Cu5 by cold working">
[[File:Strain hardening of AgPd30Cu5 by cold working.jpg|left|thumb|<caption>Verfestigungsverhalten
+
[[File:Strain hardening of AgPd30Cu5 by cold working.jpg|left|thumb|<caption>Strain hardening of AgPd30Cu5 by cold working</caption>]]
von AgPd30Cu5 durch Kaltumformung</caption>]]
 
 
</figure>
 
</figure>
  
 
<figure id="fig:Softening of AgPd30 AgPd50 AgPd30Cu5">
 
<figure id="fig:Softening of AgPd30 AgPd50 AgPd30Cu5">
[[File:Softening of AgPd30 AgPd50 AgPd30Cu5.jpg|left|thumb|<caption>Erweichungsverhalten von AgPd30, AgPd50,
+
[[File:Softening of AgPd30 AgPd50 AgPd30Cu5.jpg|left|thumb|<caption>Softening of AgPd30, AgPd50, and AgPd30Cu5 after annealing of 1 hr after 80% cold working</caption>]]
AgPd30Cu5 nach 1h Glühdauer und einer
 
Kaltumformung von 80%</caption>]]
 
 
</figure>
 
</figure>
 
</div>
 
</div>
Line 606: Line 541:
 
<figtable id="tab:Physical Properties of Silver-Palladium Alloys">
 
<figtable id="tab:Physical Properties of Silver-Palladium Alloys">
  
<caption>'''<!--Table 2.17:-->Physikalische Eigenschaften von Silber-Palladium-Legierungen'''</caption>
+
<caption>'''<!--Table 2.17:--> Physical Properties of Silver-Palladium Alloys'''</caption>
  
 
{| class="twocolortable" style="text-align: left; font-size: 12px"
 
{| class="twocolortable" style="text-align: left; font-size: 12px"
 
|-
 
|-
!Werkstoff
+
!Material
!Palladiumanteil<br />[Massen-%]
+
!Palladium Content<br />[wt%]
!Dichte<br />[g/cm<sup>3</sup>]
+
!Density<br />[g/cm<sup>3</sup>]
!Schmelzpunkt<br />bzw.-intervall<br />[°C]
+
!Melting Point<br />or Range<br />[°C]
!Spez. elektr.
+
!Electrical<br />Resistivity<br />[μΩ·cm]
Widerstand<br />[μΩ·cm]
+
!Electrical<br />Conductivity<br />[MS/m]
!Elektrische
+
!Thermal<br />Conductivity<br />[W/m·K]
Leitfähigkeit<br />[MS/m]
+
!Temp. Coefficient of<br />the Electr. Resistance<br />[10<sup>-3</sup>/K]
!Wärmeleitfähigkeit<br />[W/mK]
 
!Temp. Koeff.d.el.
 
Widerstandes<br />[10<sup>-3</sup>/K]
 
 
|-
 
|-
 
|AgPd30
 
|AgPd30
Line 671: Line 603:
  
 
<figtable id="tab:Mechanical Properties of Silver-Palladium Alloys">
 
<figtable id="tab:Mechanical Properties of Silver-Palladium Alloys">
<caption>'''<!--Table 2.18:-->Festigkeitseigenschaften von Silber-Palladium-Legierungen'''</caption>
+
<caption>'''<!--Table 2.18:-->Mechanical Properties of Silver-Palladium Alloys'''</caption>
 
<table class="twocolortable">
 
<table class="twocolortable">
<tr><th><p class="s12">Werkstoff</p></th><th><p class="s12">Festigkeitszustand</p></th><th><p class="s12">Zugfestigkeit</p><p class="s12">R<span class="s31"><sub>m</sub></span>[MPa]</p></th><th><p class="s12">Dehnung A</p><p class="s12">[%]min.</p></th><th><p class="s12">Vickershärte</p><p class="s12">HV</p></th></tr><tr><td><p class="s12">AgPd30</p></td><td><p class="s12">R 320</p><p class="s12">R 570</p></td><td><p class="s12">320</p><p class="s12">570</p></td><td><p class="s12">38</p><p class="s12">3</p></td><td><p class="s12">65</p><p class="s12">145</p></td></tr><tr><td><p class="s12">AgPd40</p></td><td><p class="s12">R 350</p><p class="s12">R 630</p></td><td><p class="s12">350</p><p class="s12">630</p></td><td><p class="s12">38</p><p class="s12">2</p></td><td><p class="s12">72</p><p class="s12">165</p></td></tr><tr><td><p class="s12">AgPd50</p></td><td><p class="s12">R 340</p><p class="s12">R 630</p></td><td><p class="s12">340</p><p class="s12">630</p></td><td><p class="s12">35</p><p class="s12">2</p></td><td><p class="s12">78</p><p class="s12">185</p></td></tr><tr><td><p class="s12">AgPd60</p></td><td><p class="s12">R 430</p><p class="s12">R 700</p></td><td><p class="s12">430</p><p class="s12">700</p></td><td><p class="s12">30</p><p class="s12">2</p></td><td><p class="s12">85</p><p class="s12">195</p></td></tr><tr><td><p class="s12">AgPd30Cu5</p></td><td><p class="s12">R 410</p><p class="s12">R 620</p></td><td><p class="s12">410</p><p class="s12">620</p></td><td><p class="s12">40</p><p class="s12">2</p></td><td><p class="s12">90</p><p class="s12">190</p></td></tr></table>
+
<tr><th><p class="s12">Material</p></th><th><p class="s12">Hardness</p><p class="s12">Condition</p></th><th><p class="s12">Tensile Strength</p><p class="s12">R<span class="s31"><sub>m</sub></span>[MPa]</p></th><th><p class="s12">Elongation A</p><p class="s12">[%]min.</p></th><th><p class="s12">Vickers Hardness</p><p class="s12">HV</p></th></tr><tr><td><p class="s12">AgPd30</p></td><td><p class="s12">R 320</p><p class="s12">R 570</p></td><td><p class="s12">320</p><p class="s12">570</p></td><td><p class="s12">38</p><p class="s12">3</p></td><td><p class="s12">65</p><p class="s12">145</p></td></tr><tr><td><p class="s12">AgPd40</p></td><td><p class="s12">R 350</p><p class="s12">R 630</p></td><td><p class="s12">350</p><p class="s12">630</p></td><td><p class="s12">38</p><p class="s12">2</p></td><td><p class="s12">72</p><p class="s12">165</p></td></tr><tr><td><p class="s12">AgPd50</p></td><td><p class="s12">R 340</p><p class="s12">R 630</p></td><td><p class="s12">340</p><p class="s12">630</p></td><td><p class="s12">35</p><p class="s12">2</p></td><td><p class="s12">78</p><p class="s12">185</p></td></tr><tr><td><p class="s12">AgPd60</p></td><td><p class="s12">R 430</p><p class="s12">R 700</p></td><td><p class="s12">430</p><p class="s12">700</p></td><td><p class="s12">30</p><p class="s12">2</p></td><td><p class="s12">85</p><p class="s12">195</p></td></tr><tr><td><p class="s12">AgPd30Cu5</p></td><td><p class="s12">R 410</p><p class="s12">R 620</p></td><td><p class="s12">410</p><p class="s12">620</p></td><td><p class="s12">40</p><p class="s12">2</p></td><td><p class="s12">90</p><p class="s12">190</p></td></tr></table>
 
</figtable>
 
</figtable>
  
  
 
<figtable id="tab:Contact and Switching Properties of Silver-Palladium Alloys">
 
<figtable id="tab:Contact and Switching Properties of Silver-Palladium Alloys">
<caption>'''<!--Table 2.19:-->Kontakt- und Schalteigenschaften der Silber-Palladium-Legierungen''</caption>'
+
<caption>'''<!--Table 2.19:-->Contact and Switching Properties of Silver-Palladium Alloys''</caption>'
  
 
{| class="twocolortable" style="text-align: left; font-size: 12px"
 
{| class="twocolortable" style="text-align: left; font-size: 12px"
 
|-
 
|-
!Werkstoff
+
!Material
!colspan="2" | Eigenschaften
+
!colspan="2" | Properties
 
|-
 
|-
 
|AgPd30-60
 
|AgPd30-60
|Korrosionsbeständig, mit steigendem Pd-Anteil nimmt „brown-powder“-Bildung zu, geringere Neigung zur Materialwanderung in Gleichstromkreisen, hohe Verformbarkeit
+
|Corrosion resistant, tendency to Brown Powder formation increases with Pd content, low tendency to material transfer in DC circuits, high ductility
|beständig gegenüber Ag<sub>2</sub>S Bildung, niedriger Kontaktwiderstand, hohe Härte bei höherem Pd-Anteil, Abbrandfestigkeit von AgPd30 am höchsten, gut schweiß- und plattierbar
+
|Resistant against Ag<sub>2</sub>S formation, low contact resistance, increasing hardness with higher Pd content, AgPd30 has highest arc erosion resistance, easy to weld and clad
 
|-
 
|-
 
|AgPd30Cu5  
 
|AgPd30Cu5  
|hohe mechanische Verschleißfestigkeit
+
|High mechanical wear resistance
|hohe Härte
+
|High Hardness
 
|}
 
|}
 
</figtable>
 
</figtable>
Line 697: Line 629:
  
 
<figtable id="tab:Application Examples and Forms of Suppl for Silver-Palladium Alloys">
 
<figtable id="tab:Application Examples and Forms of Suppl for Silver-Palladium Alloys">
<caption>'''<!--Table 2.20:-->Anwendungsbeispiele und Lieferformen von Silber-Palladium-Legierungen'''</caption>
+
<caption>'''<!--Table 2.20:-->Application Examples and Forms of Suppl for Silver-Palladium Alloys'''</caption>
 
<table class="twocolortable">
 
<table class="twocolortable">
<tr><th><p class="s12">Werkstoff</p></th><th><p class="s12">Anwendungsbeispiele</p></th><th><p class="s12">Lieferformen</p></th></tr><tr><td><p class="s12">AgPd 30-60</p></td><td><p class="s12">Schalter, Relais, Taster,</p><p class="s12">Steckverbinder, Gleitkontakte</p></td><td><p class="s12">'''Halbzeuge:'''</p><p class="s12">Drähte, Mikroprofile, Kontaktbimetalle,</p><p class="s12">rollennahtgeschweißte Profile</p><p class="s12">'''Kontaktteile:'''</p><p class="s12">Massive- und Bimetallniete,</p><p class="s12">plattierte und geschweißte Kontaktteile, Stanzteile</p></td></tr><tr><td><p class="s12">AgPd30Cu5</p></td><td><p class="s12">Gleitkontakte, Gleitbahnen</p></td><td><p class="s12">Drahtbiegeteile, Kontaktfedern,</p><p class="s12">massive und plattierte Stanzteile</p></td></tr></table>
+
<tr><th><p class="s12">Material</p></th><th><p class="s12">Application Examples</p></th><th><p class="s12">Form of Supply</p></th></tr><tr><td><p class="s12">AgPd 30-60</p></td><td><p class="s12">Switches, relays, push-buttons,</p><p class="s12">connectors, sliding contacts</p></td><td><p class="s12">'''Semi-finished Materials:'''</p><p class="s12">Wires, micro profiles (weld tapes), clad</p><p class="s12">contact strips, seam-welded strips</p><p class="s12">'''Contact Parts:'''</p><p class="s12">Solid and composite rivets, weld buttons;</p><p class="s12">clad and welded  contact parts, stamped parts</p></td></tr><tr><td><p class="s12">AgPd30Cu5</p></td><td><p class="s12">Sliding contacts, slider tracks</p></td><td><p class="s12">Wire-formed parts, contact springs, solid</p><p class="s12">and clad stamped parts</p></td></tr></table>
 
</figtable>
 
</figtable>
  
===Silber-Verbundwerkstoffe===
+
===Silver Composite Materials===
  
====Silber-Nickel Werkstoffe====
+
====Silver-Nickel (SINIDUR) Materials====
Da Silber und Nickel im festen Zustand ineinander unlöslich sind und im flüssigen
+
Since silver and nickel are not soluble in each other in solid form and in the liquid phase have only very limited solubility silver nickel composite materials with higher Ni contents can only be produced by powder metallurgy. During extrusion of sintered Ag/Ni billets into wires, strips and rods the Ni particles embedded in the Ag matrix are stretched and oriented in the microstructure into a pronounced fiber structure <xr id="fig:Micro structure of AgNi9010"/><!--(Fig. 2.75)--> and <xr id="fig:Micro structure of AgNi 8020"/><!--(Fig. 2.76)-->
Zustand nur eine geringe Löslichkeit von Nickel im Silber besteht, können Silber-
 
Nickel-Werkstoffe mit höheren Ni-Anteilen nur nach pulvermetallurgischen Verfahren
 
hergestellt werden. Durch das Strangpressen der gesinterten Ag/Ni-
 
Blöcke zu Drähten, Bändern und Stangen sowie die nachfolgenden Verarbeitungsschritte
 
z.B. Walzen oder Ziehen, werden die in der Ag-Matrix eingelagerten
 
Nickelpartikel in Umformrichtung so ausgerichtet und gestreckt, dass im
 
Gefügebild eine deutliche Faserstruktur zu erkennen ist (<xr id="fig:Micro structure of AgNi9010"/><!--(Fig. 2.75)--> und <xr id="fig:Micro structure of AgNi 8020"/><!--(Fig. 2.76)-->).
 
  
Die aufgrund der hohen Umformung beim Strangpressen erzeugte hohe Dichte
+
The high density produced during hot extrusion aids the arc erosion resistance of these materials <xr id="tab:Physical Properties of Silver-Nickel (SINIDUR) Materials"/><!--(Tab 2.21)-->. The typical application of Ag/Ni contact materials is in devices for switching currents of up to 100A <xr id="tab:Application Examples and Forms of Supply for Silver-Nickel (SINIDUR) Materials"/><!--(Table 2.24)-->. In this range they are significantly more erosion resistant than silver or silver alloys. In addition they exhibit with nickel contents < 20 wt% a low and over their operational lifetime consistent contact resistance and good arc moving properties. In DC applications Ag/Ni materials exhibit a relatively low tendency of material transfer distributed evenly over the contact surfaces <xr id="tab:Contact and Switching Properties of Silver-Nickel (SINIDUR) Materials"/> <!--(Table 2.23)-->.
von Ag/Ni-Werkstoffen wirkt sich vorteilhaft auf die Abbrandfestigkeit aus (<xr id="tab:Physical Properties of Silver-Nickel (SINIDUR) Materials"/>)<!--(Tab 2.21)-->. Das
 
typische Einsatzgebiet der Ag/Ni-Werkstoffe sind Schaltströme <100 A. Hierbei
 
sind sie deutlich abbrandfester als Silber oder Silber-Legierungen. Weiterhin weisen sie bei Nickelanteilen <20 Massen-% niedrige und über die Schaltstücklebensdauer
 
gleichbleibende Kontaktwiderstände und gute Lichtbogenlaufeigenschaften
 
auf. Bei Gleichstrombetrieb zeichnen sich die Ag/Ni-Werkstoffe durch eine
 
verhältnismäßig geringe flächenhafte Materialwanderung aus (<xr id="tab:Contact and Switching Properties of Silver-Nickel (SINIDUR) Materials"/><!--(Table 2.23)-->).
 
  
Ag/Ni Werkstoffe werden üblicherweise mit Nickelgehalten von
+
Typically Ag/Ni (SINIDUR) materials are usually produced with contents of 10-40 wt% Ni. The most widely used materials SINIDUR 10 and SINIDUR 20- and also SINIDUR 15, mostly used in north america-, are easily formable and applied by cladding <xr id="fig:Strain hardening of AgNi9010 by cold working"/><!--(Fig. 2.71)--> <xr id="fig:Softening of AgNi9010 after annealing"/><!--(Fig. 2.72)--> <xr id="fig:Strain hardening of AgNi8020"/> <!--(Fig. 2.73)--> <xr id="fig:Softening of AgNi8020 after annealing"/><!--(Fig. 2.74)-->. They can be, without any additional welding aids, economically welded and brazed to the commonly used contact carrier materials.
10-40 Massen-% hergestellt. Ag/Ni 10 und Ag/Ni 20, die am häufigsten
+
The (SINIDUR) materials with nickel contents of 30 and 40 wt% are used in switching devices requiring a higher arc erosion resistance and where increases in contact resistance can be compensated through higher contact forces.
eingesetzten Werkstoffe, weisen eine sehr gute Umform- und Plattierbarkeit auf (<xr id="fig:Strain hardening of AgNi9010 by cold working"/>, <!--(Fig. 2.71)--> <xr id="fig:Softening of AgNi9010 after annealing"/>, <!--(Fig. 2.72)--> <xr id="fig:Strain hardening of AgNi8020"/>, <!--(Fig. 2.73)--> <xr id="fig:Softening of AgNi8020 after annealing"/><!--(Fig. 2.74)-->). Sie
 
können ohne zusätzliche Schweißhilfe sehr wirtschaftlich auf geeignete Trägerwerkstoffe
 
geschweißt oder gelötet werden. Ag/Ni Werkstoffe mit Nickel-
 
Anteilen von 30-40 Massen-% kommen in Schaltgeräten zum Einsatz, in denen
 
einerseits eine höhere Abbrandfestigkeit benötigt wird, andererseits erhöhte
 
Kontaktwiderstände durch ausreichend hohe Kontaktkräfte kompensiert werden
 
können.
 
  
Anwendungsschwerpunkte von Ag/Ni-Kontaktwerkstoffen sind z.B. Relais, Installationsschalter,
+
The most important applications for Ag/Ni contact materials are typically in relays, wiring devices, appliance switches, thermostatic controls, auxiliary switches, and small contactors with nominal currents > 20A <xr id="tab:Application Examples and Forms of Supply for Silver-Nickel (SINIDUR) Materials"/><!--(Table 2.24)-->.
Schalter für Hausgeräte, Thermostate, Hilfsstromschalter und kleinere
 
Schütze mit Bemessungs-Betriebsströmen <20A (<xr id="tab:Application Examples and Forms of Supply for Silver-Nickel (SINIDUR) Materials"/><!--(Table 2.24)-->).
 
  
 
<figtable id="tab:Physical Properties of Silver-Nickel (SINIDUR) Materials">
 
<figtable id="tab:Physical Properties of Silver-Nickel (SINIDUR) Materials">
<caption>'''<!--Table 2.21:-->Physikalische Eigenschaften von Silber-Nickel Werkstoffen'''</caption>
+
<caption>'''<!--Table 2.21:-->Physical Properties of Silver-Nickel (SINIDUR) Materials'''</caption>
 
<table class="twocolortable">
 
<table class="twocolortable">
<tr><th>Werkstoff</th><th>Silberanteil</th><th>Dichte</th><th>Schmelztemperatur</th><th>Spez. elektr.
+
<tr><th>Material/DODUCO</th><th>Silver Content</th><th>Density</th><th>Melting Point</th><th>ElectricalResistivity<i>p</i></th><th colspan="2">Electrical Resistivity (soft)</th></tr>
Widerstand<i>p</i></th><th colspan="2">Elektrische
 
Leitfähigkeit (weich)</th></tr>
 
 
<tr>
 
<tr>
<th></th><th>[wt%]</th><th>[g/cm<sup>3</sup>]</th><th>[°C]</th><th>[µΩ·cm]</th>
+
<th>Designation</th><th>[wt%]</th><th>[g/cm<sup>3</sup>]</th><th>[°C]</th><th>[µΩ·cm]</th>
 
<th>[% IACS]</th><th>[MS/m]</th></tr>
 
<th>[% IACS]</th><th>[MS/m]</th></tr>
<tr><td><p class="s11">Ag/Ni 90/10</p><p class="s11"></p></td><td><p class="s11">89 - 91</p></td><td><p class="s11">10.2 - 10.3</p></td><td><p class="s11">960</p></td><td><p class="s11">1.82 - 1.92</p></td><td><p class="s12">90 - 95</p></td><td><p class="s12">52 - 55</p></td></tr><tr><td><p class="s11">Ag/Ni 85/15</p><p class="s11"></p></td><td><p class="s11">84 - 86</p></td><td><p class="s11">10.1 - 10.2</p></td><td><p class="s11">960</p></td><td><p class="s11">1.89 - 2.0</p></td><td><p class="s12">86 - 91</p></td><td><p class="s12">50 - 53</p></td></tr><tr><td><p class="s11">Ag/Ni 80/20</p><p class="s11"></p></td><td><p class="s11">79 - 81</p></td><td><p class="s11">10.0 - 10.1</p></td><td><p class="s11">960</p></td><td><p class="s11">1.92 - 2.08</p></td><td><p class="s12">83 - 90</p></td><td><p class="s12">48 - 52</p></td></tr><tr><td><p class="s11">Ag/Ni 70/30</p><p class="s11"></p></td><td><p class="s11">69 - 71</p></td><td><p class="s11">9.8</p></td><td><p class="s11">960</p></td><td><p class="s11">2.44</p></td><td><p class="s12">71</p></td><td><p class="s12">41</p></td></tr><tr><td><p class="s11">Ag/Ni 60/40</p><p class="s11"></p></td><td><p class="s11">59 - 61</p></td><td><p class="s11">9.7</p></td><td><p class="s11">960</p></td><td><p class="s11">2.70</p></td><td><p class="s12">64</p></td><td><p class="s12">37</p></td></tr>
+
<tr><td><p class="s11">Ag/Ni 90/10</p><p class="s11">SINIDUR 10</p></td><td><p class="s11">89 - 91</p></td><td><p class="s11">10.2 - 10.3</p></td><td><p class="s11">960</p></td><td><p class="s11">1.82 - 1.92</p></td><td><p class="s12">90 - 95</p></td><td><p class="s12">52 - 55</p></td></tr><tr><td><p class="s11">Ag/Ni 85/15</p><p class="s11">SINIDUR 15</p></td><td><p class="s11">84 - 86</p></td><td><p class="s11">10.1 - 10.2</p></td><td><p class="s11">960</p></td><td><p class="s11">1.89 - 2.0</p></td><td><p class="s12">86 - 91</p></td><td><p class="s12">50 - 53</p></td></tr><tr><td><p class="s11">Ag/Ni 80/20</p><p class="s11">SINIDUR 20</p></td><td><p class="s11">79 - 81</p></td><td><p class="s11">10.0 - 10.1</p></td><td><p class="s11">960</p></td><td><p class="s11">1.92 - 2.08</p></td><td><p class="s12">83 - 90</p></td><td><p class="s12">48 - 52</p></td></tr><tr><td><p class="s11">Ag/Ni 70/30</p><p class="s11">SINIDUR 30</p></td><td><p class="s11">69 - 71</p></td><td><p class="s11">9.8</p></td><td><p class="s11">960</p></td><td><p class="s11">2.44</p></td><td><p class="s12">71</p></td><td><p class="s12">41</p></td></tr><tr><td><p class="s11">Ag/Ni 60/40</p><p class="s11">SINIDUR 40</p></td><td><p class="s11">59 - 61</p></td><td><p class="s11">9.7</p></td><td><p class="s11">960</p></td><td><p class="s11">2.70</p></td><td><p class="s12">64</p></td><td><p class="s12">37</p></td></tr>
 
</table>
 
</table>
 
</figtable>
 
</figtable>
Line 751: Line 659:
  
 
<figtable id="tab:tab2.22">
 
<figtable id="tab:tab2.22">
<caption>'''<!-- Table 2.22:-->Festigkeitseigenschaften von Silber-Nickel Werkstoffen'''</caption>
+
<caption>'''<!-- Table 2.22:-->Mechanical Properties of Silver-Nickel (SINIDUR) Materials'''</caption>
  
 
{| class="twocolortable" style="text-align: left; font-size: 12px"
 
{| class="twocolortable" style="text-align: left; font-size: 12px"
 
|-
 
|-
!Werkstoff
+
!Material/DODUCO-Designation
!Festigkeitszustand
+
!Hardness Condition
!Zugfestigkeit R<sub>m</sub> [Mpa]
+
!Tensile Strength R<sub>m</sub> [Mpa]
!Dehnung (weichgeglüht) [%] min.
+
!Elongation A (soft annealed) [%] min.
!Vickershärte HV 10
+
!Vickers Hardness HV 10
 
|-
 
|-
|Ag/Ni 90/10<br />
+
|Ag/Ni 90/10<br />SINIDUR 10
 
|soft<br />R 220<br />R 280<br />R 340<br />R 400
 
|soft<br />R 220<br />R 280<br />R 340<br />R 400
 
|< 250<br />220 - 280<br />280 - 340<br />340 - 400<br />> 400
 
|< 250<br />220 - 280<br />280 - 340<br />340 - 400<br />> 400
Line 767: Line 675:
 
|< 50<br />50 - 70<br />65 - 90<br />85 - 105<br />> 100
 
|< 50<br />50 - 70<br />65 - 90<br />85 - 105<br />> 100
 
|-
 
|-
|Ag/Ni 85/15<br />
+
|Ag/Ni 85/15<br />SINIDUR 15
 
|soft<br />R 300<br />R 350<br />R 380<br />R 400
 
|soft<br />R 300<br />R 350<br />R 380<br />R 400
 
|< 275<br />250 - 300<br />300 - 350<br />350 - 400<br />> 400
 
|< 275<br />250 - 300<br />300 - 350<br />350 - 400<br />> 400
Line 773: Line 681:
 
|< 70<br />70 - 90<br />85 - 105<br />100 - 120<br />> 115
 
|< 70<br />70 - 90<br />85 - 105<br />100 - 120<br />> 115
 
|-
 
|-
|Ag/Ni 80/20<br />
+
|Ag/Ni 80/20<br />SINIDUR 20
 
|soft<br />R 300<br />R 350<br />R 400<br />R 450
 
|soft<br />R 300<br />R 350<br />R 400<br />R 450
 
|< 300<br />300 - 350<br />350 - 400<br />400 - 450<br />> 450
 
|< 300<br />300 - 350<br />350 - 400<br />400 - 450<br />> 450
Line 779: Line 687:
 
|< 80<br />80 - 95<br />90 - 110<br />100 - 125<br />> 120
 
|< 80<br />80 - 95<br />90 - 110<br />100 - 125<br />> 120
 
|-
 
|-
|Ag/Ni 70/30<br />
+
|Ag/Ni 70/30<br />SINIDUR 30
 
|R 330<br />R 420<br />R 470<br />R 530
 
|R 330<br />R 420<br />R 470<br />R 530
 
|330 - 420<br />420 - 470<br />470 - 530<br />> 530
 
|330 - 420<br />420 - 470<br />470 - 530<br />> 530
Line 785: Line 693:
 
|80<br />100<br />115<br />135
 
|80<br />100<br />115<br />135
 
|-
 
|-
|Ag/Ni 60/40<br />
+
|Ag/Ni 60/40<br />SINIDUR 40
 
|R 370<br />R 440<br />R 500<br />R 580
 
|R 370<br />R 440<br />R 500<br />R 580
 
|370 - 440<br />440 - 500<br />500 - 580<br />> 580
 
|370 - 440<br />440 - 500<br />500 - 580<br />> 580
Line 792: Line 700:
 
|}
 
|}
 
</figtable>
 
</figtable>
 +
 +
 +
<xr id="fig:Strain hardening of AgNi9010 by cold working"/><!--Fig. 2.71:--> Strain hardening of Ag/Ni 90/10 by cold working
 +
 +
<xr id="fig:Softening of AgNi9010 after annealing"/><!--Fig. 2.72:--> Softening of Ag/Ni 90/10 after annealing for 1 hr after 80% cold working
 +
 +
<xr id="fig:Strain hardening of AgNi8020"/><!--Fig. 2.73:--> Strain hardening of Ag/Ni 80/20 by cold working
 +
 +
<xr id="fig:Softening of AgNi8020 after annealing"/><!--Fig. 2.74:--> Softening of Ag/Ni 80/20 after annealing for 1 hr after 80% cold working
 +
 +
<xr id="fig:Micro structure of AgNi9010"/><!--Fig. 2.75:--> Micro structure of Ag/Ni 90/10 a) perpendicular to the extrusion direction b) parallel to the extrusion direction
 +
 +
<xr id="fig:Micro structure of AgNi 8020"/><!--Fig. 2.76:--> Micro structure of Ag/Ni 80/20 a) perpendicular to the extrusion direction b) parallel t o the extrusion direction
  
  
 
<div class="multiple-images">
 
<div class="multiple-images">
 
<figure id="fig:Strain hardening of AgNi9010 by cold working">
 
<figure id="fig:Strain hardening of AgNi9010 by cold working">
[[File:Strain hardening of AgNi9010 by cold working.jpg|right|thumb|<caption>Verfestigungsverhalten
+
[[File:Strain hardening of AgNi9010 by cold working.jpg|right|thumb|<caption>Strain hardening of Ag/Ni 90/10 by cold working</caption>]]
von Ag/Ni 90/10 durch Kaltumformung</caption>]]
 
 
</figure>
 
</figure>
  
 
<figure id="fig:Softening of AgNi9010 after annealing">
 
<figure id="fig:Softening of AgNi9010 after annealing">
[[File:Softening of AgNi9010 after annealing.jpg|right|thumb|<caption>Erweichungsverhalten
+
[[File:Softening of AgNi9010 after annealing.jpg|right|thumb|<caption>Softening of Ag/Ni 90/10 after annealing for 1 hr after 80% cold working</caption>]]
von Ag/Ni 90/10 nach 1h Glühdauer
 
und einer Kaltumformung von 80%</caption>]]
 
 
</figure>
 
</figure>
  
 
<figure id="fig:Strain hardening of AgNi8020">
 
<figure id="fig:Strain hardening of AgNi8020">
[[File:Strain hardening of AgNi8020.jpg|right|thumb|<caption>Verfestigungsverhalten von
+
[[File:Strain hardening of AgNi8020.jpg|right|thumb|<caption>Strain hardening of Ag/Ni 80/20 by cold working</caption>]]
Ag/Ni 80/20 durch Kaltumformung</caption>]]
 
 
</figure>
 
</figure>
  
 
<figure id="fig:Softening of AgNi8020 after annealing">
 
<figure id="fig:Softening of AgNi8020 after annealing">
[[File:Softening of AgNi8020 after annealing.jpg|right|thumb|<caption>Erweichungsverhalten
+
[[File:Softening of AgNi8020 after annealing.jpg|right|thumb|<caption>Softening of Ag/Ni 80/20 after annealing for 1 hr after 80% cold working</caption>]]
von Ag/Ni 80/20 nach 1h Glühdauer
 
und einer Kaltumformung von 80%</caption>]]
 
 
</figure>
 
</figure>
  
 
<figure id="fig:Micro structure of AgNi9010">
 
<figure id="fig:Micro structure of AgNi9010">
[[File:Micro structure of AgNi9010.jpg|right|thumb|<caption>Gefüge von Ag/Ni 90/10 a) senkrecht zur Strangpressrichtung
+
[[File:Micro structure of AgNi9010.jpg|right|thumb|<caption>Micro structure of Ag/Ni 90/10 a) perpendicular to the extrusion direction b) parallel to the extrusion direction</caption>]]
b) parallel zur Strangpressrichtung</caption>]]
 
 
</figure>
 
</figure>
  
 
<figure id="fig:Micro structure of AgNi 8020">
 
<figure id="fig:Micro structure of AgNi 8020">
[[File:Micro structure of AgNi 8020.jpg|right|thumb|<caption>Gefüge von Ag/Ni 80/20 a) senkrecht zur Strangpressrichtung
+
[[File:Micro structure of AgNi 8020.jpg|right|thumb|<caption>Micro structure of Ag/Ni 80/20 a) perpendicular to the extrusion direction b) parallel to the extrusion direction</caption>]]
b) parallel zur Strangpressrichtung</caption>]]
 
 
</figure>
 
</figure>
 
</div>
 
</div>
Line 831: Line 744:
  
 
<figtable id="tab:Contact and Switching Properties of Silver-Nickel (SINIDUR) Materials">
 
<figtable id="tab:Contact and Switching Properties of Silver-Nickel (SINIDUR) Materials">
<caption>'''<!-- Table 2.23:-->Kontakt- und Schalteigenschaften von Silber-Nickel Werkstoffen'''</caption>
+
<caption>'''<!-- Table 2.23:-->Contact and Switching Properties of Silver-Nickel (SINIDUR) Materials'''</caption>
  
 
{| class="twocolortable" style="text-align: left; font-size: 12px"
 
{| class="twocolortable" style="text-align: left; font-size: 12px"
 
|-
 
|-
!Werkstoff
+
!Material/DODUCO-Designation
!Eigenschaften
+
!Properties
 
|-
 
|-
|Ag/Ni <br />
+
|Ag/Ni <br />SINIDUR
|Hohe Abbbrandfestigkeit bei Schaltströmen bis 100A,
+
|High arc erosion resistance at switching currents up to 100A,<br />Resistance against welding for starting current up to 100A,<br />low and over the electrical contact life nearly constant contact resistance for Ag/Ni 90/10 and Ag/Ni 80/20,<br />ow and spread-out material transfer under DC load,<br />non-conductive erosion residue on isolating components resulting in only minor change of the dielectric strength of switching devices,<br />good arc moving properties,<br />good arc extinguishing properties,<br />good or sufficient ductility depending on the Ni content,<br />easy to weld and braze
Sicherheit gegen Verschweißen bei Einschaltströmen bis 100A,
 
niedriger und über die Schaltstücklebensdauer nahezu konstanter
 
Kontaktwiderstand bei Ag/Ni 90/10 und Ag/Ni 80/20,
 
geringe flächenhafte Materialwanderung bei Gleichstromlast,
 
nichtleitende Abbrandrückstände auf Isolierstoffen, daher nur geringe
 
Beeinträchtigung der Spannungsfestigkeit des Schaltgerätes,
 
gutes Lichtbogenlaufverhalten,
 
günstige Lichtbogenlöscheigenschaften,
 
gute bis ausreichende Verformbarkeit entsprechend der
 
Werkstoffzusammensetzung, gute Löt- und Schweißbarkeit
 
 
|}
 
|}
 
</figtable>
 
</figtable>
Line 855: Line 758:
  
 
<figtable id="tab:Application Examples and Forms of Supply for Silver-Nickel (SINIDUR) Materials">
 
<figtable id="tab:Application Examples and Forms of Supply for Silver-Nickel (SINIDUR) Materials">
<caption>'''<!--Table 2.24:-->Anwendungsbeispiele und Lieferformen von Silber-Nickel Werkstoffen'''</caption>
+
<caption>'''<!--Table 2.24:-->Application Examples and Forms of Supply for Silver-Nickel (SINIDUR) Materials'''</caption>
  
 
{| class="twocolortable" style="text-align: left; font-size: 12px"
 
{| class="twocolortable" style="text-align: left; font-size: 12px"
 
|-
 
|-
!Werkstoff
+
!Material
!Anwendungsbeispiele
+
!Application Examples
!Schalt- bzw.
+
!Switching or Nominal Current
Bemessungsströme
+
!Form of Supply
!Lieferform
 
 
|-
 
|-
 
|Ag/Ni 90/10-80/20
 
|Ag/Ni 90/10-80/20
|Relais<br /> Kfz-Relais
+
|Relays<br /> Automotive Relays - Resistive load - Motor load
-Widerstandslast
 
-Motorlast
 
 
|> 10A<br />> 10A
 
|> 10A<br />> 10A
|rowspan="9" | '''Halbzeuge:'''<br />Drähte, Profile,
+
|rowspan="9" | '''Semi-finisched Materials:'''<br />Wires, profiles,<br />clad strips,<br />Seam-welded strips,<br />Toplay strips <br />'''Contact Parts:'''<br />Contact tips, solid<br />and composite<br />rivets, Weld buttons,<br />clad, welded,<br />brazed, and riveted<br />contact parts
Kontaktbimetalle,
 
rollennahtgeschweißte
 
Profile,
 
Toplay-Profile<br />'''Kontaktteile::'''<br />Kontaktauflagen,
 
Massiv-und
 
Bimetallniete,
 
Aufschweißkontakte,<br />
 
plattierte,
 
geschweißte,
 
gelötete und genietete
 
Kontaktteile
 
 
|-
 
|-
 
|Ag/Ni 90/10, Ag/Ni 85/15-80/20
 
|Ag/Ni 90/10, Ag/Ni 85/15-80/20
|Hilfsstromschalter
+
|Auxiliary current switches
 
|&le; 100A
 
|&le; 100A
 
|-
 
|-
 
|Ag/Ni 90/10-80/20
 
|Ag/Ni 90/10-80/20
|Schalter für Hausgeräte
+
|Appliance switches
 
|&le; 50A
 
|&le; 50A
 
|-
 
|-
 
|Ag/Ni 90/10
 
|Ag/Ni 90/10
|Lichtschalter
+
|Wiring devices
 
|&le; 20A
 
|&le; 20A
 
|-
 
|-
 
|Ag/Ni 90/10
 
|Ag/Ni 90/10
|Hauptschalter,
+
|Main switches, Automatic staircase illumination switches
Treppenhausautomaten
 
 
|&le; 100A
 
|&le; 100A
 
|-
 
|-
 
|Ag/Ni 90/10-80/20
 
|Ag/Ni 90/10-80/20
|Regel- und Steuerschalter,
+
|Control<br />Thermostats
Thermostate
 
 
|> 10A<br />&le; 50A
 
|> 10A<br />&le; 50A
 
|-
 
|-
 
|Ag/Ni 90/10-80/20
 
|Ag/Ni 90/10-80/20
|Lastschalter
+
|Load switches
 
|&le; 20A
 
|&le; 20A
 
|-
 
|-
 
|Ag/Ni 90/10-80/20
 
|Ag/Ni 90/10-80/20
|Motorschalter (Schütze)
+
|Contactors circuit breakers
 
|&le; 100A
 
|&le; 100A
 
|-
 
|-
 
|Ag/Ni 90/10-80/20<br />paired with Ag/C 97/3-96/4
 
|Ag/Ni 90/10-80/20<br />paired with Ag/C 97/3-96/4
|Motorschutzschalter
+
|Motor protective circuit breakers
 
|&le; 40A
 
|&le; 40A
 
|-
 
|-
 
|Ag/Ni 80/20-60/40<br />paired with Ag/C 96/4-95/5
 
|Ag/Ni 80/20-60/40<br />paired with Ag/C 96/4-95/5
|Fehlerstromschutzschalter
+
|Fault current circuit breakers
 
|&le; 100A
 
|&le; 100A
|rowspan="2" | Stangen, Profile,
+
|rowspan="2" | Rods, Profiles,<br />Contact tips, Formed parts,<br />brazed and welded<br />contact parts
Kontaktauflagen,
 
Formteile, gelötete
 
und geschweißte
 
Kontaktteile
 
 
|-
 
|-
 
|Ag/Ni 80/20-60/40<br />paired with Ag/C 96/4-95/5
 
|Ag/Ni 80/20-60/40<br />paired with Ag/C 96/4-95/5
|Leistungsschalter
+
|Power switches
 
|> 100A
 
|> 100A
 
|}
 
|}
 
</figtable>
 
</figtable>
  
==== Silber-Metalloxid-Werkstoffe Ag/CdO, Ag/SnO<sub>2</sub>, Ag/ZnO====
+
==== Silver-Metal Oxide Materials Ag/CdO, Ag/SnO<sub>2</sub>, Ag/ZnO====
Die Familie der Silber-Metalloxid-Kontaktwerkstoffe umfasst die Werkstoffgruppen:
+
The family of silver-metal oxide contact materials includes the material groups: silver-cadmium oxide (DODURIT CdO), silver-tin oxide (SISTADOX), and silverzinc oxide (DODURIT ZnO). Because of their very good contact and switching properties like high resistance against welding, low contact resistance, and high arc erosion resistance, silver-metal oxides have gained an outstanding position in a broad field of applications. They mainly are used in low voltage electrical switching devices like relays, installation and distribution switches, appliances, industrial controls, motor controls, and protective devices <xr id="tab:Application Examples of Silver–Metal Oxide Materials"/><!--(Table 2.31)-->.
Silber-Cadmiumoxid, Silber-Zinnoxid und Silber-Zinkoxid.  
+
 
Aufgrund ihrer sehr guten Kontakt- und
+
*'''Silver-cadmium oxide (DODURIT CdO) materials'''
Schalteigenschaften, wie hohe Verschweißresistenz, niedriger Kontaktwiderstand
+
 
und hohe Abbrandfestigkeit, haben Silber-Metalloxid-Werkstoffe eine
+
Silver-cadmium oxide (DODURIT CdO) materials with 10-15 wt% are produced by both, internal oxidation and powder metallurgical methods <xr id="tab:Physical and Mechanical Properties"/><!--(Table 2.25)-->.
herausragende Stellung in einem breiten Anwendungsbereich erlangt. Sie finden vor allem Einsatz in Schaltgeräten der Niederspannungs-Energietechnik,
+
 
z.B. in Relais, Installations-, Geräte-, Motor- und Schutzschaltern (<xr id="tab:Application Examples of Silver–Metal Oxide Materials"/><!--(Table 2.31)-->).
+
<figtable id="tab:Physical and Mechanical Properties">
 +
[[File:Physical and Mechanical Properties.jpg|right|thumb|Physical and Mechanical Properties as well as Manufacturing Processes and Forms of Supply of Extruded Silver Cadmium Oxide (DODURIT CdO) Contact Materials]]
 +
</figtable>
 +
 
 +
The manufacturing of strips and wires by internal oxidation starts with a molten alloy of silver and cadmium. During a heat treatment below it's melting point in a oxygen rich atmosphere in such a homogeneous alloy the oxygen diffuses from the surface into the bulk of the material and oxidizes the Cd to CdO in a more or less fine particle precipitation inside the Ag matrix. The CdO particles are rather fine in the surface area and are becoming larger further away towards the center of the material <xr id="fig:Micro structure of AgCdO9010"/><!--(Fig. 2.83)-->.
 +
 
 +
During the manufacturing of Ag/CdO contact material by internal oxidation the processes vary depending on the type of semi-finished material. For Ag/CdO wires a complete oxidation of the AgCd wire is performed, followed by wire-drawing to the required diameter <xr id="fig:Strain hardening of internally oxidized AgCdO9010"/><!--(Figs. 2.77)--> and <xr id="fig:Softening of internally oxidized AgCdO9010"/><!--(Fig. 2.78)-->. The resulting material is used for example in the production of contact rivets. For Ag/CdO strip materials two processes are commonly used: Cladding of an AgCd alloy strip with fine silver followed by complete oxidation results in a strip material with a small depletion area in the center of it's thickness and a Ag backing suitable for easy attachment by brazing (sometimes called "Conventional Ag/CdO"). Using a technology that allows the partial oxidation of a dual-strip AgCd alloy material in a higher pressure pure oxygen atmosphere yields a composite Ag/CdO strip material that has besides a relatively fine CdO precipitation also a easily brazable AgCd alloy backing <xr id="fig:Micro structure of AgCdO9010ZH"/><!--(Fig. 2.85)-->. These materials (DODURIT CdO ZH) are mainly used as the basis for contact profiles and contact tips.
 +
 
 +
During powder metallurgical production the powder mixed made by different processes are typically converted by pressing, sintering and extrusion to wires and strips. The high degree of deformation during hot extrusion produces a uniform and fine dispersion of CdO particles in the Ag matrix while at the same time achieving a high density which is advantageous for good contact properties <xr id="fig:Micro structure of AgCdO9010P"/><!--(Fig. 2.84)-->. To obtain a backing suitable for brazing, a fine silver layer is applied by either com-pound extrusion or hot cladding prior to or right after the extrusion <xr id="fig:Micro structure of AgCdO8812WP"/><!--(Fig. 2.86)-->.
  
*'''Silber-Cadmiumoxid'''
+
For larger contact tips, and especially those with a rounded shape, the single tip Press-Sinter-Repress process (PSR) offers economical advantages. The powder mix is pressed in a die close to the final desired shape, the "green" tips are sintered, and in most cases the repress process forms the final exact shape while at the same time increasing the contact density and hardness.
  
Silber-Cadmiumoxid Werkstoffe mit 10-15 Massen-% CdO
+
Using different silver powders and minor additives for the basic Ag and CdO starting materials can help influence certain contact properties for specialized applications.
werden sowohl nach dem Verfahren der inneren Oxidation als auch auf pulvermetallurgischem
 
Wege hergestellt.
 
  
Bei der Herstellung von Bändern und Drähten durch innere Oxidation wird von
+
<xr id="fig:Strain hardening of internally oxidized AgCdO9010"/><!--Fig. 2.77:--> Strain hardening of internally oxidized Ag/CdO 90/10 by cold working
einer auf dem Schmelzwege erzeugten Legierung aus Silber und Cadmium
 
ausgegangen. Unterzieht man eine solche homogene Legierung einer Glühbehandlung
 
unterhalb ihres Schmelzpunktes in einer sauerstoffhaltigen
 
Atmosphäre, so diffundiert der Sauerstoff von der Oberfläche in das Innere der
 
Silber-Cadmium-Legierung ein und oxidiert das Cd zu CdO, das sich dabei
 
mehr oder weniger feinkörnig in der Ag-Matrix ausscheidet. Die CdO-Ausscheidungen
 
sind im Randbereich feinkörnig und werden in Richtung der
 
Oxidationsfront grobkörniger (<xr id="fig:Micro structure of AgCdO9010"/><!--(Fig. 2.83)-->).
 
  
Bei der Herstellung von Ag/CdO-Kontaktmaterial ist je nach Art des Halbzeugs
+
<xr id="fig:Softening of internally oxidized AgCdO9010"/><!--Fig. 2.78:--> Softening of internally oxidized Ag/CdO 90/10 after annealing for 1 hr after 40% cold working
der Prozessablauf der inneren Oxidation unterschiedlich.
 
Bei Ag/CdO-Drähten wird das AgCd-Vormaterial vollständig durchoxidiert, auf
 
das gewünschte Endmaß gezogen und z.B. zu Kontaktnieten weiterverarbeitet (<xr id="fig:Strain hardening of internally oxidized AgCdO9010"/><!--(Figs. 2.77)--> und <xr id="fig:Softening of internally oxidized AgCdO9010"/><!--(Fig. 2.78)-->).
 
Dagegen wird bei Ag/CdO- Bändern die innere Oxidation einseitig nur bis zu
 
einer bestimmten Tiefe ausgeführt. Die so erhaltenen Zweischichtbänder
 
mit der inneroxidierten Ag/CdO-Kontaktschicht auf der Oberseite und
 
der gut lötbaren AgCd-Unterseite (Bezeichnung: „ZH“) sind Ausgangsmaterial
 
für die Herstellung von Kontaktprofilen und -auflagen.
 
  
Bei der pulvermetallurgischen Herstellung werden die nach verschiedenen Verfahren
+
<xr id="fig:Strain hardening of AgCdO9010P"/><!--Fig. 2.79:--> Strain hardening of Ag/CdO 90/10 P by cold working
gewonnenen Pulvermischungen überwiegend durch Pressen, Sintern
 
und Strangpressen zu Drähten und Bändern weiterverarbeitet. Durch den hohen
 
Umformgrad beim Strangpressen wird eine gleichmäßige Verteilung der
 
CdO-Partikel in der Ag-Matrix und eine hohe Dichte erreicht, die sich vorteilhaft
 
auf die Kontakteigenschaften auswirken (<xr id="fig:Micro structure of AgCdO9010P"/><!--(Fig. 2.84)-->). Die für Bänder und Plättchen
 
erforderliche gut löt- und schweißbare Unterseite wird durch Verbundstrangpressen
 
oder Anplattieren einer Silberschicht nach oder vor dem
 
Strangpressvorgang erzielt.
 
  
Bei größeren Kontaktauflagen in meist runder Form bietet das Verfahren der
+
<xr id="fig:Softening of AgCdO9010P after annealing"/><!--Fig. 2.80:--> Softening of Ag/CdO 90/10 P after annealing for 1 hr after 40% cold working
Einzelpresstechnik vielfach wirtschaftliche Vorteile. Dabei wird die Pulvermischung
+
 
in eine Form gepresst, die der Endabmessung des Kontaktstückes
+
<xr id="fig:Strain hardening of AgCdO8812"/><!--Fig. 2.81:--> Strain hardening of Ag/CdO 88/12 WP
entspricht. Nach dem Pressen und Sintern ist i.d.R. ein weiterer Nachpressvorgang
+
 
erforderlich, um eine hohe Dichte des Werkstoffes zu erreichen.
+
<xr id="fig:Softening of AgCdO8812WP after annealing"/><!--Fig. 2.82:--> Softening of Ag/CdO 88/12WP after annealing for 1 hr after different degrees of cold working
 +
 
 +
<xr id="fig:Micro structure of AgCdO9010"/><!--Fig. 2.83:--> Micro structure of Ag/CdO 90/10 i.o. a) close to surface b) in center area
 +
 
 +
<xr id="fig:Micro structure of AgCdO9010P"/><!--Fig. 2.84:--> Micro structure of Ag/CdO 90/10 P: a) perpendicular to extrusion direction b) parallel to extrusion direction
 +
 
 +
<xr id="fig:Micro structure of AgCdO9010ZH"/><!--Fig. 2.85:--> Micro structure of Ag/CdO 90/10 ZH: 1) Ag/CdO layer 2) AgCd backing layer
 +
 
 +
<xr id="fig:Micro structure of AgCdO8812WP"/><!--Fig. 2.86:--> Micro structure of AgCdO 88/12 WP: a) perpendicular to extrusion direction b) parallel to extrusion direction
  
 
<div class="multiple-images">
 
<div class="multiple-images">
 
<figure id="fig:Strain hardening of internally oxidized AgCdO9010">
 
<figure id="fig:Strain hardening of internally oxidized AgCdO9010">
[[File:Strain hardening of internally oxidized AgCdO9010.jpg|left|thumb|<caption>Verfestigungsverhalten
+
[[File:Strain hardening of internally oxidized AgCdO9010.jpg|left|thumb|<caption>Strain hardening of internally oxidized Ag/CdO 90/10 by cold working</caption>]]
von Ag/CdO 90/10 durch Kaltumformung</caption>]]
 
 
</figure>
 
</figure>
  
 
<figure id="fig:Softening of internally oxidized AgCdO9010">
 
<figure id="fig:Softening of internally oxidized AgCdO9010">
[[File:Softening of internally oxidized AgCdO9010.jpg|left|thumb|<caption>Erweichungsverhalten von
+
[[File:Softening of internally oxidized AgCdO9010.jpg|left|thumb|<caption>Softening of internally oxidized Ag/CdO 90/10 after annealing for 1 hr after 40% cold working</caption>]]
Ag/CdO 90/10 nach 1h Glühdauer und einer
 
Kaltumformung von 40%</caption>]]
 
 
</figure>
 
</figure>
  
 
<figure id="fig:Strain hardening of AgCdO9010P">
 
<figure id="fig:Strain hardening of AgCdO9010P">
[[File:Strain hardening of AgCdO9010P.jpg|left|thumb|<caption>Verfestigungsverhalten
+
[[File:Strain hardening of AgCdO9010P.jpg|left|thumb|<caption>Strain hardening of Ag/CdO 90/10 P by cold working</caption>]]
von Ag/Cd 90/10P durch Kaltumformung</caption>]]
 
 
</figure>
 
</figure>
  
 
<figure id="fig:Softening of AgCdO9010P after annealing">
 
<figure id="fig:Softening of AgCdO9010P after annealing">
[[File:Softening of AgCdO9010P after annealing.jpg|left|thumb|<caption>Erweichungsverhalten von
+
[[File:Softening of AgCdO9010P after annealing.jpg|left|thumb|<caption>Softening of Ag/CdO 90/10 P after annealing for 1 hr after 40% cold working</caption>]]
Ag/CdO 90/10P nach 1 h Glühdauer
 
und einer Kaltumformung von 40%</caption>]]
 
 
</figure>
 
</figure>
  
 
<figure id="fig:Strain hardening of AgCdO8812">
 
<figure id="fig:Strain hardening of AgCdO8812">
[[File:Strain hardening of AgCdO8812.jpg|left|thumb|<captionVerfestigungsverhalten
+
[[File:Strain hardening of AgCdO8812.jpg|left|thumb|<caption>Strain hardening of Ag/CdO 88/12 WP</caption>]]
von Ag/CdO 88/12 WP durch Kaltumformung</caption>]]
 
 
</figure>
 
</figure>
  
 
<figure id="fig:Softening of AgCdO8812WP after annealing">
 
<figure id="fig:Softening of AgCdO8812WP after annealing">
[[File:Softening of AgCdO8812WP after annealing.jpg|left|thumb|<caption>Erweichungsverhalten von
+
[[File:Softening of AgCdO8812WP after annealing.jpg|left|thumb|<caption>Softening of Ag/CdO 88/12WP after annealing for 1 hr after different degrees of cold working</caption>]]
Ag/CdO 88/12 WP nach 1h Glühdauer und
 
unterschiedlicher Kaltumformung</caption>]]
 
 
</figure>
 
</figure>
  
 
<figure id="fig:Micro structure of AgCdO9010">
 
<figure id="fig:Micro structure of AgCdO9010">
[[File:Micro structure of AgCdO9010.jpg|left|thumb|<caption>Gefüge von Ag/CdO 90/10 i.o. a) Randbereich
+
[[File:Micro structure of AgCdO9010.jpg|left|thumb|<caption>Micro structure of Ag/CdO 90/10 i.o. a) close to surface b) in center area</caption>]]
b) innerer Bereich</caption>]]
 
 
</figure>
 
</figure>
  
 
<figure id="fig:Micro structure of AgCdO9010P">
 
<figure id="fig:Micro structure of AgCdO9010P">
[[File:Micro structure of AgCdO9010P.jpg|left|thumb|<caption>Gefüge von Ag/CdO 90/10 P a) senkrecht zur Strangpressrichtung
+
[[File:Micro structure of AgCdO9010P.jpg|left|thumb|<caption>Micro structure of Ag/CdO 90/10 P: a) perpendicular to extrusion direction b) parallel to extrusion direction</caption>]]
b) parallel zur Strangpressrichtung</caption>]]
 
 
</figure>
 
</figure>
  
 +
<figure id="fig:Micro structure of AgCdO9010ZH">
 +
[[File:Micro structure of AgCdO9010ZH.jpg|left|thumb|<caption>Micro structure of Ag/CdO 90/10 ZH: 1) Ag/CdO layer 2) AgCd backing layer</caption>]]
 +
</figure>
  
*'''Silber-Zinnoxid Werkstoffe'''
+
<figure id="fig:Micro structure of AgCdO8812WP">
Aufgrund der Toxizität des Cadmiums wurden in den letzten Jahren in vielen
+
[[File:Micro structure of AgCdO8812WP.jpg|left|thumb|<caption>Micro structure of AgCdO 88/12 WP: a) perpendicular to extrusion direction b) parallel to extrusion direction</caption>]]
Anwendungsfällen die Ag/CdO-Werkstoffe durch Ag/SnO<sub>2</sub>-Werkstoffe mit 2-14
+
</figure>
Massen-% SnO<sub>2</sub> ersetzt. Diese Substitution wurde noch dadurch begünstigt,
+
</div>
dass Ag/SnO<sub>2</sub> -Werkstoffe häufig bessere Kontakt- und Schalteigenschaften,
+
<div class="clear"></div>
wie höhere Abbrandfestigkeit, erhöhte Verschweißresistenz und eine deutlich
+
 
geringere Neigung zur Materialwanderung bei Gleichstrombetrieb aufweisen (<xr id="tab:Contact and Switching Properties of Silver–Metal Oxide Materials"/><!--(Table 2.30)-->).
+
 
Durch spezielle Metalloxid-Zusätze und Fertigungsverfahren wurden Ag/SnO<sub>2</sub>-
+
*'''Silver–tin oxide (SISTADOX) materials'''
Werkstoffe für unterschiedliche Anwendungsfälle optimiert (<xr id="tab:tab2.28"/><!--(Tab. 2.28)--> und <xr id="tab:tab2.29"/><!--(Table 2.29)-->).
+
Over the past years, many Ag/CdO contact materials have been replaced by Ag/SnO<sub>2</sub> based materials with 2-14 wt% SnO<sub>2</sub> because of the toxicity of Cadmium. This changeover was further favored by the fact that Ag/SnO<sub>2</sub> contacts quite often show improved contact and switching properties such as lower arc erosion, higher weld resistance, and a significant lower tendency towards material transfer in DC switching circuits <xr id="tab:Contact and Switching Properties of Silver–Metal Oxide Materials"/><!--(Table 2.30)-->. Ag/SnO<sub>2</sub> materials have been optimized for a broad range of applications by other metal oxide additives and modification in the manufacturing processes that result in different metallurgical, physical and electrical properties<xr id="tab:tab2.28"/><!--(Tab. 2.28)--> und <xr id="tab:tab2.29"/><!--(Table 2.29)-->.
 +
 
 +
Manufacturing of Ag/SnO<sub>2</sub> by ''internal oxidation'' is possible in principle, but during heat treatment of alloys containing > 5 wt% of tin in oxygen, dense oxide layers formed on the surface of the material prohibit the further diffusion of oxygen into the bulk of the material. By adding Indium or Bismuth to the alloy the internal oxidation is possible and results in materials that typically are rather hard and brittle and may show somewhat elevated contact resistance and is limited to applications in relays. To make a ductile material with fine oxide dispersion (SISTADOX TOS F) <xr id="fig:Micro structure of Ag SnO2 88 12 TOS F"/><!--(Fig. 2.114)--> it is necessary to use special process variations in oxidation and extrusion which lead to materials with improved properties in relays. Adding a brazable fine silver layer to such materials results in a semifinished material suitable for the manufacture as smaller weld profiles (SISTADOX WTOS F) <xr id="fig:Micro structure of Ag SnO2 92 8 WTOS F"/><!--(Fig. 2.116)-->. Because of their resistance to material transfer and low arc erosion these materials find for example a broader application in automotive relays <xr id="tab:Application Examples of Silver–Metal Oxide Materials"/><!--(Table 2.31)-->.
  
Die Herstellung von Silber-Zinnoxid auf dem Wege der inneren Oxidation ist
 
grundsätzlich möglich. Bei Silber-Zinn-Legierungen mit >5 Massen-% Sn bilden
 
sich jedoch bei oxidierender Glühung in oberflächennahen Bereichen Deckschichten,
 
die eine weitere Diffusion des Sauerstoffs ins Innere des Werkstoffes
 
verhindern. Die Herstellung von Werkstoffen mit höheren Oxidgehalten ist nur
 
durch Zusätze von Indium oder Wismut möglich. Solche nach dem klassischen
 
Verfahren der inneren Oxidation hergestellten Ag/SnO<sub>2</sub>-Werkstoffe sind sehr
 
spröde und weisen höhere Kontaktwiderstände auf, was z.B. bei Dauerstromführung
 
in Motorschaltern zu hohen Übertemperaturen führen kann. Ihr Einsatz
 
beschränkt sich daher weitgehend auf Relais. Für diesen Anwendungsfall ist es
 
erforderlich, einen hinreichend duktilen Werkstoff mit feinkörnigen SnO<sub>2</sub>-Einlagerungen
 
herzustellen (<xr id="fig:Micro structure of Ag SnO2 88 12 TOS F"/><!--(Fig. 2.114)-->). Dies gelingt durch Optimierung des
 
Prozessverlaufs bei der inneren Oxidation und wiederholte Arbeitsschritte beim
 
Strangpressen. Durch Anbringen einer Silberschicht lassen sich auch Bänder
 
und Profile mit einer löt- und schweißbaren Unterschicht herstellen (<xr id="fig:Micro structure of Ag SnO2 92 8 WTOS F"/><!--(Fig. 2.116)-->). Aufgrund ihrer geringen Neigung zur Materialwanderung
 
in Gleichstromkreisen und ihrer erhöhten Abbrandfestigkeit kommen diese
 
Werkstoffe z.B. in Kfz-Relais zum Einsatz (<xr id="tab:Application Examples of Silver–Metal Oxide Materials"/><!--(Table 2.31)-->).
 
  
Bei der Herstellung von Silber-Zinnoxid Werkstoffen spielt die
+
''Powder metallurgy'' plays a significant role in the manufacturing of Ag/SnO<sub>2</sub> contact materials. Besides SnO<sub>2</sub> a smaller amount (<1 wt%) of one or more other metal oxides such as WO<sub>3</sub>, MoO<sub>3</sub>, CuO and/or Bi<sub>2</sub>O<sub>3</sub> are added. These
Pulvermetallurgie eine wesentliche Rolle. Neben SnO2 wird meist noch ein
+
additives improve the wettability of the oxide particles and increase the viscosity of the Ag melt. They also provide additional benefits to the mechanical and arcing contact properties of materials in this group <xr id="tab:Physical Mechanical Properties as Manufacturing"/> (Table 2.26 als PDF herunterladen: [[File:Physical Mechanical properties.pdf|Physical and Mechanical Properties as well as Manufacturing Processes and
geringer Anteil (<1 Massen-%) eines oder mehrerer Metalloxide z.B. WO<sub>3</sub>,
+
Forms of Supply of Extruded Silver-Tin Oxide (SISTADOX) Contact Materials]] )''.
MoO<sub>3</sub>, CuO und/oder Bi<sub>2</sub>O<sub>3</sub> zugemischt, die im Schaltbetrieb an der
 
Grenzfläche zwischen Silberschmelze und Oxidpartikel wirksam sind. Diese
 
Additive fördern einerseits die Benetzung und erhöhen die Viskosität der
 
Silberschmelze, andererseits beeinflussen sie wesentlich die mechanischen
 
und Schalteigenschaften der Ag/SnO<sub>2</sub> -Werkstoffe (<xr id="tab:tab2.26"/>).
 
  
<figtable id="tab:tab2.26">
 
<caption>'''<!--Table 2.26:--> Physikalische und mechanische Eigenschaften sowie Herstellungsverfahren und Lieferformen von stranggepressten Silber-Zinn-Oxid-Kontaktmaterialien'''</caption>
 
  
{| class="twocolortable" style="text-align: left; font-size: 12px"
+
<figtable id="tab:Physical Mechanical Properties as Manufacturing">
|-
+
[[File:Physical Mechanical Properties as Manufacturing.jpg|right|thumb|Physical and Mechanical Properties as well as Manufacturing Processes and
!Material
+
Forms of Supply of Extruded Silver-Tin Oxide (SISTADOX) Contact Materials]]
!Silber Anteil<br />[gew.%]
 
!Zusätze
 
!Theoretische<br />Dichte<br />[g/cm<sup>3</sup>]
 
!Elektrische<br />Leitfähigkeit<br />[MS/m]
 
!Vickers<br />Härte<br />
 
!Zugfestigkeit<br />[MPa]
 
!Dehnung (weichgeglüht)<br />A[%]min.
 
!Herstellungsprozess
 
!Art der Bereitstellung
 
|-
 
|Ag/SnO<sub>2</sub> 98/2 SPW
 
|97 - 99
 
|WO<sub>3</sub>
 
|10,4
 
|59 ± 2
 
|57 ± 15 HV0,1
 
|215
 
|35
 
|Pulvermetallurgisch
 
|1
 
|-
 
|Ag/SnO<sub>2</sub> 92/8 SPW
 
|91 - 93
 
|WO<sub>3</sub>
 
|10,1
 
|51 ± 2
 
|62 ± 15 HV0,1
 
|255
 
|25
 
|Pulvermetallurgisch
 
|1
 
|-
 
|Ag/SnO<sub>2</sub> 90/10 SPW
 
|89 - 91
 
|WO<sub>3</sub>
 
|10
 
|47 ± 5
 
|
 
|250
 
|25
 
|Pulvermetallurgisch
 
|1
 
|-
 
|Ag/SnO<sub>2</sub> 88/12 SPW
 
|87 - 89
 
|WO<sub>3</sub>
 
|9.9
 
|46 ± 5
 
|67 ± 15 HV0,1
 
|270
 
|20
 
|Pulvermetallurgisch
 
|1
 
|-
 
|Ag/SnO<sub>2</sub> 92/8 SPW4
 
|91 - 93
 
|WO<sub>3</sub>
 
|10,1
 
|51 ± 2
 
|62 ± 15 HV0,1
 
|255
 
|25
 
|Pulvermetallurgisch
 
|1,2
 
|-
 
|Ag/SnO<sub>2</sub> 90/10 SPW4
 
|89 - 91
 
|WO<sub>3</sub>
 
|10
 
|
 
|68 ± 15 HV5
 
|
 
|
 
|Pulvermetallurgisch
 
|1,2
 
|-
 
|Ag/SnO<sub>2</sub> 88/12 SPW4<br />
 
|87 - 89
 
|WO<sub>3</sub>
 
|9,8
 
|46 ± 5
 
|80 ± 10 HV0,1
 
|
 
|
 
|Pulvermetallurgisch
 
|1,2
 
|-
 
|Ag/SnO<sub>2</sub> 88/12 SPW6
 
|87 - 89
 
|MoO<sub>3</sub>
 
|9.8
 
|42 ± 5
 
|70 ± 10 HV0,1
 
|
 
|
 
|Pulvermetallurgisch
 
|2
 
|-
 
|Ag/SnO<sub>2</sub> 97/3 SPW7
 
|96 - 98
 
|Bi<sub>2</sub>O<sub>3</sub> und WO<sub>3</sub>
 
|
 
|
 
|60 ± 15 HV5
 
|
 
|
 
|Pulvermetallurgisch
 
|2
 
|-
 
|Ag/SnO<sub>2</sub> 90/10 SPW7
 
|89 - 91
 
|Bi<sub>2</sub>O<sub>3</sub> und WO<sub>3</sub>
 
|9,9
 
|
 
|
 
|
 
|
 
|Pulvermetallurgisch
 
|2
 
|-
 
|Ag/SnO<sub>2</sub> 88/12 SPW7
 
|87 - 89
 
|Bi<sub>2</sub>O<sub>3</sub> und WO<sub>3</sub>
 
|9.8
 
|42 ± 5
 
|70 ± 10 HV0,1
 
|
 
|
 
|Pulvermetallurgisch
 
|2
 
|-
 
|Ag/SnO<sub>2</sub> 98/2 PMT1
 
|97 - 99
 
|Bi<sub>2</sub>O<sub>3</sub> und CuO
 
|10,4
 
|57 ± 2
 
|45 ± 15 HV5
 
|215
 
|35
 
|Pulvermetallurgisch
 
|1,2
 
|-
 
|Ag/SnO<sub>2</sub> 96/4 PMT1
 
|95 - 97
 
|Bi<sub>2</sub>O<sub>3</sub> und CuO
 
|
 
|
 
|
 
|
 
|
 
|Pulvermetallurgisch
 
|1,2
 
|-
 
|Ag/SnO<sub>2</sub> 94/6 PMT1
 
|93 - 95
 
|Bi<sub>2</sub>O<sub>3</sub> und CuO
 
|10,0
 
|53 ± 2
 
|58 ± 15 HV0,1
 
|230
 
|30
 
|Pulvermetallurgisch
 
|1,2
 
|-
 
|Ag/SnO<sub>2</sub> 92/8 PMT1
 
|91 - 93
 
|Bi<sub>2</sub>O<sub>3</sub> und CuO
 
|10
 
|50 ± 2
 
|62 ± 15 HV0,1
 
|240
 
|25
 
|Pulvermetallurgisch
 
|1,2
 
|-
 
|Ag/SnO<sub>2</sub> 90/10 PMT1
 
|89 - 91
 
|Bi<sub>2</sub>O<sub>3</sub> und CuO
 
|10
 
|48 ± 2
 
|65 ± 15 HV0,1
 
|240
 
|25
 
|Pulvermetallurgisch
 
|1,2
 
|-
 
|Ag/SnO<sub>2</sub> 88/12 PMT1
 
|87 - 89
 
|Bi<sub>2</sub>O<sub>3</sub> und CuO
 
|9,9
 
|46 ± 5
 
|75 ± 15 HV5
 
|260
 
|20
 
|Pulvermetallurgisch
 
|1,2
 
|-
 
|Ag/SnO<sub>2</sub> 90/10 PE
 
|89 - 91
 
|Bi<sub>2</sub>O<sub>3</sub> und CuO
 
|9,8
 
|48 ± 2
 
|55 - 100 HV0,1
 
|230 - 330
 
|28
 
|Pulvermetallurgisch
 
|1
 
|-
 
|Ag/SnO<sub>2</sub> 88/12 PE
 
|87 - 89
 
|Bi<sub>2</sub>O<sub>3</sub> und CuO
 
|9,7
 
|46 ± 5
 
|60 - 106 HV0,1
 
|235 - 330
 
|25
 
|Pulvermetallurgisch
 
|1
 
|-
 
|Ag/SnO<sub>2</sub> 88/12 PMT2
 
|87 - 89
 
|CuO
 
|9,9
 
|
 
|90 ± 10 HV0,1
 
|
 
|
 
|Pulvermetallurgisch
 
|1,2
 
|-
 
|Ag/SnO<sub>2</sub> 86/14 PMT3
 
|85 - 87
 
|Bi<sub>2</sub>O<sub>3</sub> und CuO
 
|9,8
 
|
 
|95 ± 10 HV0,1
 
|
 
|
 
|Pulvermetallurgisch
 
|2
 
|-
 
|Ag/SnO<sub>2</sub> 94/6 LC1
 
|93 - 95
 
|Bi<sub>2</sub>O<sub>3</sub> und In<sub>2</sub>O<sub>3</sub>
 
|9,8
 
|45 ± 5
 
|55 ± 10 HV0,1
 
|
 
|
 
|Pulvermetallurgisch
 
|2
 
|-
 
|Ag/SnO<sub>2</sub> 90/10 POX1
 
|89 - 91
 
|In<sub>2</sub>O<sub>3</sub>
 
|9,9
 
|50 ± 5
 
|85 ± 15 HV0,1
 
|310
 
|25
 
|Innere Oxidation
 
|1,2
 
|-
 
|Ag/SnO<sub>2</sub> 88/12 POX1
 
|87 - 89
 
|In<sub>2</sub>O<sub>3</sub>
 
|9,8
 
|48 ± 5
 
|90 ± 15 HV0,1
 
|325
 
|25
 
|Innere Oxidation
 
|1,2
 
|-
 
|Ag/SnO<sub>2</sub> 86/14 POX1
 
|85 - 87
 
|In<sub>2</sub>O<sub>3</sub>
 
|9,6
 
|45 ± 5
 
|95 ± 15 HV0,1
 
|330
 
|20
 
|Innere Oxidation
 
|1,2
 
|-
 
|}
 
 
</figtable>
 
</figtable>
  
1 = Drähte, Stäbe, Kontaktnieten  2 = Bänder, Profile, Kontaktstifte
+
In the manufacture the initial powder mixes different processes are applied which provide specific advantages of the resulting materials in respect to their contact properties <!--[[#figures|(Figs. 43 – 75)]]-->. Some of them are described here as follows:
 +
:'''a) Powder blending from single component powders''' <br> In this common process all components including additives that are part of the powder mix are blended as single powders. The blending is usually performed in the dry stage in blenders of different design.
 +
 
 +
:'''b) Powder blending on the basis of doped powders''' <br> For incorporation of additive oxides in the SnO<sub>2</sub> powder the reactive spray process (RSV) has shown advantages. This process starts with a waterbased solution of the tin and other metal compounds. This solution is nebulized under high pressure and temperature in a reactor chamber. Through the rapid evaporation of the water each small droplet is converted into a salt crystal and from there by oxidation into a tin oxide particle in which the additive metals are distributed evenly as oxides. The so created doped AgSnO<sub>2</sub> powder is then mechanically mixed with silver powder.
 +
 
 +
:'''c) Powder blending based on coated oxide powders''' <br> In this process tin oxide powder is blended with lower meting additive oxides such as for example Ag<sub>2</sub> MoO<sub>4</sub> and then heat treated. The SnO<sub>2</sub> particles are coated in this step with a thin layer of the additive oxide.
 +
 
 +
:'''d) Powder blending based on internally oxidized alloy powders''' <br> A combination of powder metallurgy and internal oxidation this process starts with atomized Ag alloy powder which is subsequently oxidized in pure oxygen. During this process the Sn and other metal components are transformed to metal oxide and precipitated inside the silver matrix of each powder particle.
 +
 
 +
:'''e) Powder blending based on chemically precipitated compound powders''' <br> A silver salt solution is added to a suspension of for example SnO<sub>2</sub> together with a precipitation agent. In a chemical reaction silver and silver oxide respectively are precipitated around the additive metal oxide particles who act as crystallization sites. Further chemical treatment then reduces the silver oxide with the resulting precipitated powder being a mix of Ag and SnO<sub>2</sub>.
 +
 
 +
Further processing of these differently produced powders follows the conventional processes of pressing, sintering and hot extrusion to wires and strips. From these contact parts such as contact rivets and tips are manufactured. To obtain a brazable backing the same processes as used for Ag/CdO are applied. As for Ag/CdO, larger contact tips can also be manufactured more economically using the press-sinter-repress (PSR) process <xr id="tab:Physical Properties of Powder Metallurgical Silver-Metal Oxide Materials with Fine Silver Backing Produced by the Press-Sinter-Repress Process"/><!--(Table 2.27)-->.
 +
<div id="figures">
 +
<xr id="fig:Strain hardening of AgSNO2 92 8 PE"/><!--Fig. 2.87:--> Strain hardening of Ag/SnO<sub>2</sub> 92/8 PE by cold working
  
Für die Herstellung der Pulvermischung werden verschiedene Verfahren angewandt,
+
<xr id="fig:Softening of AgSnO2 92 8 PE"/><!--Fig. 2.88:--> Softening of Ag/SnO<sub>2</sub> 92/8 PE after annealing for 1 hr after 40% cold working
aus denen sich spezifische Vorteile im Schaltverhalten ergeben. Einige
 
dieser Verfahren werden im Folgenden kurz beschrieben:
 
:'''a) Pulvermischung aus Einzelpulvern''' <br> Bei diesem klassischen Verfahren der Pulvermetallurgie werden alle, in den Werkstoff eingebrachten Komponenten, einschließlich der Zusätze, als Einzelpulver miteinander vermischt. Das Mischen der Pulver erfolgt üblicherweise trocken in Mischern unterschiedlicher Bauart.
 
  
:'''b) Pulvermischung auf Basis dotierter Oxide''' <br> Für den Einbau von Zusatzoxiden in das Zinnoxid hat sich das Reaktions-Sprüh-Verfahren (RSV) als vorteilhaft erwiesen. Bei diesem Verfahren wird von einer wässrigen Lösung ausgegangen, in der Zinn sowie die als Zusätze verwendeten Metalle in Form chemischer Verbindungen vorliegen. Diese wässrige Lösung wird unter hohem Druck in einer heißen Reaktionskammer verdüst. Durch die schlagartige Verdampfung des Wassers entsteht aus jedem einzelnen Tröpfchen zunächst ein Salzkristall und hieraus durch Oxidation ein Zinnoxid-Partikel, in dem die Zusatzmetalle in oxidierter Form gleichmäßig verteilt vorliegen. Das so erhaltene „dotierte“ Zinnoxidpulver wird anschließend mit Silberpulver vermischt.
+
<xr id="fig:Strain hardening of Ag SnO2 88 12 PE"/><!--Fig. 2.89:--> Strain hardening of Ag/SnO<sub>2</sub> 88/12 PE by cold working
  
:'''c) Pulvermischung auf Basis beschichteter Oxidpulver''' <br> Nach diesem Verfahren wird Zinnoxidpulver mit niedrigschmelzenden Zusätzen, z.B. Ag<sub>2</sub> MoO<sub>4</sub> , vermischt und anschließend einer Glühbehandlung ausgesetzt. Dabei überzieht sich die Zinnoxid-Oberfläche mit einer dünnen Schicht.
+
<xr id="fig:Softening of Ag SnO2 88 12 PE after annealing"/><!--Fig. 2.90:--> Softening of Ag/SnO<sub>2</sub> 88/12 PE after annealing for 1 hr after 40% cold working
  
:'''d) Pulvermischung auf Basis inneroxidierter Legierungspulver''' <br> Dieses Verfahren schließt sowohl Arbeitsschritte der Pulvermetallurgie als auch der inneren Oxidation ein. Ausgegangen wird dabei von einer Silber-Metall-Legierung, die geschmolzen und anschließend zu feinkörnigem Pulver verdüst wird. Dieses Legierungspulver wird in sauerstoffhaltiger Atmosphäre geglüht, wobei sich das im Silber gelöste Zinn sowie weitere Zusatzmetalle als Oxidpartikel ausscheiden.
+
<xr id="fig:Strain hardening of oxidized AgSnO2 88 12 PW4"/><!--Fig. 2.91:--> Strain hardening of oxidized Ag/SnO<sub>2</sub> 88/12 PW4 by cold working
  
:'''e) Pulvermischung auf Basis nasschemisch gefällter Verbundpulvern''' <br> In eine Suspension von Metalloxiden, z.B. SnO<sub>2</sub> werden eine Silbersalzlösungzusammen mit einem Fällungsmittel eingeleitet. In einer chemischen Fällreaktion scheidet sich Silber bzw. Silberoxid ab. Die suspensierten Metalloxidpartikel wirken dabei als Kristallisationskeime.
+
<xr id="fig:Softening of Ag SnO2 88 12 PW4 after annealing"/><!--Fig. 2.92:--> Softening of Ag/SnO<sub>2</sub> 88/12 PW4 after annealing for 1 hr after 30% cold working
  
Die Weiterverarbeitung der nach den verschiedenen Verfahren hergestellten
+
<xr id="fig:Strain hardening of Ag SnO2 98 2 PX"/><!--Fig. 2.93:--> Strain hardening of Ag/SnO<sub>2</sub> 98/2 PX by cold working
Pulvermischungen erfolgt auf übliche Art durch Sintern und Strangpressen.
 
Aus den so erhaltenen Halbzeugen, wie Bändern, Profilen und Drähten
 
werden dann Kontaktauflagen oder -niete gefertigt. Zur Erzeugung einer lötund
 
schweißbaren Kontaktunterseite aus Feinsilber werden die gleichen
 
Verfahren angewandt, wie bei Ag/CdO beschrieben (<xr id="tab:Physical Properties of Powder Metallurgical Silver-Metal Oxide Materials with Fine Silver Backing Produced by the Press-Sinter-Repress Process"/><!--(Table 2.27)-->).
 
  
Große, speziell geformte oder runde Ag/SnO2-Kontaktauflagen können aus
+
<xr id="fig:Softening of Ag SnO2 98 2 PX after annealing"/><!--Fig. 2.94:--> Softening of Ag/SnO<sub>2</sub> 98/2 PX after annealing for 1 hr after 80% cold working
wirtschaftlichen Gründen, wie bei Ag/CdO, nach dem Verfahren der Einzelpresstechnik
+
 
hergestellt werden.
+
<xr id="fig:Strain hardening of Ag SnO2 92 8 PX"/><!--Fig 2.95:--> Strain hardening of Ag/SnO<sub>2</sub> 92/8 PX by cold working
 +
 
 +
<xr id="fig:Softening of Ag SnO2 92 8 PX after annealing"/><!--Fig. 2.96:--> Softening of Ag/SnO<sub>2</sub> 92/8 PX after annealing for 1 hr after 40% cold working
 +
 
 +
<xr id="fig:Strain hardening of internally oxidized Ag SnO2 88 12 TOS F"/><!--Fig. 2.97:--> Strain hardening of internally oxidized Ag/SnO<sub>2</sub> 88/12 TOS F by cold working
 +
 
 +
<xr id="fig:Softening of Ag SnO2 88 12 TOS F after annealing"/><!--Fig. 2.98:--> Softening of Ag/SnO<sub>2</sub> 88/12 TOS F after annealing for 1 hr after 30% cold working
 +
 
 +
<xr id="fig:Strain hardening of internally oxidized Ag SnO2 88 12P"/><!--Fig. 2.99:--> Strain hardening of internally oxidized Ag/SnO<sub>2</sub> 88/12P by cold working
 +
 
 +
<xr id="fig:Softening of Ag SnO2 88 12P after annealing"/><!--Fig. 2.100:--> Softening of Ag/SnO<sub>2</sub> 88/12P after annealing for 1 hr after 40% cold working
 +
 
 +
<xr id="fig:Strain hardening of Ag SnO2 88 12 WPC"/><!--Fig. 2.101:--> Strain hardening of Ag/SnO<sub>2</sub> 88/12 WPC by cold working
 +
 
 +
<xr id="fig:Softening of Ag SnO2 88 12 WPC after annealing"/><!--Fig. 2.102:--> Softening of Ag/SnO<sub>2</sub> 88/12 WPC after annealing for 1 hr after different degrees of cold working
 +
 
 +
<xr id="fig:Strain hardening of Ag SnO2 86 14 WPC"/><!--Fig. 2.103:--> Strain hardening of Ag/SnO<sub>2</sub> 86/14 WPC by cold working
 +
 
 +
<xr id="fig:Softening of Ag SnO2 86 14 WPC"/><!--Fig. 2.104:--> Softening of Ag/SnO<sub>2</sub> 86/14 WPC after annealing for 1 hr after different degrees of cold working
 +
 
 +
<xr id="fig:Strain hardening of Ag SnO2 88 12 WPD"/><!--Fig. 2.105:--> Strain hardening of Ag/SnO<sub>2</sub> 88/12 WPD by cold working
 +
 
 +
<xr id="fig:Softening of Ag SnO2 88 12 WPD after annealing"/><!--Fig. 2.106:--> Softening of Ag/SnO<sub>2</sub> 88/12 WPD after annealing for 1 hr after different degrees of cold working
 +
 
 +
<xr id="fig:Softening of Ag SnO2 88 12 WPX"/><!--Fig. 2.108:--> Softening of Ag/SnO<sub>2</sub> 88/12 WPX after annealing for 1 hr after different degrees of cold working
 +
 
 +
<xr id="fig:Strain hardening of Ag SnO2 88 12 WPX"/><!--Fig. 2.107:--> Strain hardening of Ag/SnO<sub>2</sub> 88/12 WPX by cold working
 +
 
 +
<xr id="fig:Micro structure of Ag SnO2 92 8 PE"/><!--Fig. 2.109:--> Micro structure of Ag/SnO<sub>2</sub> 92/8 PE: a) perpendicular to extrusion direction
 +
b) parallel to extrusion direction
 +
 
 +
<xr id="fig:Micro structure of Ag SnO2 88 12 PE"/><!--Fig. 2.110:--> Micro structure of Ag/SnO<sub>2</sub> 88/12 PE: a) perpendicular to extrusion direction
 +
b) parallel to extrusion direction
 +
 
 +
<xr id="fig:Micro structure of Ag SnO2 88 12 PW"/><!--Fig. 2.111:--> Micro structure of Ag/SnO<sub>2</sub> 88/12 PW: a) perpendicular to extrusion direction
 +
b) parallel to extrusion direction
 +
 
 +
<xr id="fig:Micro structure of Ag SnO2 98 2 PX"/><!--Fig. 2.112:--> Micro structure of Ag/SnO<sub>2</sub> 98/2 PX: a) perpendicular to extrusion direction
 +
b) parallel to extrusion direction
 +
 
 +
<xr id="fig:Micro structure of Ag SnO2 92 8PX"/><!--Fig. 2.113:--> Micro structure of Ag/SnO<sub>2</sub> 92/8 PX: a) perpendicular to extrusion direction
 +
b) parallel to extrusion direction
 +
 
 +
<xr id="fig:Micro structure of Ag SnO2 88 12 TOS F"/><!--Fig. 2.114:--> Micro structure of Ag/SnO<sub>2</sub> 88/12 TOS F: a) perpendicular to extrusion direction
 +
b) parallel to extrusion direction
 +
 
 +
<xr id="fig:Micro structure of Ag SnO2 86 14 WPC"/><!--Fig. 2.115:--> Micro structure of Ag/SnO<sub>2</sub> 86/14 WPC: a) perpendicular to extrusion direction
 +
b) parallel to extrusion direction, 1) AgSnO<sub>2</sub> contact layer, 2) Ag backing layer
 +
 
 +
<xr id="fig:Micro structure of Ag SnO2 92 8 WTOS F"/><!--Fig. 2.116:--> Micro structure of Ag/SnO<sub>2</sub> 92/8 WTOS F: a) perpendicular to extrusion direction
 +
b) parallel to extrusion direction,1) AgSnO<sub>2</sub> contact layer, 2) Ag backing layer
 +
 
 +
<xr id="fig:Micro structure of Ag SnO2 88 12 WPD"/><!--Fig. 2.117:--> Micro structure of Ag/SnO<sub>2</sub> 88/12 WPD: parallel to extrusion direction
 +
1) AgSnO<sub>2</sub> contact layer, 2) Ag backing layer
 +
 
 +
<xr id="fig:Micro structure of Ag SnO2 88 12 WPX"/><!--Fig. 2.118:--> Micro structure of Ag/SnO<sub>2</sub> 88/12 WPX:parallel to extrusion direction
 +
1) AgSnO<sub>2</sub> contact layer, 2) Ag backing layer
 +
 
 +
<xr id="fig:Micro structure of Ag SnO2 86 14 WPX"/><!--Fig. 2.119:--> Micro structure of Ag/SnO<sub>2</sub> 86/14 WPX: a) perpendicular to extrusion direction
 +
b) parallel to extrusion direction, 1) AgSnO<sub>2</sub> contact layer, 2) Ag backing layer
 +
</div>
  
 
<div class="multiple-images">
 
<div class="multiple-images">
 
<figure id="fig:Strain hardening of AgSNO2 92 8 PE">
 
<figure id="fig:Strain hardening of AgSNO2 92 8 PE">
[[File:Strain hardening of AgSNO2 92 8 PE.jpg|left|thumb|<caption>Verfestigungsverhalten von Ag/SnO<sub>2</sub> 92/8 PE durch Kaltumformung</caption>]]
+
[[File:Strain hardening of AgSNO2 92 8 PE.jpg|left|thumb|<caption>Strain hardening of Ag/SnO<sub>2</sub> 92/8 PE by cold working</caption>]]
 
</figure>
 
</figure>
  
 
<figure id="fig:Softening of AgSnO2 92 8 PE">  
 
<figure id="fig:Softening of AgSnO2 92 8 PE">  
[[File:Softening of AgSnO2 92 8 PE.jpg|left|thumb|<caption>Erweichungsverhalten von Ag/SnO<sub>2</sub> 92/8 PE nach 1h Glühdauer und einer Kaltumformung von 40%</caption>]]
+
[[File:Softening of AgSnO2 92 8 PE.jpg|left|thumb|<caption>Softening of Ag/SnO<sub>2</sub> 92/8 PE after annealing for 1 hr after 40% cold working</caption>]]
 
</figure>
 
</figure>
  
 
<figure id="fig:Strain hardening of Ag SnO2 88 12 PE">  
 
<figure id="fig:Strain hardening of Ag SnO2 88 12 PE">  
[[File:Strain hardening of Ag SnO2 88 12 PE.jpg|left|thumb|<caption>Verfestigungsverhalten von Ag/SnO<sub>2</sub> 88/12 PE durch Kaltumformung</caption>]]
+
[[File:Strain hardening of Ag SnO2 88 12 PE.jpg|left|thumb|<caption>Strain hardening of Ag/SnO<sub>2</sub> 88/12 PE by cold working</caption>]]
 
</figure>
 
</figure>
  
 
<figure id="fig:Softening of Ag SnO2 88 12 PE after annealing">  
 
<figure id="fig:Softening of Ag SnO2 88 12 PE after annealing">  
[[File:Softening of Ag SnO2 88 12 PE after annealing.jpg|left|thumb|<caption>Erweichungsverhalten von Ag/SnO<sub>2</sub> 88/12 PE nach 1h Glühdauer und einer Kaltumformung von 40%</caption>]]
+
[[File:Softening of Ag SnO2 88 12 PE after annealing.jpg|left|thumb|<caption>Softening of Ag/SnO<sub>2</sub> 88/12 PE after annealing for 1 hr after 40% cold working</caption>]]
 
</figure>
 
</figure>
  
 
<figure id="fig:Strain hardening of oxidized AgSnO2 88 12 PW4">  
 
<figure id="fig:Strain hardening of oxidized AgSnO2 88 12 PW4">  
[[File:Strain hardening of oxidized AgSnO2 88 12 PW4.jpg|left|thumb|<caption>Verfestigungsverhalten von Ag/SnO<sub>2</sub> 88/12 PW4 durch Kaltumformung</caption>]]
+
[[File:Strain hardening of oxidized AgSnO2 88 12 PW4.jpg|left|thumb|<caption>Strain hardening of oxidized Ag/SnO<sub>2</sub> 88/12 PW4 by cold working</caption>]]
 
</figure>
 
</figure>
  
 
<figure id="fig:Softening of Ag SnO2 88 12 PW4 after annealing">  
 
<figure id="fig:Softening of Ag SnO2 88 12 PW4 after annealing">  
[[File:Softening of Ag SnO2 88 12 PW4 after annealing.jpg|left|thumb|<caption>Erweichungsverhalten von Ag/SnO<sub>2</sub> 88/12 PW4 nach 1h Glühdauer und einer Kaltumformung von 30%</caption>]]
+
[[File:Softening of Ag SnO2 88 12 PW4 after annealing.jpg|left|thumb|<caption>Softening of Ag/SnO<sub>2</sub> 88/12 PW4 after annealing for 1 hr after 30% cold working</caption>]]
 +
</figure>
 +
 
 +
<figure id="fig:Strain hardening of Ag SnO2 98 2 PX">
 +
[[File:Strain hardening of Ag SnO2 98 2 PX.jpg|left|thumb|<caption>Strain hardening of Ag/SnO<sub>2</sub> 98/2 PX by cold working</caption>]]
 +
</figure>
 +
 
 +
<figure id="fig:Softening of Ag SnO2 98 2 PX after annealing">
 +
[[File:Softening of Ag SnO2 98 2 PX after annealing.jpg|left|thumb|<caption>Softening of Ag/SnO<sub>2</sub> 98/2 PX after annealing for 1 hr after 80% cold working</caption>]]
 +
</figure>
 +
 
 +
<figure id="fig:Strain hardening of Ag SnO2 92 8 PX">
 +
[[File:Strain hardening of Ag SnO2 92 8 PX.jpg|left|thumb|<caption>Strain hardening of Ag/SnO<sub>2</sub> 92/8 PX by cold working</caption>]]
 +
</figure>
 +
 
 +
<figure id="fig:Softening of Ag SnO2 92 8 PX after annealing">
 +
[[File:Softening of Ag SnO2 92 8 PX after annealing.jpg|left|thumb|<caption>Softening of Ag/SnO<sub>2</sub> 92/8 PX after annealing for 1 hr after 40% cold working</caption>]]
 
</figure>
 
</figure>
  
 
<figure id="fig:Strain hardening of internally oxidized Ag SnO2 88 12 TOS F">  
 
<figure id="fig:Strain hardening of internally oxidized Ag SnO2 88 12 TOS F">  
[[File:Strain hardening of internally oxidized Ag SnO2 88 12 TOS F.jpg|left|thumb|<caption>Verfestigungsverhalten von Ag/SnO<sub>2</sub> 88/12 TOS F durch Kaltumformung</caption>]]
+
[[File:Strain hardening of internally oxidized Ag SnO2 88 12 TOS F.jpg|left|thumb|<caption>Strain hardening of internally oxidized Ag/SnO<sub>2</sub> 88/12 TOS F by cold working</caption>]]
 
</figure>
 
</figure>
  
 
<figure id="fig:Softening of Ag SnO2 88 12 TOS F after annealing">  
 
<figure id="fig:Softening of Ag SnO2 88 12 TOS F after annealing">  
[[File:Softening of Ag SnO2 88 12 TOS F after annealing.jpg|left|thumb|<caption>Erweichungsverhalten von Ag/SnO<sub>2</sub> 88/12 TOS F nach 1h Glühdauer und einer Kaltumformung von 30%</caption>]]
+
[[File:Softening of Ag SnO2 88 12 TOS F after annealing.jpg|left|thumb|<caption>Softening of Ag/SnO<sub>2</sub> 88/12 TOS F after annealing for 1 hr after 30% cold working</caption>]]
 
</figure>
 
</figure>
  
 
<figure id="fig:Strain hardening of internally oxidized Ag SnO2 88 12P">  
 
<figure id="fig:Strain hardening of internally oxidized Ag SnO2 88 12P">  
[[File:Strain hardening of internally oxidized Ag SnO2 88 12P.jpg|left|thumb|<caption>Verfestigungsverhalten von Ag/SnO<sub>2</sub> 88/12P durch Kaltumformung</caption>]]
+
[[File:Strain hardening of internally oxidized Ag SnO2 88 12P.jpg|left|thumb|<caption>Strain hardening of internally oxidized Ag/SnO<sub>2</sub> 88/12P by cold working</caption>]]
 
</figure>
 
</figure>
  
 
<figure id="fig:Softening of Ag SnO2 88 12P after annealing">  
 
<figure id="fig:Softening of Ag SnO2 88 12P after annealing">  
[[File:Softening of Ag SnO2 88 12P after annealing.jpg|left|thumb|<caption>Erweichungsverhalten von Ag/SnO<sub>2</sub> 88/12P nach 1h Glühdauer und einer Kaltumformung von 40%</caption>]]
+
[[File:Softening of Ag SnO2 88 12P after annealing.jpg|left|thumb|<caption>Softening of Ag/SnO<sub>2</sub>88/12P after annealing for 1 hr after 40% cold working</caption>]]
 +
</figure>
 +
 
 +
<figure id="fig:Strain hardening of Ag SnO2 88 12 WPC">
 +
[[File:Strain hardening of Ag SnO2 88 12 WPC.jpg|left|thumb|<caption>Strain hardening of Ag/SnO<sub>2</sub> 88/12 WPC by cold working</caption>]]
 +
</figure>
 +
 
 +
<figure id="fig:Softening of Ag SnO2 88 12 WPC after annealing">
 +
[[File:Softening of Ag SnO2 88 12 WPC after annealing.jpg|left|thumb|<caption>Softening of Ag/SnO<sub>2</sub> 88/12 WPC after annealing for 1 hr after different degrees of cold working</caption>]]
 +
</figure>
 +
 
 +
<figure id="fig:Strain hardening of Ag SnO2 86 14 WPC">
 +
[[File:Strain hardening of Ag SnO2 86 14 WPC.jpg|left|thumb|<caption>Strain hardening of Ag/SnO<sub>2</sub> 86/14 WPC by cold working</caption>]]
 +
</figure>
 +
 
 +
<figure id="fig:Softening of Ag SnO2 86 14 WPC">
 +
[[File:Softening of Ag SnO2 86 14 WPC.jpg|left|thumb|<caption>Softening of Ag/SnO<sub>2</sub> 86/14 WPC after annealing for 1 hr after different degrees of cold working</caption>]]
 
</figure>
 
</figure>
  
 
<figure id="fig:Strain hardening of Ag SnO2 88 12 WPD">  
 
<figure id="fig:Strain hardening of Ag SnO2 88 12 WPD">  
[[File:Strain hardening of Ag SnO2 88 12 WPD.jpg|left|thumb|<caption>Verfestigungsverhalten von Ag/SnO<sub>2</sub> 88/12 WPD durch Kaltumformung</caption>]]
+
[[File:Strain hardening of Ag SnO2 88 12 WPD.jpg|left|thumb|<caption>Strain hardening of Ag/SnO<sub>2</sub> 88/12 WPD by cold working</caption>]]
 
</figure>
 
</figure>
  
 
<figure id="fig:Softening of Ag SnO2 88 12 WPD after annealing">  
 
<figure id="fig:Softening of Ag SnO2 88 12 WPD after annealing">  
[[File:Softening of Ag SnO2 88 12 WPD after annealing.jpg|left|thumb|<caption>Erweichungsverhalten von Ag/SnO<sub>2</sub> 88/12 WPD nach 1h Glühdauer und unterschiedlicher Kaltumformung</caption>]]
+
[[File:Softening of Ag SnO2 88 12 WPD after annealing.jpg|left|thumb|<caption>Softening of Ag/SnO<sub>2</sub> 88/12 WPD after annealing for 1 hr after different degrees of cold working</caption>]]
 +
</figure>
 +
 
 +
<figure id="fig:Softening of Ag SnO2 88 12 WPX">
 +
[[File:Softening of Ag SnO2 88 12 WPX.jpg|left|thumb|<caption>Softening of Ag/SnO<sub>2</sub> 88/12 WPX after annealing for 1 hr after different degrees of cold working</caption>]]
 +
</figure>
 +
 
 +
<figure id="fig:Strain hardening of Ag SnO2 88 12 WPX">
 +
[[File:Strain hardening of Ag SnO2 88 12 WPX.jpg|left|thumb|<caption>Strain hardening of Ag/SnO<sub>2</sub> 88/12 WPX by cold working</caption>]]
 
</figure>
 
</figure>
  
 
<figure id="fig:Micro structure of Ag SnO2 92 8 PE">  
 
<figure id="fig:Micro structure of Ag SnO2 92 8 PE">  
[[File:Micro structure of Ag SnO2 92 8 PE.jpg|left|thumb|<caption>Gefüge von Ag/SnO<sub>2</sub> 92/8 PE a) senkrecht zur Strangpressrichtung
+
[[File:Micro structure of Ag SnO2 92 8 PE.jpg|left|thumb|<caption>Micro structure of Ag/SnO<sub>2</sub> 92/8 PE: a) perpendicular to extrusion direction b) parallel to extrusion direction</caption>]]
b) parallel zur S trangpressrichtung</caption>]]
 
 
</figure>
 
</figure>
  
 
<figure id="fig:Micro structure of Ag SnO2 88 12 PE">  
 
<figure id="fig:Micro structure of Ag SnO2 88 12 PE">  
[[File:Micro structure of Ag SnO2 88 12 PE.jpg|left|thumb|<caption>Gefüge von Ag/SnO<sub>2</sub> 88/12 PE a) senkrecht zur Strangpressrichtung
+
[[File:Micro structure of Ag SnO2 88 12 PE.jpg|left|thumb|<caption>Micro structure of Ag/SnO<sub>2</sub> 88/12 PE: a) perpendicular to extrusion direction b) parallel to extrusion direction</caption>]]
b) parallel zur Strangpressrichtung</caption>]]
 
 
</figure>
 
</figure>
  
 
<figure id="fig:Micro structure of Ag SnO2 88 12 PW">  
 
<figure id="fig:Micro structure of Ag SnO2 88 12 PW">  
[[File:Micro structure of Ag SnO2 88 12 PW.jpg|left|thumb|<caption>Gefüge von Ag/SnO<sub>2</sub> 88/12 SPW: a) a) senkrecht zur Strangpressrichtung
+
[[File:Micro structure of Ag SnO2 88 12 PW.jpg|left|thumb|<caption>Micro structure of Ag/SnO<sub>2</sub> 88/12 PW: a) perpendicular to extrusion direction b) parallel to extrusion direction</caption>]]
b) parallel zur Strangpressrichtung</caption>]]
+
</figure>
 +
 
 +
<figure id="fig:Micro structure of Ag SnO2 98 2 PX">
 +
[[File:Micro structure of Ag SnO2 98 2 PX.jpg|left|thumb|<caption>Micro structure of Ag/SnO<sub>2</sub> 98/2 PX: a) perpendicular to extrusion direction b) parallel to extrusion direction</caption>]]
 +
</figure>
 +
 
 +
<figure id="fig:Micro structure of Ag SnO2 92 8PX">
 +
[[File:Micro structure of Ag SnO2 92 8PX.jpg|left|thumb|<caption>Micro structure of Ag/SnO<sub>2</sub> 92/8 PX: a) perpendicular to extrusion direction b) parallel to extrusion direction</caption>]]
 
</figure>
 
</figure>
  
 
<figure id="fig:Micro structure of Ag SnO2 88 12 TOS F">  
 
<figure id="fig:Micro structure of Ag SnO2 88 12 TOS F">  
[[File:Micro structure of Ag SnO2 88 12 TOS F.jpg|left|thumb|<caption>Gefüge von Ag/SnO<sub>2</sub> 88/12 TOS F: a) senkrecht zur Strangpressrichtung
+
[[File:Micro structure of Ag SnO2 88 12 TOS F.jpg|left|thumb|<caption>Micro structure of Ag/SnO<sub>2</sub> 88/12 TOS F: a) perpendicular to extrusion direction b) parallel to extrusion direction</caption>]]
b) parallel zur Strangpressrichtung</caption>]]
+
</figure>
 +
 
 +
<figure id="fig:Micro structure of Ag SnO2 86 14 WPC">
 +
[[File:Micro structure of Ag SnO2 86 14 WPC.jpg|left|thumb|<caption>Micro structure of Ag/SnO<sub>2</sub> 86/14 WPC: a) perpendicular to extrusion direction b) parallel to extrusion direction, 1) AgSnO2 contact layer, 2) Ag backing layer</caption>]]
 
</figure>
 
</figure>
  
 
<figure id="fig:Micro structure of Ag SnO2 92 8 WTOS F">  
 
<figure id="fig:Micro structure of Ag SnO2 92 8 WTOS F">  
[[File:Micro structure of Ag SnO2 92 8 WTOS F.jpg|left|thumb|<caption>Gefüge von Ag/SnO<sub>2</sub> 92/8 WTOS F: a) senkrecht zur Strangpressrichtung
+
[[File:Micro structure of Ag SnO2 92 8 WTOS F.jpg|left|thumb|<caption>Micro structure of Ag/SnO<sub>2</sub> 92/8 WTOS F: a) perpendicular to extrusion direction b) parallel to extrusion direction,1) AgSnO2 contact layer, 2) Ag backing layer</caption>]]
b) parallel zur Strangpressrichtung,1) AgSnO<sub>2</sub>-Schicht, 2) Ag-Unterschicht</caption>]]
 
 
</figure>
 
</figure>
  
 
<figure id="fig:Micro structure of Ag SnO2 88 12 WPD">  
 
<figure id="fig:Micro structure of Ag SnO2 88 12 WPD">  
[[File:Micro structure of Ag SnO2 88 12 WPD.jpg|left|thumb|<caption>Gefüge von Ag/SnO<sub>2</sub> 88/12 WPD: parallel zur Strangpressrichtung,
+
[[File:Micro structure of Ag SnO2 88 12 WPD.jpg|left|thumb|<caption>Micro structure of Ag/SnO<sub>2</sub> 88/12 WPD: parallel to extrusion direction 1) AgSnO2 contact layer, 2) Ag backing layer</caption>]]
1) AgSnO<sub>2</sub>-Schicht, 2) Ag-Unterschicht</caption>]]
+
</figure>
 +
 
 +
<figure id="fig:Micro structure of Ag SnO2 88 12 WPX">
 +
[[File:Micro structure of Ag SnO2 88 12 WPX.jpg|left|thumb|<caption>Micro structure of Ag/SnO<sub>2</sub> 88/12 WPX:parallel to extrusion direction 1) AgSnO2 contact layer, 2) Ag backing layer</caption>]]
 
</figure>
 
</figure>
  
 +
<figure id="fig:Micro structure of Ag SnO2 86 14 WPX">
 +
[[File:Micro structure of Ag SnO2 86 14 WPX.jpg|left|thumb|<caption>Micro structure of Ag/SnO<sub>2</sub> 86/14 WPX: a) perpendicular to extrusion direction b) parallel to extrusion direction, 1) AgSnO2 contact layer, 2) Ag backing layer</caption>]]
 +
</figure>
 
</div>
 
</div>
 
<div class="clear"></div>
 
<div class="clear"></div>
Line 1,469: Line 1,144:
  
 
<figtable id="tab:Physical Properties of Powder Metallurgical Silver-Metal Oxide Materials with Fine Silver Backing Produced by the Press-Sinter-Repress Process">
 
<figtable id="tab:Physical Properties of Powder Metallurgical Silver-Metal Oxide Materials with Fine Silver Backing Produced by the Press-Sinter-Repress Process">
<caption>'''<!--Table 2.27:-->Physikalische Eigenschaften von pulvermetallurgisch in Einzelpresstechnik hergestellten Silber-Metalloxid-Werkstoffen mit Silber-Rücken'''</caption>
+
<caption>'''<!--Table 2.27:-->Physical Properties of Powder Metallurgical Silver-Metal Oxide Materials with Fine Silver Backing Produced by the Press-Sinter-Repress Process'''</caption>
 
<table class="twocolortable">
 
<table class="twocolortable">
<tr><th rowspan="2"><p class="s11">Werkstoff</p><p class="s11"></p></th><th rowspan="2"><p class="s11">Metalloxid-Zusätze</p></th><th rowspan="2"><p class="s11">Dichte</p><p class="s11">[ g/cm<sup>3</sup>]</p></th><th rowspan="2"><p class="s11">Spez. elektr.</p><p class="s11">Widerstand</p><p class="s11">[µ<span class="s14">S ·</span>cm]</p></th><th colspan="2"><p class="s11">Elektrische</p><p class="s11">Leitfähigkeit (weich)</p></th><th rowspan="2"><p class="s11">Vickershärte</p><p class="s11">HV 10.</p></th></tr>
+
<tr><th rowspan="2"><p class="s11">Material/</p><p class="s11">DODUCO- Designation</p></th><th rowspan="2"><p class="s11">Additives</p></th><th rowspan="2"><p class="s11">Density</p><p class="s11">[ g/cm<sup>3</sup>]</p></th><th rowspan="2"><p class="s11">Electrical</p><p class="s11">Resistivity</p><p class="s11">[µ<span class="s14">S ·</span>cm]</p></th><th colspan="2"><p class="s11">Electrical</p><p class="s11">Conductivity</p></th><th rowspan="2"><p class="s11">Vickers</p><p class="s11">Hardness</p><p class="s11">HV 10.</p></th></tr>
 
<tr><th><p class="s11">[%IACS]</p></th><th><p>[MS/m]</p></th></tr>
 
<tr><th><p class="s11">[%IACS]</p></th><th><p>[MS/m]</p></th></tr>
<tr><td><p class="s11">AgCdO 90/10</p><p class="s11"></p></td><td/><td><p class="s11">10.1</p></td><td><p class="s11">2.08</p></td><td><p class="s12">83</p></td><td><p class="s12">48</p></td><td><p class="s11">60</p></td></tr><tr><td><p class="s11">AgCdO 85/15 </p></td><td/><td><p class="s11">9.9</p></td><td><p class="s11">2.27</p></td><td><p class="s12">76</p></td><td><p class="s12">44</p></td><td><p class="s11">65</p></td></tr><tr><td><p class="s11">AgSnO<sub>2</sub> 90/10</p></td><td><p class="s11">CuO und</p><p class="s11">Bi<sub>2</sub> O<sub>3</sub></p></td><td><p class="s11">9.8</p></td><td><p class="s11">2.22</p></td><td><p class="s12">78</p></td><td><p class="s12">45</p></td><td><p class="s11">55</p></td></tr><tr><td><p class="s11">AgSnO<sub>2</sub> 88/12</p></td><td><p class="s11">CuO und</p><p class="s11">Bi<sub>2</sub>O<sub>3</sub></p></td><td><p class="s11">9.6</p></td><td><p class="s11">2.63</p></td><td><p class="s12">66</p></td><td><p class="s12">38</p></td><td><p class="s11">60</p></td></tr></table>
+
<tr><td><p class="s11">AgCdO 90/10EP</p><p class="s11">DODURIT CdO 10EP</p></td><td/><td><p class="s11">10.1</p></td><td><p class="s11">2.08</p></td><td><p class="s12">83</p></td><td><p class="s12">48</p></td><td><p class="s11">60</p></td></tr><tr><td><p class="s11">AgCdO 85/15 EP DODURIT CdO 15EP</p></td><td/><td><p class="s11">9.9</p></td><td><p class="s11">2.27</p></td><td><p class="s12">76</p></td><td><p class="s12">44</p></td><td><p class="s11">65</p></td></tr><tr><td><p class="s11">AgSnO² 90/10 EPX SISTADOX 10EPX</p></td><td><p class="s11">CuO and</p><p class="s11">Bi² O³</p></td><td><p class="s11">9.8</p></td><td><p class="s11">2.22</p></td><td><p class="s12">78</p></td><td><p class="s12">45</p></td><td><p class="s11">55</p></td></tr><tr><td><p class="s11">AgSnO² 88/12EPX SISTADOX 12EPX</p></td><td><p class="s11">CuO and</p><p class="s11">Bi² O³</p></td><td><p class="s11">9.6</p></td><td><p class="s11">2.63</p></td><td><p class="s12">66</p></td><td><p class="s12">38</p></td><td><p class="s11">60</p></td></tr></table>
Lieferformen: Formteile, Pressteile, Plättchen
+
Form of Support: formed parts, stamped parts, contact tips
 
</figtable>
 
</figtable>
  
*'''Silber-Zinkoxid Werkstoffe'''
+
*'''Silver–zinc oxide (DODURIT ZnO) materials'''
Silber-Zinkoxid Werkstoffe mit 6-10 Massen-% Oxidanteil,
+
Silver zinc oxide (DODURIT ZnO) contact materials with mostly 6 - 10 wt% oxide content including other small metal oxides are produced exclusively by powder metallurgy [[#figures1|(Figs. 76 81)]],<!--(Table 2.28)-->. Adding Ag<sub>2</sub>WO<sub>4</sub> in the process b) as described in the preceding chapter on Ag/SnO<sub>2</sub> has proven most effective for applications in AC relays, wiring devices, and appliance controls. Just like with the other Ag metal oxide materials, semi-finished materials in strip and wire form are used to manufacture contact tips and rivets. Because of their high resistance against welding and arc erosion Ag/ZnO materials present an economic alternative to Cd free Ag-tin oxide contact materials <xr id="tab:Contact and Switching Properties of Silver–Metal Oxide Materials"/><!--(Tab. 2.30)--> and <xr id="tab:Application Examples of Silver–Metal Oxide Materials"/><!--(Tab. 2.31)-->.
einschließlich geringer Metalloxidzusätze, werden ausschließlich auf
 
pulvermetallurgischem Wege gefertigt ([[#figures1|(Figs. 58 63)]]<!--(Table 2.28)-->). Besonders bewährt hat sich der Zusatz
 
Ag<sub>2</sub>WO<sub>4</sub> - nach Verfahrensweg c) in den Werkstoff eingebracht - für Anwendungen in Wechselstrom-Relais, Lichtschaltern und Schaltern für Hausgeräte.
 
Wie bei den anderen Silber-Metalloxid-Werkstoffen werden zunächst Halbzeuge
 
hergestellt, aus denen dann Kontaktauflagen oder -niete gefertigt werden.
 
Ag/ZnO-Werkstoffe stellen aufgrund ihrer hohen Verschweißresistenz und
 
Abbrandfestigkeit in manchen Anwendungen eine wirtschaftlich günstige
 
Alternative zu Ag/SnO<sub>2</sub> dar (<xr id="tab:Contact and Switching Properties of Silver–Metal Oxide Materials"/><!--(Tab. 2.30)--> und <xr id="tab:Application Examples of Silver–Metal Oxide Materials"/><!--(Tab. 2.31)-->).
 
  
  
 
<figtable id="tab:tab2.28">
 
<figtable id="tab:tab2.28">
<caption>'''<!--Table 2.28:--> Physikalische- und Festigkeitseigenschaften sowie Herstellungsverfahren und Lieferformen von stranggepressten Silber-Zinkoxid Werkstoffen'''</caption>
+
<caption>'''<!--Table 2.28:--> Physical and Mechanical Properties as well as Manufacturing Processes and Forms of Supply of Extruded Silver-Zinc Oxide (DODURIT ZnO) Contact'''</caption>
  
 
{| class="twocolortable" style="text-align: left; font-size: 12px"
 
{| class="twocolortable" style="text-align: left; font-size: 12px"
 
|-
 
|-
!Werkstoff<br />
+
!Material/<br />DODUCO-<br />Designation
!Silberanteil<br />[Massen-%]
+
!Silver Content<br />[wt%]
!Zusätze
+
!Additives
!Dichte<br />[g/cm<sup>3</sup>]
+
!Density<br />[g/cm<sup>3</sup>]
!Spez. elektr.<br />Widerstand (20°)<br />[μΩ·cm]
+
!Electrical<br />Resistivity<br />[μΩ·cm]
!colspan="2" style="text-align:center"|Elektrische<br />Leitfähigkeit<br />[% IACS] [MS/m]
+
!colspan="2" style="text-align:center"|Electrical<br />Conductivity<br />[% IACS] [MS/m]
!Vickershärte<br />Hv1
+
!Vickers<br />Hardness<br />Hv1
!Zugfestigkeit<br />[MPa]
+
!Tensile<br />Strength<br />[MPa]
!Dehnung<br />(weichgeglüht)<br />A[%]min.
+
!Elongation<br />(soft annealed)<br />A[%]min.
!Herstellungsverfahren
+
!Manufacturing<br />Process
!Lieferform
+
!Form of<br />Supply
 
|-
 
|-
|Ag/ZnO 92/8SP<br />
+
|Ag/ZnO 92/8P<br />DODURIT ZnO 8P
 
|91 - 93
 
|91 - 93
 
|
 
|
Line 1,516: Line 1,183:
 
|220 - 350
 
|220 - 350
 
|25
 
|25
|Pulvermetallurgie
+
|Powder Metallurgy<br />a) indiv. powders
a) Einzelpulver
 
 
|1
 
|1
 
|-
 
|-
|Ag/ZnO 92/8PW25<br />
+
|Ag/ZnO 94/6PW25<br />DODURIT ZnO 6PW25
 +
|93 - 95
 +
|Ag<sub>2</sub>WO<sub>4</sub>
 +
|9.7
 +
|2.0
 +
|86
 +
|50
 +
|60 - 100
 +
|200 - 320
 +
|30
 +
|Powder Metallurgy<br />c) coated
 +
|1
 +
|-
 +
|Ag/ZnO 92/8PW25<br />DODURIT ZnO 8PW25
 
|91 - 93
 
|91 - 93
 
|Ag<sub>2</sub>WO<sub>4</sub>
 
|Ag<sub>2</sub>WO<sub>4</sub>
Line 1,530: Line 1,209:
 
|230 - 340
 
|230 - 340
 
|25
 
|25
|Pulvermetallurgie
+
|Powder Metallurgy<br />c) coated
c) beschichtet
 
 
|1
 
|1
 
|-
 
|-
|Ag/ZnO 90/10PW25<br />
+
|Ag/ZnO 90/10PW25<br />DODURIT ZnO 10PW25
 
|89 - 91
 
|89 - 91
 
|Ag<sub>2</sub>WO<sub>4</sub>
 
|Ag<sub>2</sub>WO<sub>4</sub>
Line 1,544: Line 1,222:
 
|230 - 350
 
|230 - 350
 
|20
 
|20
|Pulvermetallurgie
+
|Powder Metallurgy<br />c) coated
c) beschichtet
 
 
|1
 
|1
 
|-
 
|-
|Ag/ZnO 92/8SP<br />
+
|Ag/ZnO 92/8WP<br />DODURIT ZnO 8WP
 
|91 - 93
 
|91 - 93
 
|
 
|
Line 1,558: Line 1,235:
 
|
 
|
 
|
 
|
|Pulvermetallurgie mit Ag-
+
|Powder Metallurgy<br />with Ag backing a) individ.
Rücken a) Einzelpulver
+
|2
 +
|-
 +
|AgZnO 94/6WPW25<br />DODURIT ZnO 6WPW25
 +
|93 - 95
 +
|Ag<sub>2</sub>WO<sub>4</sub>
 +
|9.7
 +
|2.0
 +
|86
 +
|50
 +
|60 - 95
 +
|
 +
|
 +
|Powder Metallurgy<br />c) coated
 
|2
 
|2
 
|-
 
|-
|Ag/ZnO 92/8WPW25<br />
+
|Ag/ZnO 92/8WPW25<br />DODURIT ZnO 8WPW25
 
|91 - 93
 
|91 - 93
 
|Ag<sub>2</sub>WO<sub>4</sub>
 
|Ag<sub>2</sub>WO<sub>4</sub>
Line 1,572: Line 1,261:
 
|
 
|
 
|
 
|
|Pulvermetallurgie mit Ag-
+
|Powder Metallurgy<br />c) coated
Rücken c) beschichtet
 
 
|2
 
|2
 
|-
 
|-
|Ag/ZnO 90/10WPW25<br />
+
|Ag/ZnO 90/10WPW25<br />DODURIT ZnO 10WPW25
 
|89 - 91
 
|89 - 91
 
|Ag<sub>2</sub>WO<sub>4</sub>
 
|Ag<sub>2</sub>WO<sub>4</sub>
Line 1,586: Line 1,274:
 
|
 
|
 
|
 
|
|Pulvermetallurgie mit Ag-
+
|Powder Metallurgy<br />c) coated
Rücken c) beschichtet
 
 
|2
 
|2
 
|}
 
|}
 
</figtable>
 
</figtable>
  
1 = Drähte, Stangen, Niete, 2) Streifen, Bänder, Profile, Plättchen
+
1 = Wires, Rods, Contact rivets, 2 = Strips, Profiles, Contact tips
  
 +
 +
<div id="figures1">
 +
<xr id="fig:Strain hardening of Ag ZnO 92 8 PW25"/><!--Fig. 2.120:--> Strain hardening of Ag/ZnO 92/8 PW25 by cold working
 +
 +
<xr id="fig:Softening of Ag ZnO 92 8 PW25"/><!--Fig. 2.121:--> Softening of Ag/ZnO 92/8 PW25 after annealing for 1 hr after 30% cold working
 +
 +
<xr id="fig:Strain hardening of Ag ZnO 92 8 WPW25"/><!--Fig. 2.122:--> Strain hardening of Ag/ZnO 92/8 WPW25 by cold working
 +
 +
<xr id="fig:Softening of Ag ZnO 92 8 WPW25"/><!--Fig. 2.123:--> Softening of Ag/ZnO 92/8 WPW25 after annealing for 1hr after different degrees of cold working
 +
 +
<xr id="fig:Micro structure of Ag ZnO 92 8 Pw25"/><!--Fig. 2.124:--> Micro structure of Ag/ZnO 92/8 Pw25: a) perpendicular to extrusion direction
 +
b) parallel to extrusion direction
 +
 +
<xr id="fig:Micro structure of Ag ZnO 92 8 WPW25"/><!--Fig. 2.125:--> Micro structure of Ag/ZnO 92/8 WPW25:a) perpendicular to extrusion direction
 +
b) parallel to extrusion direction, 1) Ag/ZnO contact layer, 2) Ag backing layer
 +
</div>
  
 
<div class="multiple-images">
 
<div class="multiple-images">
 
<figure id="fig:Strain hardening of Ag ZnO 92 8 PW25">  
 
<figure id="fig:Strain hardening of Ag ZnO 92 8 PW25">  
[[File:Strain hardening of Ag ZnO 92 8 PW25.jpg|left|thumb|<caption>Verfestigungsverhalten
+
[[File:Strain hardening of Ag ZnO 92 8 PW25.jpg|left|thumb|<caption>Strain hardening of Ag/ZnO 92/8 PW25 by cold working</caption>]]
von Ag/ZnO 92/8 PW25 durch Kaltumformung</caption>]]
 
 
</figure>
 
</figure>
  
 
<figure id="fig:Softening of Ag ZnO 92 8 PW25">  
 
<figure id="fig:Softening of Ag ZnO 92 8 PW25">  
[[File:Softening of Ag ZnO 92 8 PW25.jpg|left|thumb|<caption>Erweichungsverhalten
+
[[File:Softening of Ag ZnO 92 8 PW25.jpg|left|thumb|<caption>Softening of Ag/ZnO 92/8 PW25 after annealing for 1 hr after 30% cold working</caption>]]
von Ag/ZnO 92/8 PW25 nach 1h Glühdauer
 
und einer Kaltumformung von 30%</caption>]]
 
 
</figure>
 
</figure>
  
 
<figure id="fig:Strain hardening of Ag ZnO 92 8 WPW25">   
 
<figure id="fig:Strain hardening of Ag ZnO 92 8 WPW25">   
[[File:Strain hardening of Ag ZnO 92 8 WPW25.jpg|left|thumb|<caption>Verfestigungsverhalten
+
[[File:Strain hardening of Ag ZnO 92 8 WPW25.jpg|left|thumb|<caption>Strain hardening of Ag/ZnO 92/8 WPW25 by cold working</caption>]]
von Ag/ZnO 92/8 WPW25
 
durch Kaltumformung</caption>]]
 
 
</figure>
 
</figure>
  
 
<figure id="fig:Softening of Ag ZnO 92 8 WPW25">  
 
<figure id="fig:Softening of Ag ZnO 92 8 WPW25">  
[[File:Softening of Ag ZnO 92 8 WPW25.jpg|left|thumb|<caption>Erweichungsverhalten von
+
[[File:Softening of Ag ZnO 92 8 WPW25.jpg|left|thumb|<caption>Softening of Ag/ZnO 92/8 WPW25 after annealing for 1hr after different degrees of cold working</caption>]]
Ag/ZnO 92/8 WPW25 nach 1h Glühdauer
 
und unterschiedlicher Kaltumformung</caption>]]
 
 
</figure>
 
</figure>
  
 
<figure id="fig:Micro structure of Ag ZnO 92 8 Pw25">   
 
<figure id="fig:Micro structure of Ag ZnO 92 8 Pw25">   
[[File:Micro structure of Ag ZnO 92 8 Pw25.jpg|left|thumb|<caption>Gefüge von Ag/ZnO 92/8 PW25 a) senkrecht zur Strangpressrichtung
+
[[File:Micro structure of Ag ZnO 92 8 Pw25.jpg|left|thumb|<caption>Micro structure of Ag/ZnO 92/8 Pw25: a) perpendicular to extrusion direction b) parallel to extrusion direction</caption>]]
b) parallel zur Strangpressrichtung</caption>]]
 
 
</figure>
 
</figure>
  
 
<figure id="fig:Micro structure of Ag ZnO 92 8 WPW25">  
 
<figure id="fig:Micro structure of Ag ZnO 92 8 WPW25">  
[[File:Micro structure of Ag ZnO 92 8 WPW25.jpg|right|thumb|<caption>Gefüge von Ag/ZnO 92/8 WPW25 a) senkrecht zur Strangpressrichtung
+
[[File:Micro structure of Ag ZnO 92 8 WPW25.jpg|right|thumb|<caption>Micro structure of Ag/ZnO 92/8 WPW25:a) perpendicular to extrusion direction b) parallel to extrusion direction, 1) Ag/ZnO contact layer, 2) Ag backing layer</caption>]]
b) parallel zur Strangpressrichtung, 1) Ag/ZnO-Schicht, 2) Ag-Unterschicht</caption>]]
 
 
</figure>
 
</figure>
 
</div>
 
</div>
Line 1,633: Line 1,327:
  
 
<figtable id="tab:tab2.29">
 
<figtable id="tab:tab2.29">
<caption>'''<!--Table 2.29:-->Optimierung der Silber-Zinnoxid-Werkstoffe hinsichtlich Schalteigenschaften und Umformungsverhalten'''</caption>
+
<caption>'''<!--Table 2.29:-->Optimizing of Silver–Tin Oxide Materials Regarding their Switching Properties and Forming Behavior'''</caption>
 
<table class="twocolortable">
 
<table class="twocolortable">
<tr><th><p class="s12">Werkstoff/</p><p class="s12">Werkstoffgruppe</p></th><th><p class="s12">Spezielle Eigenschaften<th colspan="2"></p></th></tr><tr><td><p class="s12">Ag/SnO<sub>2</sub><span class="s48"> </span>PE</p></td><td><p class="s12">Besonders geeignet für Kfz-Relais
+
<tr><th><p class="s12">Material/</p><p class="s12">Material Group</p></th><th><p class="s12">Special Properties<th colspan="2"></p></th></tr><tr><td><p class="s12">Ag/SnO<span class="s48">2 </span>PE</p></td><td><p class="s12">Especially suitable for automotive relays</p><p class="s12">(lamp loads)</p></td><td><p class="s12">Good formability (contact rivets)</p></td></tr><tr><td><p class="s12">Ag/SnO<span class="s48">2 </span>98/2 PX/PC</p></td><td><p class="s12">Especially good heat resistance</p></td><td><p class="s12">Easily riveted, can be directly welded</p></td></tr><tr><td><p class="s12">Ag/SnO<span class="s48">2 </span>TOS F</p></td><td><p class="s12">Especially suited for high inductive</p><p class="s12">DC loads</p></td><td><p class="s12">Very good formability (contact rivets)</p></td></tr><tr><td><p class="s12">Ag/SnO<span class="s48">2 </span>WPC</p></td><td><p class="s12">For AC-3 and AC-4 applications in motor</p><p class="s12">switches (contactors)</p></td><td/></tr><tr><td><p class="s12">Ag/SnO<span class="s48">2 </span>WPD</p></td><td><p class="s12">Especially suited for severe loads (AC-4)</p><p class="s12">and high switching currents</p></td><td/></tr><tr><td><p class="s12">Ag/SnO<span class="s48">2 </span>WPX</p></td><td><p class="s12">For standard motor loads (AC-3) and</p><p class="s12">Resistive loads (AC-1), DC loads (DC-5)</p></td><td/></tr><tr><td><p class="s12">Ag/SnO<span class="s48">2 </span>WTOSF</p></td><td><p class="s12">Especially suitable for high inductive DC</p><p class="s12">loads</p></td><td/></tr></table>
(Lampenlast)</p></td><td><p class="s12">gute Umformbarkeit (Niete)</p></td></tr><tr><td><p class="s12">Ag/SnO<sub>2</sub><span class="s48"> </span>TOS F</p></td><td><p class="s12">Besonders geeignet für hohe induktive
 
Gleichstromlast</p></td><td><p class="s12">sehr gute Umformbarkeit (Niete)</p></td></tr><tr><td><p class="s12">Ag/SnO<sub>2</sub><span class="s48"> </span>WPD</p></td><td><p class="s12">Besonders geeignet für Schwerlastbetrieb
 
(AC-4) und hohe Schaltströme</p></td><td/></tr><tr><td><p class="s12">Ag/SnO<sub>2</sub><span class="s48"> </span>W TOS F</p></td><td><p class="s12">Besonders geeignet für hohe induktive
 
Gleichstromlast</p></td><td/></tr></table>
 
 
</figtable>
 
</figtable>
  
  
 
<figtable id="tab:Contact and Switching Properties of Silver–Metal Oxide Materials">
 
<figtable id="tab:Contact and Switching Properties of Silver–Metal Oxide Materials">
<caption>'''<!--Table 2.30:-->Kontakt- und Schalteigenschaften von Silber-Metalloxid-Werkstoffen'''</caption>
+
<caption>'''<!--Table 2.30:-->Contact and Switching Properties of Silver–Metal Oxide Materials'''</caption>
  
 
{| class="twocolortable" style="text-align: left; font-size: 12px"
 
{| class="twocolortable" style="text-align: left; font-size: 12px"
 
|-
 
|-
!Werkstoff
+
!Material/DODUCO-Designation
!Eigenschaften
+
!Properties
 +
|-
 +
|Ag/CdO<br />DODURIT CdO
 +
|High resistance against welding during current on switching for currents up to<br />5kA especially for powder metallurgical materials,<br />
 +
Weld resistance increases with higher oxide contents,<br />
 +
Low and stable contact resistance over the life of the device and good<br />temperature rise properties,<br />
 +
High arc erosion resistance and contact life at switching currents<br />
 +
of 100A – 5kA,<br />
 +
Very good arc moving properties for materials produced by internal oxidation,<br />Good arc extinguishing properties,<br />
 +
Formability better than the one of Ag/SnO2 and Ag/ZnO materials,<br />
 +
Use of Ag/CdO in automotive components is prohibited because of Cd toxicity,<br />Prohibition of use in consumer products and appliances in EU.
 
|-
 
|-
|Ag/SnO<sub>2</sub><br />
+
|Ag/SnO<sub>2</sub><br />SISTADOX
|Umweltfreundliche Werkstoffe,
+
|Environmentally friendly materials,<br />
sehr hohe Sicherheit gegenüber Einschaltverschweißungen,
+
Very high resistance against welding during current on switching,<br />Weld resistance increases with higher oxide contents,<br />
Sicherheit gegenüber Verschweißungen mit steigendem Oxidgehalt zunehmend,
+
Low and stable contact resistance over the life of the device and good<br />temperature rise properties through use of special additives,<br />
niedriger und über die Gerätelebensdauer weitgehend stabiler Kontaktwiderstand
+
High arc erosion resistance and contact life,<br />
und günstiges Übertemperaturverhalten durch spezielle Oxidzusätze,
+
Very low and flat material transfer during DC load switching,<br />
hohe Abbrandfestigkeit und Schaltstücklebensdauer,
+
Good arc moving and very good arc extinguishing properties
sehr geringe, flächenhafte Materialwanderung bei Gleichstromlast,
 
günstige Lichtbogenlaufeigenschaften, sehr gutes Lichtbogenlöschverhalten
 
 
|-
 
|-
|Ag/ZnO<br />
+
|Ag/ZnO<br />DODURIT ZnO
|Umweltfreundliche Werkstoffe,
+
|Environmentally friendly materials,<br />
hohe Sicherheit gegenüber Einschaltverschweißungen (Kondensatorschütze),
+
High resistance against welding during current on switching<br />(capacitor contactors),<br />
niedriger und konstanter Kontaktwiderstand durch spezielle Oxidzusätze,
+
Low and stable contact resistance through special oxide additives,<br />Very high arc erosion resistance at high switching currents,<br />
besonders hohe Abbrandfestigkeit bei hohen Schaltströmen,
+
Less favorable than Ag/SnO<sub>2</sub> for electrical life and material transfer,<br />
hinsichtlich Materialwanderung und Lebensdauer bei Gleichstromlast ungünstiger
+
With Ag<sub>2</sub>WO<sub>4</sub> additive especially suitable for AC relays
als Ag/SnO<sub>2</sub> ,mit Zusatz Ag<sub>2</sub>WO<sub>4</sub> besonders geeignet für Wechselstrom-Relais und Schalter in Hausgeräten,
 
in den sonstigen Eigenschaften vergleichbar mit Ag/SnO<sub>2</sub>
 
 
|}
 
|}
 
</figtable>
 
</figtable>
Line 1,674: Line 1,370:
  
 
<figtable id="tab:Application Examples of Silver–Metal Oxide Materials">
 
<figtable id="tab:Application Examples of Silver–Metal Oxide Materials">
<caption>'''<!--Table 2.31:-->Anwendungsbeispiele von Silber-Metalloxid-Werkstoffen'''</caption>
+
<caption>'''<!--Table 2.31:-->Application Examples of Silver–Metal Oxide Materials'''</caption>
 
<table class="twocolortable">
 
<table class="twocolortable">
<tr><th><p class="s12">Werkstoff</p></th><th><p class="s12">Anwendungsbeispiele</p></th></tr><tr><td><p class="s12">Ag/SnO<sub>2</sub><span class="s48"></span></p></td><td><p class="s12">Mikroschalter, Elementarrelais, Kfz-Relais, Schalter für Hausgeräte,
+
<tr><th><p class="s12">Material</p></th><th><p class="s12">Application Examples</p></th></tr><tr><td><p class="s12">Ag/CdO</p></td><td><p class="s12">Micro switches, Network relays, Wiring devices, Appliance switches, Main switches, contactors, Small (main) power switches</p></td></tr><tr><td><p class="s12">Ag/SnO<span class="s48">2</span></p></td><td><p class="s12">Micro switches, Network relays, Automotive relays, Appliance switches,</p><p class="s12">Main switches, contactors, Fault current protection relays (paired against</p><p class="s12">Ag/C), (Main) Power switches</p></td></tr><tr><td><p class="s12">Ag/ZnO</p></td><td><p class="s12">Wiring devices, AC relays, Appliance switches, Motor-protective circuit</p><p class="s12">breakers (paired with Ag/Ni or Ag/C), Fault current circuit breakers paired againct Ag/C, (Main) Power switches</p></td></tr></table>
Hauptschalter, Motorschalter ( Schütze ), Fehlerstromschutzschalter
 
( gepaart mit Ag/C ), Leistungsschalter.</p></td></tr><tr><td><p class="s12">Ag/ZnO</p></td><td><p class="s12">Lichtschalter, Wechselstrom-Relais, Schalter für Hausgeräte
 
Motorschutzschalter ( gepaart mit Ag/Ni bzw. Ag/C), Fehlerstromschutzschalter
 
( gepaart mit Ag/C ), Leistungsschalter.</p></td></tr></table>
 
 
</figtable>
 
</figtable>
  
====Silber-Grafit Werkstoffe====
+
====Silver–Graphite (GRAPHOR)-Materials====
Ag/C Kontaktwerkstoffe werden üblicherweise mit Grafitgehalten
+
Ag/C (GRAPHOR) contact materials are usually produced by powder metallurgy with graphite contents of 2 5 wt% <xr id="tab:tab2.32"/><!--(Table 2.32)-->. The earlier typical manufacturing process of single pressed tips by pressing - sintering - repressing (PSR) has been replaced in Europe for quite some time by extrusion. In North America and some other regions however the PSR process is still used to some extend mainly for cost reasons.
von 2-5 Massen-% auf pulvermetallurgischem Wege hergestellt (<xr id="tab:tab2.32"/><!--(Table 2.32)-->). Die früher
+
 
übliche Herstellung von Ag/C-Plättchen nach dem Verfahren der Einzelpresstechnik
+
The extrusion of sintered billets is now the dominant manufacturing method for semi-finished AgC materials <!--[[#figures3|(Figs. 82 – 85)]]<!--(Figs. 2.126 – 2.129)-->. The hot extrusion process results in a high density material with graphite particles stretched and oriented in the extrusion direction [[#figures4|(Figs. 86 – 89)]]<!--(Figs. 2.130 – 2.133)-->. Depending on the extrusion method in either rod or strip form the graphite particles can be oriented in the finished contact tips perpendicular (GRAPHOR) or parallel (GRAPHOR D) to the switching contact surface <xr id="fig:Micro structure of Ag C 95 5"/><!--(Fig. 2.131)--> and <xr id="fig:Micro structure of Ag C 96 4 D"/><!--(Fig. 2.132)-->.
, d.h. durch Mischen von Silber- und Grafit-Pulver, Pressen, Sintern und
+
 
Nachpressen, wurde seit langem in Europa durch das Strangpressen abgelöst,
+
Since the graphite particles in the Ag matrix of Ag/C materials prevent contact tips from directly being welded or brazed, a graphite free bottom layer is required. This is achieved by either burning out (de-graphitizing) the graphite selectively on one side of the tips or by compound extrusion of a Ag/C billet covered with a fine silver shell.
hat jedoch für spezielle Kontaktformen, z.B. trapezförmige Auflagen, und
+
 
kostenkritische Anwendungen in den USA und in anderen Regionen eine
+
Ag/C contact materials exhibit on the one hand an extremely high resistance to contact welding but on the other have a low arc erosion resistance. This is caused by the reaction of graphite with the oxygen in the surrounding atmosphere at the high temperatures created by the arcing. The weld resistance is especially high for materials with the graphite particle orientation parallel to the arcing contact surface. Since the contact surface after arcing consists of pure silver the contact resistance stays consistently low during the electrical life of the contact parts.
gewisse Bedeutung.
+
 
 +
A disadvantage of the Ag/C materials is their rather high erosion rate. In materials with parallel graphite orientation this can be improved if part of the graphite is incorporated into the material in the form of fibers (GRAPHOR DF), <xr id="fig:Micro structure of Ag C DF"/><!--(Fig. 2.133)-->. The weld resistance is determined by the total content of graphite particles.
 +
 
 +
Ag/C tips with vertical graphite particle orientation are produced in a specific sequence: Extrusion to rods, cutting of double thickness tips, burning out of graphite to a controlled layer thickness, and a second cutting to single tips. Such contact tips are especially well suited for applications which require both, a high weld resistance and a sufficiently high arc erosion resistance <xr id="tab:tab2.33"/><!--(Table 2.33)-->. For attachment of Ag/C tips welding and brazing techniques are applied.
 +
 
 +
welding the actual process depends on the material's graphite orientation. For Ag/C tips with vertical graphite orientation the contacts are assembled with single tips. For parallel orientation a more economical attachment starting with contact material in strip or profile tape form is used in integrated stamping and welding operations with the tape fed into the weld station, cut off to tip form and then welded to the carrier material before forming the final contact assembly part. For special low energy welding the Ag/C profile tapes GRAPHOR D and DF can be pre-coated with a thin layer of high temperature brazing alloys such as CuAgP.
  
Das Strangpressen gesinterter Ag/C-Blöcke ist das dominierende Fertigungsverfahren
+
In a rather limited way, Ag/C with 2 – 3 wt% graphite can be produced in wire form and headed into contact rivet shape with low head deformation ratios.
für Ag/C-Halbzeuge. Durch das Strangpressen wird eine hohe Verdichtung
 
des Werkstoffes und eine zeilenförmige Ausrichtung der Grafitpartikel
 
in Pressrichtung erreicht ([[#figures4|(Figs. 68 – 71)]]<!--(Figs. 2.130 2.133)-->). Je nach Art des Strangpressens, als Band
 
oder in Stangenform, sind die Grafitpartikel im fertigen Kontaktstück senkrecht
 
oder parallel zur Schaltfläche angeordnet
 
(<xr id="fig:Micro structure of Ag C 95 5"/><!--(Fig. 2.131)--> und <xr id="fig:Micro structure of Ag C 96 4 D"/><!--(Fig. 2.132)-->).
 
  
Da sich Kontaktauflagen aus Silber-Grafit wegen der in der Ag-Matrix eingelagerten
+
The main applications for Ag/C materials are protective switching devices such as miniature molded case circuit breakers, motor-protective circuit breakers, and fault current circuit breakers, where during short circuit failures highest resistance against welding is required <xr id="tab:tab2.34"/><!--(Table 2.34)-->. For higher currents the low arc erosion resistance of Ag/C is compensated by asymmetrical pairing with more erosion resistant materials such as Ag/Ni and Ag/W.
Grafitpartikel direkt weder schweißen noch löten lassen, ist für das
 
Aufbringen der Auflagen auf Kontaktträger eine grafitfreie Unterschicht erforderlich.
 
Diese kann durch einseitiges Ausbrennen des Grafits oder durch Verbundstrangpressen
 
des Ag/C-Pressblockes mit Silber erzeugt werden.
 
  
Ag/C-Werkstoffe weisen einerseits eine extrem hohe Verschweißresistenz, die
+
<div id="figures3">
von keiner anderen Werkstoffgruppe erreicht wird, andererseits jedoch eine
+
<xr id="fig:Strain hardening of Ag C 96 4 D"/><!--Fig. 2.126:--> Strain hardening of Ag/C 96/4 D by cold working
geringe Abbrandfestigkeit auf. Dieses außergewöhnliche Schaltverhalten von
 
Ag/C wird durch die Reaktion der Wirkkomponente Grafit mit der Umgebungsatmosphäre
 
bei den infolge Lichtbogeneinwirkung auftretenden hohen Temperaturen
 
bestimmt. Bei Ag/C-Werkstoffen mit einer Orientierung der Grafit-Partikel
 
parallel zur Schaltfläche ist die Verschweißresistenz besonders hoch. Da die
 
Schaltstückoberfläche nach Lichtbogeneinwirkung aus reinem Silber besteht,
 
sind die Kontaktwiderstände während der Schaltstücklebensdauer
 
gleichbleibend niedrig.
 
  
Ein Schwachpunkt von Ag/C-Kontaktwerkstoffen ist die geringe Abbrandfestigkeit.
+
<xr id="fig:Softening of Ag C 96 4 D"/><!--Fig. 2.127:--> Softening of Ag/C 96/4 D after annealing
Bei Ag/C-Kontaktmaterial mit parallel zur Schaltfläche orientierten Grafit-
 
Partikeln kann eine deutliche Verbesserung im Abbrandverhalten erreicht
 
werden, wenn ein Teil des Grafits in Form von Fasern in den
 
Werkstoff (Ag/C DF) eingebracht wird (<xr id="fig:Micro structure of Ag C DF"/><!--(Fig. 2.133)-->). Das Schweißverhalten wird dabei durch
 
den Anteil an Grafit-Partikeln bestimmt.
 
  
Ag/C-Plättchen mit senkrechter Ausrichtung der Grafit-Partikel werden nach
+
<xr id="fig:Strain hardening of Ag C DF"/><!--Fig. 2.128:--> Strain hardening of Ag/C DF by cold working
bestimmten Arbeitsschritten - Strangpressen, nachfolgendem Trennen zu
 
Doppelplättchen, Ausbrennen des Grafits und zweitem Trennen zu Einzelplättchen
 
- hergestellt (<xr id="tab:tab2.33"/><!--(Table 2.33)-->). Solche Plättchen mit Ag/C-Schaltfläche und gut löt- und schweißbarer Ag-Unterseite sind besonders geeignet für Anwendungen, die
 
sowohl hohe Verschweißresistenz als auch eine ausreichend hohe Abbrandfestigkeit
 
im Schaltbetrieb erfordern.
 
  
Als Verbindungsverfahren kommen Hartlöten und Schweißen in Frage. Beim
+
<xr id="fig:Softening of Ag C DF after annealing"/><!--Fig. 2.129:--> Softening of Ag/C DF after annealing
Aufschweißen hängt der Fertigungsablauf von der Orientierung der Grafit-
+
</div>
Partikel in der Ag-Matrix ab. Bei Ag/C-Werkstoffen mit einer Ausrichtung der
 
Grafit-Partikel senkrecht zur Schaltfläche werden die Kontaktauflagen als
 
Einzelteile weiterverarbeitet. Bei paralleler Ausrichtung ist die Verarbeitung
 
besonders wirtschaftlich, da von Bandmaterial ausgegangen werden kann, aus
 
dem in einer Arbeitsfolge Kontaktplättchen getrennt und unmittelbar danach
 
aufgeschweißt werden. Um den Fügevorgang energiesparender zu gestalten,
 
können die Ag/C-Profile auch mit einer dünnen
 
Hartlotschicht versehen werden.
 
  
In begrenztem Umfang können Ag/C-Werkstoffe mit 2-3 Massen-% Grafit auch
+
<div id="figures4">
zu Drähten und bei nur geringer Kaltumformung zu Kontaktnieten verarbeitet
+
<xr id="fig:Micro structure of Ag C 97 3"/><!--Fig. 2.130:--> Micro structure of Ag/C 97/3: a) perpendicular to extrusion direction
werden.
+
b) parallel to extrusion direction, 1) Ag/C contact layer, 2) Ag backing layer
  
Haupteinsatzgebiet der Ag/C-Werkstoffe sind Schutzschalter, wie Leistungs-,
+
<xr id="fig:Micro structure of Ag C 95 5"/><!--Fig. 2.131:--> Micro structure of Ag/C 95/5: a) perpendicular to extrusion direction
Leitungsschutz-, Motorschutz- und Fehlerstromschutzschalter, in denen im
+
b) parallel to extrusion direction, 1) Ag/C contact layer, 2) Ag backing layer
Kurzschlussfall höchste Anforderungen an die Verschweißresistenz der
+
 
Kontaktstücke gestellt werden (<xr id="tab:tab2.34"/><!--(Table 2.34)-->). Die geringe Abbrandfestigkeit des Ag/C wird
+
<xr id="fig:Micro structure of Ag C 96 4 D"/><!--Fig. 2.132:--> Micro structure of Ag/C 96/4 D: a) perpendicular to extrusion direction
dabei in unsymmetrischer Kontaktpaarung durch abbrandfeste Gegenkontakte
+
b) parallel to extrusion direction, 1) Ag/C contact layer, 2) Ag backing layer
aus Ag/Ni oder Ag/W kompensiert.
+
 
 +
<xr id="fig:Micro structure of Ag C DF"/><!--Fig. 2.133:--> Micro structure of Ag/C DF: a) perpendicular to extrusion direction
 +
b) parallel to extrusion direction, 1) Ag/C contact layer, 2) Ag/Ni 90/10 backing layer
 +
</div>
  
 
<div class="multiple-images">
 
<div class="multiple-images">
 
<figure id="fig:Strain hardening of Ag C 96 4 D">
 
<figure id="fig:Strain hardening of Ag C 96 4 D">
[[File:Strain hardening of Ag C 96 4 D.jpg|left|thumb|<caption>Verfestigungsverhalten von
+
[[File:Strain hardening of Ag C 96 4 D.jpg|left|thumb|<caption>Strain hardening of Ag/C 96/4 D by cold working</caption>]]
Ag/C 96/4 D durch Kaltumformung</caption>]]
 
 
</figure>
 
</figure>
  
 
<figure id="fig:Softening of Ag C 96 4 D">  
 
<figure id="fig:Softening of Ag C 96 4 D">  
[[File:Softening of Ag C 96 4 D.jpg|left|thumb|<caption>Erweichungsverhalten
+
[[File:Softening of Ag C 96 4 D.jpg|left|thumb|<caption>Softening of Ag/C 96/4 D after annealing</caption>]]
von Ag/C 96/4 D</caption>]]
 
 
</figure>
 
</figure>
  
 
<figure id="fig:Strain hardening of Ag C DF">  
 
<figure id="fig:Strain hardening of Ag C DF">  
[[File:Strain hardening of Ag C DF.jpg|left|thumb|<caption>Verfestigungsverhalten von
+
[[File:Strain hardening of Ag C DF.jpg|left|thumb|<caption>Strain hardening of Ag/C DF by cold working</caption>]]
Ag/C D durch Kaltumformung</caption>]]
 
 
</figure>
 
</figure>
  
 
<figure id="fig:Softening of Ag C DF after annealing">  
 
<figure id="fig:Softening of Ag C DF after annealing">  
[[File:Softening of Ag C DF after annealing.jpg|left|thumb|<caption>Erweichungsverhalten
+
[[File:Softening of Ag C DF after annealing.jpg|left|thumb|<caption>Softening of Ag/C DF after annealing</caption>]]
von Ag/C DF</caption>]]
 
 
</figure>
 
</figure>
  
 
<figure id="fig:Micro structure of Ag C 97 3">  
 
<figure id="fig:Micro structure of Ag C 97 3">  
[[File:Micro structure of Ag C 97 3.jpg|left|thumb|<caption>Gefüge von Ag/C 97/3 a) senkrecht zur Strangpressrichtung
+
[[File:Micro structure of Ag C 97 3.jpg|left|thumb|<caption>Micro structure of Ag/C 97/3: a) perpendicular to extrusion direction b) parallel to extrusion direction, 1) Ag/C contact layer, 2) Ag backing layer</caption>]]
b) parallel zur Strangpressrichtung, 1) Ag/C-Schicht, 2) Ag-Unterschicht</caption>]]
 
 
</figure>
 
</figure>
  
 
<figure id="fig:Micro structure of Ag C 95 5">  
 
<figure id="fig:Micro structure of Ag C 95 5">  
[[File:Micro structure of Ag C 95 5.jpg|left|thumb|<caption>Gefüge von Ag/C 95/5 a) senkrecht zur Strangpressrichtung
+
[[File:Micro structure of Ag C 95 5.jpg|left|thumb|<caption>Micro structure of Ag/C 95/5: a) perpendicular to extrusion direction b) parallel to extrusion direction, 1) Ag/C contact layer, 2) Ag backing layer</caption>]]
b) parallel zur Strangpressrichtung, 1) Ag/C-Schicht, 2) Ag-Unterschicht</caption>]]
 
 
</figure>
 
</figure>
  
 
<figure id="fig:Micro structure of Ag C 96 4 D">  
 
<figure id="fig:Micro structure of Ag C 96 4 D">  
[[File:Micro structure of Ag C 96 4 D.jpg|left|thumb|<caption>Gefüge von Ag/C 96/4 D a) senkrecht zur Strangpressrichtung
+
[[File:Micro structure of Ag C 96 4 D.jpg|left|thumb|<caption>Micro structure of Ag/C 96/4 D: a) perpendicular to extrusion direction b) parallel to extrusion direction, 1) Ag/C contact layer, 2) Ag backing layer</caption>]]
b) parallel zur Strangpressrichtung, 1) Ag/C-Schicht, 2) Ag-Unterschicht</caption>]]
 
 
</figure>
 
</figure>
  
 
<figure id="fig:Micro structure of Ag C DF">  
 
<figure id="fig:Micro structure of Ag C DF">  
[[File:Micro structure of Ag C DF.jpg|left|thumb|<caption>Gefüge von Ag/C DF a) senkrecht zur Strangpressrichtung
+
[[File:Micro structure of Ag C DF.jpg|left|thumb|<caption>Micro structure of Ag/C DF: a) perpendicular to extrusion direction b) parallel to extrusion direction, 1) Ag/C contact layer, 2) Ag/Ni 90/10 backing layer</caption>]]
b) parallel zur Strangpressrichtung, 1) Ag/C-Schicht, 2) Ag/Ni 90/10-Unterschicht</caption>]]
 
 
</figure>
 
</figure>
 
</div>
 
</div>
Line 1,798: Line 1,454:
  
 
<figtable id="tab:tab2.32">
 
<figtable id="tab:tab2.32">
<caption>'''<!--Table 2.32:-->Physikalische Eigenschaften von Silber-Grafit Werkstoffen'''</caption>
+
<caption>'''<!--Table 2.32:-->Physical Properties of Silver–Graphite (GRAPHOR) Contact Materials'''</caption>
  
 
{| class="twocolortable" style="text-align: left; font-size: 12px"
 
{| class="twocolortable" style="text-align: left; font-size: 12px"
 
|-
 
|-
!Werkstoff
+
!Material/<br />DODUCO-<br />Designation
!Silberanteil<br />[Massen-%]
+
!Silver Content<br />[wt%]
!Dichte<br />[g/cm<sup>3</sup>]
+
!Density<br />[g/cm<sup>3</sup>]
!Schmelztemperatur<br />[°C]
+
!Melting Point<br />[°C]
!Spez. elektr. Widerstand (20°)<br />[μΩ·cm]
+
!Electrical Resistivity<br />[μΩ·cm]
!colspan="2" style="text-align:center"|Elektrische Leitfähigkeit<br />[% IACS]  [MS/m]
+
!colspan="2" style="text-align:center"|Electrical<br />Conductivity<br />[% IACS]  [MS/m]
!Vickershärte<br />HV10<br />42 - 45
+
!Vickers-Hardnes<br />HV10<br />42 - 45
 
|-
 
|-
|Ag/C 98/2<br />
+
|Ag/C 98/2<br />GRAPHOR 2
 
|97.5 - 98.5
 
|97.5 - 98.5
 
|9.5
 
|9.5
Line 1,819: Line 1,475:
 
|42 - 44
 
|42 - 44
 
|-
 
|-
|Ag/C 97/3<br />
+
|Ag/C 97/3<br />GRAPHOR 3
 
|96.5 - 97.5
 
|96.5 - 97.5
 
|9.1
 
|9.1
Line 1,828: Line 1,484:
 
|41 - 43
 
|41 - 43
 
|-
 
|-
|Ag/C 96/4<br />
+
|Ag/C 96/4<br />GRAPHOR 4
 
|95.5 - 96.5
 
|95.5 - 96.5
 
|8.7
 
|8.7
Line 1,837: Line 1,493:
 
|40 - 42
 
|40 - 42
 
|-
 
|-
|Ag/C 95/5<br />
+
|Ag/C 95/5<br />GRAPHOR 5
 
|94.5 - 95.5
 
|94.5 - 95.5
 
|8.5
 
|8.5
Line 1,846: Line 1,502:
 
|40 - 60
 
|40 - 60
 
|-
 
|-
|AgC DF<br />GRAPHOR DF*)
+
|Ag/C 97/3D<br />GRAPHOR 3D*)
 +
|96.5 - 97.5
 +
|9.1 - 9.3
 +
|960
 +
|1.92 - 2.08
 +
|83 - 90
 +
|45 - 50
 +
|35 - 55
 +
|-
 +
|Ag/C 96/4D<br />GRAPHOR 4D*)
 +
|95.5 - 96.5
 +
|8.8 - 9.0
 +
|960
 +
|2.04 - 2.22
 +
|78 - 84
 +
|43 - 47
 +
|35 - 60
 +
|-
 +
|AgCDF<br />GRAPHOR DF**)
 
|95.7 - 96.7
 
|95.7 - 96.7
 
|8.7 - 8.9
 
|8.7 - 8.9
Line 1,857: Line 1,531:
 
</figtable>
 
</figtable>
  
<nowiki>*)</nowiki> Grafit-Partikel parallel zur Schaltfläche <br />
+
<nowiki>*)</nowiki> Graphite particles parallel to switching surface <br />
 +
<nowiki>**)</nowiki> Graphite content 3.8 wt%, Graphite particles and fibers parallel to switching surface
  
  
 
<figtable id="tab:tab2.33">
 
<figtable id="tab:tab2.33">
<caption>'''<!--Table 2.33:-->Kontakt- und Schalteigenschaften von Silber-Grafit Werkstoffen'''</caption>
+
<caption>'''<!--Table 2.33:-->Contact and Switching properties of Silver–Graphite (GRAPHOR) Contact Materials'''</caption>
 
<table class="twocolortable">
 
<table class="twocolortable">
<tr><th><p class="s12">Werkstoff</p></th><th><p class="s11">Eigenschaften</p></th></tr><tr><td><p class="s12">Ag/C</p><p class="s12"></p></td><td><p class="s12">Höchste Sicherheit gegenüber Verschweißungen beim Einschalten hoher Ströme,
+
<tr><th><p class="s12">Material/</p><p class="s12">DODUCO-Designation</p></th><th><p class="s11">Properties</p></th></tr><tr><td><p class="s12">Ag/C</p><p class="s12">GRAPHOR</p></td><td><p class="s12">Highest resistance against welding during make operations at high currents,</p><p class="s12">High resistance against welding of closed contacts during short circuit,</p><p class="s12">Increase of weld resistance with higher graphite contents, Low contact resistance,</p><p class="s12">Low arc erosion resistance, especially during break operations, Higher arc erosion with increasing graphite contents, at the same time carbon build-up on switching chamber walls increases, GRAPHOR with vertical orientation has better arc erosion resistance, parallel orientation has better weld resistance,</p><p class="s12">Limited arc moving properties, therefore paired with other materials,</p><p class="s12">Limited formability,</p><p class="s12">Can be welded and brazed with decarbonized backing, GRAPHOR DF is optimized for arc erosion resistance and weld resistance</p></td></tr></table>
hohe Sicherheit hinsichtlich Verschweißen geschlossener Kontakte im
 
Kurzschlussfall,
 
 
 
Zunahme der Verschweißresistenz mit steigendem Grafit-Anteil,
 
niedriger Kontaktwiderstand,
 
 
 
ungünstiges Abbrandverhalten insbesondere beim Ausschalten,
 
mit zunehmendem Grafit-Anteil erhöhter Abbrand;
 
 
 
gleichzeitig nimmt die Verrußung der Schaltkammerwände zu,
 
 
 
Ag/C mit senkrechter Orientierung der Grafit-Partikel weist Vorteile
 
hinsichtlich Abbrandfestigkeit,
 
mit paralleler Orientierung Vorteile
 
hinsichtlich Verschweißresistenz auf,
 
 
 
ungünstiges Lichtbogenlaufverhalten; daher Einsatz in unsymmetrischer
 
Paarung,
 
begrenzte Umformbarkeit,
 
 
 
löt- und schweißbar durch ausgebrannten Rücken,
 
Ag/C ist hinsichtlich Abbrandfestigkeit und
 
Verschweißverhalten optimiert.</p></td></tr></table>
 
 
</figtable>
 
</figtable>
  
  
 
<figtable id="tab:tab2.34">
 
<figtable id="tab:tab2.34">
<caption>'''<!--Table 2.34:-->Anwendungsbeispiele und Lieferformen von Silber-Grafit Werkstoffen'''</caption>
+
<caption>'''<!--Table 2.34:-->Application Examples and Forms of Supply of Silver– Graphite (GRAPHOR) Contact Materials'''</caption>
 
<table class="twocolortable">
 
<table class="twocolortable">
<tr><th><p class="s12">Werkstoff
+
<tr><th><p class="s12">Material/</p><p class="s12">DODUCO Designation</p></th><th><p class="s12">Application Examples</p></th><th><p class="s12">Form of Supply</p></th></tr><tr><td><p class="s12">Ag/C 98/2</p><p class="s12">GRAPHOR 2</p></td><td><p class="s12">Motor circuit breakers, paired with Ag/Ni</p></td><td><p class="s12">Contact tips, brazed and welded contact parts, some contact rivets</p></td></tr><tr><td><p class="s12">Ag/C 97/3</p><p class="s12">GRAPHOR 3</p><p class="s12">Ag/C 96/4</p><p class="s12">GRAPHOR 4</p><p class="s12">Ag/C 95/5</p><p class="s12">GRAPHOR 5</p><p class="s12">GRAPHOR 3D GRAPHOR 4D GRAPHOR DF</p></td><td><p class="s12">Circuit breakers, paired with Cu, Motor-protective circuit breakers, paired with Ag/Ni,</p><p class="s12">Fault current circuit breakers, paired with Ag/Ni, Ag/W, Ag/WC, Ag/SnO<span class="s45">2</span>, Ag/ZnO,</p><p class="s12">(Main) Power switches, paired with Ag/Ni, Ag/W</p></td><td><p class="s12">Contact tips, brazed and welded contact</p><p class="s12">parts, some contact rivets with</p><p class="s12">Ag/C97/3</p></td></tr><tr><td><p class="s12">Ag/C 97/3</p><p class="s12">GRAPHOR 3</p><p class="s12">Ag/C 96/4</p><p class="s12">GRAPHOR 4</p><p class="s12">Ag/C 95/5</p><p class="s12">GRAPHOR 5</p><p class="s12">GRAPHOR 3D GRAPHOR 4D GRAPHOR DF</p></td><td><p class="s12">Circuit breakers, paired with Cu, Motor-protective circuit breakers, paired with Ag/Ni,</p><p class="s12">Fault current circuit breakers, paired with Ag/Ni, Ag/W, Ag/WC, Ag/SnO<span class="s45">2</span>, Ag/ZnO,</p><p class="s12">(Main) Power switches, paired with Ag/Ni, Ag/W</p></td><td><p class="s12">Contact profiles (weld tapes), Contact tips, brazed and welded contact parts</p></td></tr><tr><td/><td/></tr></table>
</p></th><th><p class="s12">Anwendungsbeispiele</p></th><th><p class="s12">Lieferform</p></th></tr><tr><td><p class="s12">Ag/C 98/2</p><p class="s12"></p></td><td><p class="s12">Motorschutzschalter, gepaart mit
 
Ag/Ni</p></td><td><p class="s12">Kontaktauflagen, gelötete und
 
geschweißte Kontaktteile,
 
begrenzt Kontakniete</p></td></tr><tr><td><p class="s12">Ag/C 97/3</p><p class="s12"></p><p class="s12">Ag/C 96/4</p><p class="s12"></p><p class="s12">Ag/C 95/5</p><p class="s12">Ag/C DF</p><p class="s12"></p></td><td><p class="s12">Leitungsschutzschalter, gepaart mit
 
Cu,
 
Motorschutzschalter,
 
gepaart mit Ag/Ni,
 
Fehlerstromschutzschalter,
 
gepaart mit Ag/Ni, Ag/W, Ag/W</p></td><td><p class="s12">Kontaktauflagen, gelötete und
 
geschweißte Kontaktteile,
 
begrenzt Kontaktniete bei Ag/C 97/3</p><td/></tr></table>
 
 
</figtable>
 
</figtable>
  

Revision as of 18:21, 24 September 2014

Feinsilber

Feinsilber weist die höchste elektrische und thermische Leitfähigkeit aller Metalle auf. Es ist resistent gegen Oxidbildung. Nachteilig wirken sich die geringe Verschleißfestigkeit, niedrige Entfestigungstemperatur und vor allem die hohe Affinität des Silbers gegen Schwefel und Schwefel-Verbindungen aus. Durch Einwirkung schwefelhaltiger Verbindungen bilden sich bräunliche bis schwarze Deckschichten aus Silbersulfid, die zu einer Erhöhung des Kontaktwiderstandes und u.U. zum völligen Versagen des Schaltgerätes führen können, wenn diese nicht mechanisch, elektrisch oder thermisch zerstört werden. Weiterhin ist nachteilig zu bewerten, dass Kontaktstücke aus Feinsilber beim Einschalten von Überströmen stark zum Verschweißen neigen sowie bei Gleichstrombetrieb nur eine geringe Resistenz gegenüber Materialwanderung aufweisen. Silber kann in feuchter Atmosphäre in Berührung mit Kunststoffen unter Wirkung eines elektrischen Feldes kriechen (Silber-Migration) und dadurch Kurzschlüsse verursachen.

Table 1 shows the typically available quality grades of silver. In certain economic areas, i.e. China, there are additional grades with varying amounts of impurities available on the market. In powder form silver is used for a wide variety of silver based composite contact materials. Different manufacturing processes result in different grades of Ag powder as shown in Table 2. additional properties of silver powders and their usage are described in Precious Metal Powders und Table Different Types of Silver Powders.

Semi-finished silver materials can easily be warm or cold formed and can be clad to the usual base materials. For attachment of silver to contact carrier materials welding of wire or profile cut-offs and brazing are most widely applied. Besides these mechanical processes such as wire insertion (wire staking) and the riveting (staking) of solid or composite contact rivets are used in the manufacture of contact components.

Contacts made from fine silver are applied in various electrical switching devices such as relays, pushbuttons, appliance and control switches for currents < 2 A Table 6. Electroplated silver coatings are widely used to reduce the contact resistance and improve the brazing behavior of other contact materials and components.


Table 1: Overview of the Most Widely Used Silver Grades

Designation

Composition minimum Ag [wt%]

Impurities

[ppm]

Notes on Usage

Spectroscopically

Pure Ag

99.999

Cu < 3

Zn < 1

Si < 1

Ca < 2

Fe < 1

Mg < 1

Cd < 1

Sheets, strips, rods, wires for electronic applications

High Purity Ag, oxygen-free

99.995

Cu < 30

Zn < 2

Si < 5

Ca < 10

Fe < 3

Mg < 5

Cd < 3

Ingots, bars, granulate for alloying

purposes


Table 2: Quality Criteria of Differently Manufactured Silver Powders
Impurities Ag-Chem.* Ag-ES** Ag-V***
Cu ppm < 100 < 300 < 300
Fe ppm < 50 < 100 < 100
Ni ppm < 50 < 50 < 50
Cd ppm < 50
Zn ppm < 10
Na + K + Mg + Ca ppm < 80 < 50 < 50
Ag CI ppm < 500 < 500 < 500
NO3 ppm < 40 < 40
Nh4CI ppm < 30 < 30
Particle Size Distribution (screen analysis)
> 100 μm % 0 0 0
< 100 bis > 63 μm % < 5 < 5 < 15
< 36 μm % < 80 < 90 < 75
Apparent Density g/cm3 1.0 - 1.6 1.0 - 1.5 3 - 4
Tap Density ml/100g 40 - 50 40 - 50 15 - 25
Press/Sintering Behavior
Press Density g/cm3 5.6 - 6.5 5.6 - 6.3 6.5 - 8.5
Sinter Density g/cm3 > 9 > 9.3 > 8
Volume Shrinkage % > 34 > 35 > 0
Annealing Loss % < 2 < 0.1 < 0.1

* Manufactured by chemical precipitation
** Manufactured by electrolytic deposition
*** Manufactured by atomizing of a melt


Figure 1 Strain hardening of Ag 99.95 by cold working

Figure 2 Softening of Ag 99.95 after annealing for 1 hr after different degrees of strain hardening


Figure 1: Strain hardening of Ag 99.95 bei cold working
Figure 2: Softening of Ag 99.95 after annealing for 1 hr after different degrees of strain hardening

Silver Alloys

To improve the physical and contact properties of fine silver melt-metallurgical produced silver alloys are used Table 3. By adding metal components the mechanical properties such as hardness and tensile strength as well as typical contact properties such as erosion resistance, and resistance against material transfer in DC circuits are increased Table 4. On the other hand however, other properties such as electrical conductivity and chemical corrosion resistance can be negatively impacted by alloying Figure 3 and Figure 4.

Table 3: Physical Properties of Silver and Silver Alloys
Material/
DODUCO-
Designation
Silver Content
[wt%]
Density
[g/cm3]
Melting Point
or Range
[°C]
Electrical
Resistivity
[μΩ·cm]
Electrical
Conductivity
[MS/m]
Thermal
Conductivity
[W/mK]
Temp. Coefficient of
the Electr.Resistance
[10-3/K]
Modulus of
Elasticity
[GPa]
Ag 99.95 10.5 961 1.67 60 419 4.1 80
AgNi 0,15
ARGODUR-Spezial
99.85 10.5 960 1.72 58 414 4.0 82
AgCu3 97 10.4 900 - 938 1.92 52 385 3.2 85
AgCu5 95 10.4 910 1.96 51 380 3.0 85
AgCu10 90 10.3 870 2.0 50 335 2.8 85
AgCu28 72 10.0 779 2.08 48 325 2.7 92
Ag98CuNi
ARGODUR 27
98 10.4 940 1.92 52 385 3.5 85
AgCu24,5Ni0,5 75 10.0 805 2.20 45 330 2.7 92
AgCd10 89 - 91 10.3 910 - 925 4.35 23 150 1.4 60
Ag99,5NiMg
ARGODUR 32
Not heat treated
99.5 10.5 960 2.32 43 293 2.3 80
ARGODUR 32
Heat treated
99.5 10.5 960 2.32 43 293 2.1 80

Figure 3 Influence of 1-10 atom% of different alloying metals on the electrical resistivity of silver

Figure 4 Electrical resistivity p of AgCu alloys

Figure 3: Influence of 1-10 atom% of different alloying metals on the electrical resistivity of silver
Figure 4: Electrical resistivity p of AgCu alloys with 0-20 weight% Cu in the soft annealed and tempered stage a) Annealed and quenched b) Tempered at 280°C

Fine-Grain Silver

Fine-Grain Silver (ARGODUR-Spezial) is defined as a silver alloy with an addition of 0.15 wt% of Nickel. Silver and nickel are not soluble in each other in solid form. In liquid silver only a small amount of nickel is soluble as the phase diagram Figure 7 illustrates. During solidification of the melt this nickel addition gets finely dispersed in the silver matrix and eliminates the pronounce coarse grain growth after prolonged influence of elevated temperatures Figure 5 and Figure 6.

Figure 5: Coarse grain micro structure of Ag 99.97 after 80% cold working and 1 hr annealing at 600°C
Figure 6: Fine grain microstructure of AgNi0.15 after 80% cold working and 1 hr annealing at 600°C
Figure 7: Phase diagram of silver nickel

Fine-grain silver has almost the same chemical corrosion resistance as fine silver. Compared to pure silver it exhibits a slightly increased hardness and tensile strength Table 4. The electrical conductivity is just slightly decreased by this low nickel addition. Because of its significantly improved contact properties fine grain silver has replaced pure silver in many applications.

Hard-Silver Alloys

Using copper as an alloying component increases the mechanical stability of silver significantly. The most important among the binary AgCu alloys is that of AgCu3, known in europe also under the name of hard-silver. This material still has a chemical corrosion resistance close to that of fine silver. In comparison to pure silver and fine-grain silver AgCu3 exhibits increased mechanical strength as well as higher arc erosion resistance and mechanical wear resistance Table 4.

Table 4: Mechanical Properties of Silver and Silver Alloys

Material/

DODUCO-Designation

Hardness

Condition

Tensile Strength

Rm [MPa]

Elongation A [%] min.

Vickers Hardness

HV 10

Ag

R 200

R 250

R 300

R 360

200 - 250

250 - 300

300 - 360

> 360

30

8

3

2

30

60

80

90

AgNi 0,15

ARGODUR Special

R 220

R 270

R 320

R 360

220 - 270

270 - 320

320 - 360

> 360

25

6

2

1

40

70

85

100

AgCu3

R 250

R 330

R 400

R 470

250 - 330

330 - 400

400 - 470

> 470

25

4

2

1

45

90

115

120

AgCu5

R 270

R 350

R 460

R 550

270 - 350

350 - 460

460 - 550

> 550

20

4

2

1

55

90

115

135

AgCu10

R 280

R 370

R 470

R 570

280 - 370

370 - 470

470 - 570

> 570

15

3

2

1

60

95

130

150

AgCu28

R 300

R 380

R 500

R 650

300 - 380

380 - 500

500 - 650

> 650

10

3

2

1

90

120

140

160

Ag98CuNi

ARGODUR 27

R 250

R 310

R 400

R 450

250 - 310

310 - 400

400 - 450

> 450

20

5

2

1

50

85

110

120

AgCu24,5Ni0,5

R 300

R 600

300 - 380

> 600

10

1

105

180

AgCd10

R 200

R 280

R 400

R 450

200 - 280

280 - 400

400 - 450

> 450

15

3

2

1

36

75

100

115

Ag99,5NiMg

ARGODUR 32

Not heat treated

R 220

R 260

R 310

R 360

220

260

310

360

25

5

2

1

40

70

85

100

ARGODUR 32 Heat treated

R 400

400

2

130-170


Increasing the Cu content further also increases the mechanical strength of AgCu alloys and improves arc erosion resistance and resistance against material transfer while at the same time however the tendency to oxide formation becomes detrimental. This causes during switching under arcing conditions an increase in contact resistance with rising numbers of operation. In special applications where highest mechanical strength is recommended and a reduced chemical resistance can be tolerated, the eutectic AgCu alloy with 28 wt% of copper Figure 8 is used. AgCu10 also known as coin silver has been replaced in many applications by composite silver-based materials while sterling silver (AgCu7.5) has never extended its important usage from decorative table wear and jewelry to industrial applications in electrical contacts.

Besides these binary alloys, ternary AgCuNi alloys are used in electrical contact applications. From this group the material ARGODUR 27, an alloy of 98 wt% Ag with a 2 wt% Cu and nickel addition has found practical importance close to that of AgCu3. This material is characterized by high resistance to oxidation and low tendency to re-crystallization during exposure to high temperatures. Besides high mechanical stability this AgCuNi alloy also exhibits a strong resistance against arc erosion. Because of its high resistance against material transfer the alloy AgCu24.5Ni0.5 has been used in the automotive industry for an extended time in the North American market. Caused by miniaturization and the related reduction in available contact forces in relays and switches this material has been replaced widely because of its tendency to oxide formation.

The attachment methods used for the hard silver materials are mostly close to those applied for fine silver and fine grain silver.

Hard-silver alloys are widely used for switching applications in the information and energy technology for currents up to 10 A, in special cases also for higher current ranges Table 6.

Dispersion hardened alloys of silver with 0.5 wt% MgO and NiO (ARGODUR 32) are produced by internal oxidation. While the melt-metallurgical alloy is easy to cold-work and form the material becomes very hard and brittle after dispersion hardening. Compared to fine silver and hard-silver this material has a greatly improved temperature stability and can be exposed to brazing temperatures up to 800°C without decreasing its hardness and tensile strength. Because of these mechanical properties and its high electrical conductivity ARGODUR 32 is mainly used in the form of contact springs that are exposed to high thermal and mechanical stresses in relays, and contactors for aeronautic applications.


Figure 8 Phase diagram of silver-copper

Figure 9 Phase diagram of silver-cadmium

Figure 10 Strain hardening of AgCu3 by cold working

Figure 11 Softening of AgCu3 after annealing for 1 hr after 80% cold working

Figure 12 Strain hardening of AgCu5 by cold working

Figure 13 Softening of AgCu5 after annealing for 1 hr after 80% cold working

Figure 14 Strain hardening of AgCu 10 by cold working

Figure 15 Softening of AgCu10 after annealing for 1 hr after 80% cold working

Figure 16 Strain hardening of AgCu28 by cold working

Figure 17 Softening of AgCu28 after annealing for 1 hr after 80% cold working

Figure 18 Strain hardening of AgNi0.15 by cold working

Figure 19 Softening of AgNi0.15 after annealing for 1 hr after 80% cold working

Figure 20 Strain hardening of ARGODUR 27 by cold working

Figure 21 Softening of ARGODUR 27 after annealing for 1 hr after 80% cold working

Figure 8: Phase diagram of silver-copper
Figure 9: Phase diagram of silver-cadmium
Figure 10: Strain hardening of AgCu3 by cold working
Figure 11: Softening of AgCu3 after annealing for 1 hr after 80% cold working
Figure 12: Strain hardening of AgCu5 by cold working
Figure 13: Softening of AgCu5 after annealing for 1 hr after 80% cold working
Figure 14: Strain hardening of AgCu 10 by cold working
Figure 15: Softening of AgCu10 after annealing for 1 hr after 80% cold working
Figure 16: Strain hardening of AgCu28 by cold working
Figure 17: Softening of AgCu28 after annealing for 1 hr after 80% cold working
Figure 18: Strain hardening of AgNiO15 by cold working
Figure 19: Softening of AgNiO15 after annealing
Figure 20: Strain hardening of ARGODUR 27 by cold working
Figure 21: Softening of ARGODUR 27 after annealing for 1 hr after 80% cold working


Table 5: Contact and Switching Properties of Silver and Silver Alloys
Material Properties
Ag
AgNi0,15
ARGODUR-Special
Highest electrical and thermal conductivity, high affinity to sulfur (sulfide formation), low welding resistance, low contact resistance, very good formability Oxidation resistant at higher make currents, limited arc erosion resistance, tendency to material transfer in DC circuits, easy to braze and weld to carrier materials
Ag Alloys Increasing contact resistance with increasing

Cu content, compared to fine Ag higher arc erosion resistance and mechanical strength, lower tendency to material

Good formability, good brazing and welding properties


Table 6: Application Examples and Forms of Supply for Silver and Silver Alloys
Material Application Examples Form of Supply
Ag
AgNi0,15
ARGODUR-Spezial
AgCu3
AgNi98NiCu2
ARGODUR 27
AgCu24,5Ni0,5
Relays,
Micro switches,
Auxiliary current switches,
Control circuit devices,
Appliance switches,
Wiring devices (≤ 20A),
Main switches
Semi-finished Materials:
Strips, wires, contact profiles, clad contact strips, toplay profiles, seam- welded strips
Contact Parts:
Contact tips, solid and composite rivets, weld buttons; clad, welded and riveted contact parts
AgCu5
AgCu10
AgCu28
Special applications Semi-finished Materials:
Strips, wires, contact profiles, clad contact strips, seam-welded strips
Contact parts:
Contact tips, solid contact rivets, weld buttons; clad, welded and riveted contact parts
Ag99, 5NiOMgO
ARGODUR 32
Miniature relays, aerospace relays and contactors, erosion wire for injection nozzles Contact springs, contact carrier parts

Silver-Palladium Alloys

The addition of 30 wt% Pd increases the mechanical properties as well as the resistance of silver against the influence of sulfur and sulfur containing compounds significantly Table 7 and Table 8. Alloys with 40-60 wt% Pd have an even higher resistance against silver sulfide formation. At these percentage ranges however the catalytic properties of palladium can influence the contact resistance behavior negatively. The formability also decreases with increasing Pd contents.

AgPd alloys are hard, arc erosion resistant, and have a lower tendency towards material transfer under DC loads Table 9. On the other hand the electrical conductivity is decreased at higher Pd contents. The ternary alloy AgPd30Cu5 has an even higher hardness which makes it suitable for use in sliding contact systems.

AgPd alloys are mostly used in relays for the switching of medium to higher loads (> 60V, > 2A) as shown in Table 10. Because of the high palladium price these formerly solid contacts have been widely replaced by multi-layer designs such as AgNi0.15 or AgNi10 with a thin Au surface layer. A broader field of application for AgPd alloys remains in the wear resistant sliding contact systems.


Figure 22 Phase diagram of silver-palladium

Figure 23 Strain hardening of AgPd30 by cold working

Figure 24 Strain hardening of AgPd50 by cold working

Figure 25 Strain hardening of AgPd30Cu5 by cold working

Figure 26 Softening of AgPd30, AgPd50, and AgPd30Cu5 after annealing of 1 hr after 80% cold working

Figure 22: Phase diagram of silver-palladium
Figure 23: Strain hardening of AgPd30 by cold working
Figure 24: Strain hardening of AgPd50 by cold working
Figure 25: Strain hardening of AgPd30Cu5 by cold working
Figure 26: Softening of AgPd30, AgPd50, and AgPd30Cu5 after annealing of 1 hr after 80% cold working


Table 7: Physical Properties of Silver-Palladium Alloys
Material Palladium Content
[wt%]
Density
[g/cm3]
Melting Point
or Range
[°C]
Electrical
Resistivity
[μΩ·cm]
Electrical
Conductivity
[MS/m]
Thermal
Conductivity
[W/m·K]
Temp. Coefficient of
the Electr. Resistance
[10-3/K]
AgPd30 30 10.9 1155 - 1220 14.7 6.8 60 0.4
AgPd40 40 11.1 1225 - 1285 20.8 4.8 46 0.36
AgPd50 50 11.2 1290 - 1340 32.3 3.1 34 0.23
AgPd60 60 11.4 1330 - 1385 41.7 2.4 29 0.12
AgPd30Cu5 30 10.8 1120 - 1165 15.6 6.4 28 0.37


Table 8: Mechanical Properties of Silver-Palladium Alloys

Material

Hardness

Condition

Tensile Strength

Rm[MPa]

Elongation A

[%]min.

Vickers Hardness

HV

AgPd30

R 320

R 570

320

570

38

3

65

145

AgPd40

R 350

R 630

350

630

38

2

72

165

AgPd50

R 340

R 630

340

630

35

2

78

185

AgPd60

R 430

R 700

430

700

30

2

85

195

AgPd30Cu5

R 410

R 620

410

620

40

2

90

190


Table 9: Contact and Switching Properties of Silver-Palladium Alloys
Material Properties
AgPd30-60 Corrosion resistant, tendency to Brown Powder formation increases with Pd content, low tendency to material transfer in DC circuits, high ductility Resistant against Ag2S formation, low contact resistance, increasing hardness with higher Pd content, AgPd30 has highest arc erosion resistance, easy to weld and clad
AgPd30Cu5 High mechanical wear resistance High Hardness


Table 10: Application Examples and Forms of Suppl for Silver-Palladium Alloys

Material

Application Examples

Form of Supply

AgPd 30-60

Switches, relays, push-buttons,

connectors, sliding contacts

Semi-finished Materials:

Wires, micro profiles (weld tapes), clad

contact strips, seam-welded strips

Contact Parts:

Solid and composite rivets, weld buttons;

clad and welded contact parts, stamped parts

AgPd30Cu5

Sliding contacts, slider tracks

Wire-formed parts, contact springs, solid

and clad stamped parts

Silver Composite Materials

Silver-Nickel (SINIDUR) Materials

Since silver and nickel are not soluble in each other in solid form and in the liquid phase have only very limited solubility silver nickel composite materials with higher Ni contents can only be produced by powder metallurgy. During extrusion of sintered Ag/Ni billets into wires, strips and rods the Ni particles embedded in the Ag matrix are stretched and oriented in the microstructure into a pronounced fiber structure Figure 31 and Figure 32

The high density produced during hot extrusion aids the arc erosion resistance of these materials Table 11. The typical application of Ag/Ni contact materials is in devices for switching currents of up to 100A Table 14. In this range they are significantly more erosion resistant than silver or silver alloys. In addition they exhibit with nickel contents < 20 wt% a low and over their operational lifetime consistent contact resistance and good arc moving properties. In DC applications Ag/Ni materials exhibit a relatively low tendency of material transfer distributed evenly over the contact surfaces Table 13 .

Typically Ag/Ni (SINIDUR) materials are usually produced with contents of 10-40 wt% Ni. The most widely used materials SINIDUR 10 and SINIDUR 20- and also SINIDUR 15, mostly used in north america-, are easily formable and applied by cladding Figure 27 Figure 28 Figure 29 Figure 30. They can be, without any additional welding aids, economically welded and brazed to the commonly used contact carrier materials. The (SINIDUR) materials with nickel contents of 30 and 40 wt% are used in switching devices requiring a higher arc erosion resistance and where increases in contact resistance can be compensated through higher contact forces.

The most important applications for Ag/Ni contact materials are typically in relays, wiring devices, appliance switches, thermostatic controls, auxiliary switches, and small contactors with nominal currents > 20A Table 14.

Table 11: Physical Properties of Silver-Nickel (SINIDUR) Materials
Material/DODUCOSilver ContentDensityMelting PointElectricalResistivitypElectrical Resistivity (soft)
Designation[wt%][g/cm3][°C][µΩ·cm] [% IACS][MS/m]

Ag/Ni 90/10

SINIDUR 10

89 - 91

10.2 - 10.3

960

1.82 - 1.92

90 - 95

52 - 55

Ag/Ni 85/15

SINIDUR 15

84 - 86

10.1 - 10.2

960

1.89 - 2.0

86 - 91

50 - 53

Ag/Ni 80/20

SINIDUR 20

79 - 81

10.0 - 10.1

960

1.92 - 2.08

83 - 90

48 - 52

Ag/Ni 70/30

SINIDUR 30

69 - 71

9.8

960

2.44

71

41

Ag/Ni 60/40

SINIDUR 40

59 - 61

9.7

960

2.70

64

37


Table 12: Mechanical Properties of Silver-Nickel (SINIDUR) Materials
Material/DODUCO-Designation Hardness Condition Tensile Strength Rm [Mpa] Elongation A (soft annealed) [%] min. Vickers Hardness HV 10
Ag/Ni 90/10
SINIDUR 10
soft
R 220
R 280
R 340
R 400
< 250
220 - 280
280 - 340
340 - 400
> 400
25
20
3
2
1
< 50
50 - 70
65 - 90
85 - 105
> 100
Ag/Ni 85/15
SINIDUR 15
soft
R 300
R 350
R 380
R 400
< 275
250 - 300
300 - 350
350 - 400
> 400
20
4
2
2
1
< 70
70 - 90
85 - 105
100 - 120
> 115
Ag/Ni 80/20
SINIDUR 20
soft
R 300
R 350
R 400
R 450
< 300
300 - 350
350 - 400
400 - 450
> 450
20
4
2
2
1
< 80
80 - 95
90 - 110
100 - 125
> 120
Ag/Ni 70/30
SINIDUR 30
R 330
R 420
R 470
R 530
330 - 420
420 - 470
470 - 530
> 530
8
2
1
1
80
100
115
135
Ag/Ni 60/40
SINIDUR 40
R 370
R 440
R 500
R 580
370 - 440
440 - 500
500 - 580
> 580
6
2
1
1
90
110
130
150


Figure 27 Strain hardening of Ag/Ni 90/10 by cold working

Figure 28 Softening of Ag/Ni 90/10 after annealing for 1 hr after 80% cold working

Figure 29 Strain hardening of Ag/Ni 80/20 by cold working

Figure 30 Softening of Ag/Ni 80/20 after annealing for 1 hr after 80% cold working

Figure 31 Micro structure of Ag/Ni 90/10 a) perpendicular to the extrusion direction b) parallel to the extrusion direction

Figure 32 Micro structure of Ag/Ni 80/20 a) perpendicular to the extrusion direction b) parallel t o the extrusion direction


Figure 27: Strain hardening of Ag/Ni 90/10 by cold working
Figure 28: Softening of Ag/Ni 90/10 after annealing for 1 hr after 80% cold working
Figure 29: Strain hardening of Ag/Ni 80/20 by cold working
Figure 30: Softening of Ag/Ni 80/20 after annealing for 1 hr after 80% cold working
Figure 31: Micro structure of Ag/Ni 90/10 a) perpendicular to the extrusion direction b) parallel to the extrusion direction
Figure 32: Micro structure of Ag/Ni 80/20 a) perpendicular to the extrusion direction b) parallel to the extrusion direction


Table 13: Contact and Switching Properties of Silver-Nickel (SINIDUR) Materials
Material/DODUCO-Designation Properties
Ag/Ni
SINIDUR
High arc erosion resistance at switching currents up to 100A,
Resistance against welding for starting current up to 100A,
low and over the electrical contact life nearly constant contact resistance for Ag/Ni 90/10 and Ag/Ni 80/20,
ow and spread-out material transfer under DC load,
non-conductive erosion residue on isolating components resulting in only minor change of the dielectric strength of switching devices,
good arc moving properties,
good arc extinguishing properties,
good or sufficient ductility depending on the Ni content,
easy to weld and braze


Table 14: Application Examples and Forms of Supply for Silver-Nickel (SINIDUR) Materials
Material Application Examples Switching or Nominal Current Form of Supply
Ag/Ni 90/10-80/20 Relays
Automotive Relays - Resistive load - Motor load
> 10A
> 10A
Semi-finisched Materials:
Wires, profiles,
clad strips,
Seam-welded strips,
Toplay strips
Contact Parts:
Contact tips, solid
and composite
rivets, Weld buttons,
clad, welded,
brazed, and riveted
contact parts
Ag/Ni 90/10, Ag/Ni 85/15-80/20 Auxiliary current switches ≤ 100A
Ag/Ni 90/10-80/20 Appliance switches ≤ 50A
Ag/Ni 90/10 Wiring devices ≤ 20A
Ag/Ni 90/10 Main switches, Automatic staircase illumination switches ≤ 100A
Ag/Ni 90/10-80/20 Control
Thermostats
> 10A
≤ 50A
Ag/Ni 90/10-80/20 Load switches ≤ 20A
Ag/Ni 90/10-80/20 Contactors circuit breakers ≤ 100A
Ag/Ni 90/10-80/20
paired with Ag/C 97/3-96/4
Motor protective circuit breakers ≤ 40A
Ag/Ni 80/20-60/40
paired with Ag/C 96/4-95/5
Fault current circuit breakers ≤ 100A Rods, Profiles,
Contact tips, Formed parts,
brazed and welded
contact parts
Ag/Ni 80/20-60/40
paired with Ag/C 96/4-95/5
Power switches > 100A

Silver-Metal Oxide Materials Ag/CdO, Ag/SnO2, Ag/ZnO

The family of silver-metal oxide contact materials includes the material groups: silver-cadmium oxide (DODURIT CdO), silver-tin oxide (SISTADOX), and silverzinc oxide (DODURIT ZnO). Because of their very good contact and switching properties like high resistance against welding, low contact resistance, and high arc erosion resistance, silver-metal oxides have gained an outstanding position in a broad field of applications. They mainly are used in low voltage electrical switching devices like relays, installation and distribution switches, appliances, industrial controls, motor controls, and protective devices Table 21.

  • Silver-cadmium oxide (DODURIT CdO) materials

Silver-cadmium oxide (DODURIT CdO) materials with 10-15 wt% are produced by both, internal oxidation and powder metallurgical methods Table 15.

Physical and Mechanical Properties as well as Manufacturing Processes and Forms of Supply of Extruded Silver Cadmium Oxide (DODURIT CdO) Contact Materials

The manufacturing of strips and wires by internal oxidation starts with a molten alloy of silver and cadmium. During a heat treatment below it's melting point in a oxygen rich atmosphere in such a homogeneous alloy the oxygen diffuses from the surface into the bulk of the material and oxidizes the Cd to CdO in a more or less fine particle precipitation inside the Ag matrix. The CdO particles are rather fine in the surface area and are becoming larger further away towards the center of the material Figure 39.

During the manufacturing of Ag/CdO contact material by internal oxidation the processes vary depending on the type of semi-finished material. For Ag/CdO wires a complete oxidation of the AgCd wire is performed, followed by wire-drawing to the required diameter Figure 33 and Figure 34. The resulting material is used for example in the production of contact rivets. For Ag/CdO strip materials two processes are commonly used: Cladding of an AgCd alloy strip with fine silver followed by complete oxidation results in a strip material with a small depletion area in the center of it's thickness and a Ag backing suitable for easy attachment by brazing (sometimes called "Conventional Ag/CdO"). Using a technology that allows the partial oxidation of a dual-strip AgCd alloy material in a higher pressure pure oxygen atmosphere yields a composite Ag/CdO strip material that has besides a relatively fine CdO precipitation also a easily brazable AgCd alloy backing Figure 41. These materials (DODURIT CdO ZH) are mainly used as the basis for contact profiles and contact tips.

During powder metallurgical production the powder mixed made by different processes are typically converted by pressing, sintering and extrusion to wires and strips. The high degree of deformation during hot extrusion produces a uniform and fine dispersion of CdO particles in the Ag matrix while at the same time achieving a high density which is advantageous for good contact properties Figure 40. To obtain a backing suitable for brazing, a fine silver layer is applied by either com-pound extrusion or hot cladding prior to or right after the extrusion Figure 42.

For larger contact tips, and especially those with a rounded shape, the single tip Press-Sinter-Repress process (PSR) offers economical advantages. The powder mix is pressed in a die close to the final desired shape, the "green" tips are sintered, and in most cases the repress process forms the final exact shape while at the same time increasing the contact density and hardness.

Using different silver powders and minor additives for the basic Ag and CdO starting materials can help influence certain contact properties for specialized applications.

Figure 33 Strain hardening of internally oxidized Ag/CdO 90/10 by cold working

Figure 34 Softening of internally oxidized Ag/CdO 90/10 after annealing for 1 hr after 40% cold working

Figure 35 Strain hardening of Ag/CdO 90/10 P by cold working

Figure 36 Softening of Ag/CdO 90/10 P after annealing for 1 hr after 40% cold working

Figure 37 Strain hardening of Ag/CdO 88/12 WP

Figure 38 Softening of Ag/CdO 88/12WP after annealing for 1 hr after different degrees of cold working

Figure 39 Micro structure of Ag/CdO 90/10 i.o. a) close to surface b) in center area

Figure 40 Micro structure of Ag/CdO 90/10 P: a) perpendicular to extrusion direction b) parallel to extrusion direction

Figure 41 Micro structure of Ag/CdO 90/10 ZH: 1) Ag/CdO layer 2) AgCd backing layer

Figure 42 Micro structure of AgCdO 88/12 WP: a) perpendicular to extrusion direction b) parallel to extrusion direction

Figure 33: Strain hardening of internally oxidized Ag/CdO 90/10 by cold working
Figure 34: Softening of internally oxidized Ag/CdO 90/10 after annealing for 1 hr after 40% cold working
Figure 35: Strain hardening of Ag/CdO 90/10 P by cold working
Figure 36: Softening of Ag/CdO 90/10 P after annealing for 1 hr after 40% cold working
Figure 37: Strain hardening of Ag/CdO 88/12 WP
Figure 38: Softening of Ag/CdO 88/12WP after annealing for 1 hr after different degrees of cold working
Figure 39: Micro structure of Ag/CdO 90/10 i.o. a) close to surface b) in center area
Figure 40: Micro structure of Ag/CdO 90/10 P: a) perpendicular to extrusion direction b) parallel to extrusion direction
Figure 41: Micro structure of Ag/CdO 90/10 ZH: 1) Ag/CdO layer 2) AgCd backing layer
Figure 42: Micro structure of AgCdO 88/12 WP: a) perpendicular to extrusion direction b) parallel to extrusion direction


  • Silver–tin oxide (SISTADOX) materials

Over the past years, many Ag/CdO contact materials have been replaced by Ag/SnO2 based materials with 2-14 wt% SnO2 because of the toxicity of Cadmium. This changeover was further favored by the fact that Ag/SnO2 contacts quite often show improved contact and switching properties such as lower arc erosion, higher weld resistance, and a significant lower tendency towards material transfer in DC switching circuits Table 20. Ag/SnO2 materials have been optimized for a broad range of applications by other metal oxide additives and modification in the manufacturing processes that result in different metallurgical, physical and electrical propertiesTable 18 und Table 19.

Manufacturing of Ag/SnO2 by internal oxidation is possible in principle, but during heat treatment of alloys containing > 5 wt% of tin in oxygen, dense oxide layers formed on the surface of the material prohibit the further diffusion of oxygen into the bulk of the material. By adding Indium or Bismuth to the alloy the internal oxidation is possible and results in materials that typically are rather hard and brittle and may show somewhat elevated contact resistance and is limited to applications in relays. To make a ductile material with fine oxide dispersion (SISTADOX TOS F) Figure 70 it is necessary to use special process variations in oxidation and extrusion which lead to materials with improved properties in relays. Adding a brazable fine silver layer to such materials results in a semifinished material suitable for the manufacture as smaller weld profiles (SISTADOX WTOS F) Figure 72. Because of their resistance to material transfer and low arc erosion these materials find for example a broader application in automotive relays Table 21.


Powder metallurgy plays a significant role in the manufacturing of Ag/SnO2 contact materials. Besides SnO2 a smaller amount (<1 wt%) of one or more other metal oxides such as WO3, MoO3, CuO and/or Bi2O3 are added. These additives improve the wettability of the oxide particles and increase the viscosity of the Ag melt. They also provide additional benefits to the mechanical and arcing contact properties of materials in this group Table 16 (Table 2.26 als PDF herunterladen: File:Physical Mechanical properties.pdf ).


Physical and Mechanical Properties as well as Manufacturing Processes and Forms of Supply of Extruded Silver-Tin Oxide (SISTADOX) Contact Materials

In the manufacture the initial powder mixes different processes are applied which provide specific advantages of the resulting materials in respect to their contact properties . Some of them are described here as follows:

a) Powder blending from single component powders
In this common process all components including additives that are part of the powder mix are blended as single powders. The blending is usually performed in the dry stage in blenders of different design.
b) Powder blending on the basis of doped powders
For incorporation of additive oxides in the SnO2 powder the reactive spray process (RSV) has shown advantages. This process starts with a waterbased solution of the tin and other metal compounds. This solution is nebulized under high pressure and temperature in a reactor chamber. Through the rapid evaporation of the water each small droplet is converted into a salt crystal and from there by oxidation into a tin oxide particle in which the additive metals are distributed evenly as oxides. The so created doped AgSnO2 powder is then mechanically mixed with silver powder.
c) Powder blending based on coated oxide powders
In this process tin oxide powder is blended with lower meting additive oxides such as for example Ag2 MoO4 and then heat treated. The SnO2 particles are coated in this step with a thin layer of the additive oxide.
d) Powder blending based on internally oxidized alloy powders
A combination of powder metallurgy and internal oxidation this process starts with atomized Ag alloy powder which is subsequently oxidized in pure oxygen. During this process the Sn and other metal components are transformed to metal oxide and precipitated inside the silver matrix of each powder particle.
e) Powder blending based on chemically precipitated compound powders
A silver salt solution is added to a suspension of for example SnO2 together with a precipitation agent. In a chemical reaction silver and silver oxide respectively are precipitated around the additive metal oxide particles who act as crystallization sites. Further chemical treatment then reduces the silver oxide with the resulting precipitated powder being a mix of Ag and SnO2.

Further processing of these differently produced powders follows the conventional processes of pressing, sintering and hot extrusion to wires and strips. From these contact parts such as contact rivets and tips are manufactured. To obtain a brazable backing the same processes as used for Ag/CdO are applied. As for Ag/CdO, larger contact tips can also be manufactured more economically using the press-sinter-repress (PSR) process Table 17.

Figure 43 Strain hardening of Ag/SnO2 92/8 PE by cold working

Figure 44 Softening of Ag/SnO2 92/8 PE after annealing for 1 hr after 40% cold working

Figure 45 Strain hardening of Ag/SnO2 88/12 PE by cold working

Figure 46 Softening of Ag/SnO2 88/12 PE after annealing for 1 hr after 40% cold working

Figure 47 Strain hardening of oxidized Ag/SnO2 88/12 PW4 by cold working

Figure 48 Softening of Ag/SnO2 88/12 PW4 after annealing for 1 hr after 30% cold working

Figure 49 Strain hardening of Ag/SnO2 98/2 PX by cold working

Figure 50 Softening of Ag/SnO2 98/2 PX after annealing for 1 hr after 80% cold working

Figure 51 Strain hardening of Ag/SnO2 92/8 PX by cold working

Figure 52 Softening of Ag/SnO2 92/8 PX after annealing for 1 hr after 40% cold working

Figure 53 Strain hardening of internally oxidized Ag/SnO2 88/12 TOS F by cold working

Figure 54 Softening of Ag/SnO2 88/12 TOS F after annealing for 1 hr after 30% cold working

Figure 55 Strain hardening of internally oxidized Ag/SnO2 88/12P by cold working

Figure 56 Softening of Ag/SnO2 88/12P after annealing for 1 hr after 40% cold working

Figure 57 Strain hardening of Ag/SnO2 88/12 WPC by cold working

Figure 58 Softening of Ag/SnO2 88/12 WPC after annealing for 1 hr after different degrees of cold working

Figure 59 Strain hardening of Ag/SnO2 86/14 WPC by cold working

Figure 60 Softening of Ag/SnO2 86/14 WPC after annealing for 1 hr after different degrees of cold working

Figure 61 Strain hardening of Ag/SnO2 88/12 WPD by cold working

Figure 62 Softening of Ag/SnO2 88/12 WPD after annealing for 1 hr after different degrees of cold working

Figure 63 Softening of Ag/SnO2 88/12 WPX after annealing for 1 hr after different degrees of cold working

Figure 64 Strain hardening of Ag/SnO2 88/12 WPX by cold working

Figure 65 Micro structure of Ag/SnO2 92/8 PE: a) perpendicular to extrusion direction b) parallel to extrusion direction

Figure 66 Micro structure of Ag/SnO2 88/12 PE: a) perpendicular to extrusion direction b) parallel to extrusion direction

Figure 67 Micro structure of Ag/SnO2 88/12 PW: a) perpendicular to extrusion direction b) parallel to extrusion direction

Figure 68 Micro structure of Ag/SnO2 98/2 PX: a) perpendicular to extrusion direction b) parallel to extrusion direction

Figure 69 Micro structure of Ag/SnO2 92/8 PX: a) perpendicular to extrusion direction b) parallel to extrusion direction

Figure 70 Micro structure of Ag/SnO2 88/12 TOS F: a) perpendicular to extrusion direction b) parallel to extrusion direction

Figure 71 Micro structure of Ag/SnO2 86/14 WPC: a) perpendicular to extrusion direction b) parallel to extrusion direction, 1) AgSnO2 contact layer, 2) Ag backing layer

Figure 72 Micro structure of Ag/SnO2 92/8 WTOS F: a) perpendicular to extrusion direction b) parallel to extrusion direction,1) AgSnO2 contact layer, 2) Ag backing layer

Figure 73 Micro structure of Ag/SnO2 88/12 WPD: parallel to extrusion direction 1) AgSnO2 contact layer, 2) Ag backing layer

Figure 74 Micro structure of Ag/SnO2 88/12 WPX:parallel to extrusion direction 1) AgSnO2 contact layer, 2) Ag backing layer

Figure 75 Micro structure of Ag/SnO2 86/14 WPX: a) perpendicular to extrusion direction b) parallel to extrusion direction, 1) AgSnO2 contact layer, 2) Ag backing layer

Figure 43: Strain hardening of Ag/SnO2 92/8 PE by cold working
Figure 44: Softening of Ag/SnO2 92/8 PE after annealing for 1 hr after 40% cold working
Figure 45: Strain hardening of Ag/SnO2 88/12 PE by cold working
Figure 46: Softening of Ag/SnO2 88/12 PE after annealing for 1 hr after 40% cold working
Figure 47: Strain hardening of oxidized Ag/SnO2 88/12 PW4 by cold working
Figure 48: Softening of Ag/SnO2 88/12 PW4 after annealing for 1 hr after 30% cold working
Figure 49: Strain hardening of Ag/SnO2 98/2 PX by cold working
Figure 50: Softening of Ag/SnO2 98/2 PX after annealing for 1 hr after 80% cold working
Figure 51: Strain hardening of Ag/SnO2 92/8 PX by cold working
Figure 52: Softening of Ag/SnO2 92/8 PX after annealing for 1 hr after 40% cold working
Figure 53: Strain hardening of internally oxidized Ag/SnO2 88/12 TOS F by cold working
Figure 54: Softening of Ag/SnO2 88/12 TOS F after annealing for 1 hr after 30% cold working
Figure 55: Strain hardening of internally oxidized Ag/SnO2 88/12P by cold working
Figure 56: Softening of Ag/SnO288/12P after annealing for 1 hr after 40% cold working
Figure 57: Strain hardening of Ag/SnO2 88/12 WPC by cold working
Figure 58: Softening of Ag/SnO2 88/12 WPC after annealing for 1 hr after different degrees of cold working
Figure 59: Strain hardening of Ag/SnO2 86/14 WPC by cold working
Figure 60: Softening of Ag/SnO2 86/14 WPC after annealing for 1 hr after different degrees of cold working
Figure 61: Strain hardening of Ag/SnO2 88/12 WPD by cold working
Figure 62: Softening of Ag/SnO2 88/12 WPD after annealing for 1 hr after different degrees of cold working
Figure 63: Softening of Ag/SnO2 88/12 WPX after annealing for 1 hr after different degrees of cold working
Figure 64: Strain hardening of Ag/SnO2 88/12 WPX by cold working
Figure 65: Micro structure of Ag/SnO2 92/8 PE: a) perpendicular to extrusion direction b) parallel to extrusion direction
Figure 66: Micro structure of Ag/SnO2 88/12 PE: a) perpendicular to extrusion direction b) parallel to extrusion direction
Figure 67: Micro structure of Ag/SnO2 88/12 PW: a) perpendicular to extrusion direction b) parallel to extrusion direction
Figure 68: Micro structure of Ag/SnO2 98/2 PX: a) perpendicular to extrusion direction b) parallel to extrusion direction
Figure 69: Micro structure of Ag/SnO2 92/8 PX: a) perpendicular to extrusion direction b) parallel to extrusion direction
Figure 70: Micro structure of Ag/SnO2 88/12 TOS F: a) perpendicular to extrusion direction b) parallel to extrusion direction
Figure 71: Micro structure of Ag/SnO2 86/14 WPC: a) perpendicular to extrusion direction b) parallel to extrusion direction, 1) AgSnO2 contact layer, 2) Ag backing layer
Figure 72: Micro structure of Ag/SnO2 92/8 WTOS F: a) perpendicular to extrusion direction b) parallel to extrusion direction,1) AgSnO2 contact layer, 2) Ag backing layer
Figure 73: Micro structure of Ag/SnO2 88/12 WPD: parallel to extrusion direction 1) AgSnO2 contact layer, 2) Ag backing layer
Figure 74: Micro structure of Ag/SnO2 88/12 WPX:parallel to extrusion direction 1) AgSnO2 contact layer, 2) Ag backing layer
Figure 75: Micro structure of Ag/SnO2 86/14 WPX: a) perpendicular to extrusion direction b) parallel to extrusion direction, 1) AgSnO2 contact layer, 2) Ag backing layer


Table 17: Physical Properties of Powder Metallurgical Silver-Metal Oxide Materials with Fine Silver Backing Produced by the Press-Sinter-Repress Process

Material/

DODUCO- Designation

Additives

Density

[ g/cm3]

Electrical

Resistivity

S ·cm]

Electrical

Conductivity

Vickers

Hardness

HV 10.

[%IACS]

[MS/m]

AgCdO 90/10EP

DODURIT CdO 10EP

10.1

2.08

83

48

60

AgCdO 85/15 EP DODURIT CdO 15EP

9.9

2.27

76

44

65

AgSnO² 90/10 EPX SISTADOX 10EPX

CuO and

Bi² O³

9.8

2.22

78

45

55

AgSnO² 88/12EPX SISTADOX 12EPX

CuO and

Bi² O³

9.6

2.63

66

38

60

Form of Support: formed parts, stamped parts, contact tips
  • Silver–zinc oxide (DODURIT ZnO) materials

Silver zinc oxide (DODURIT ZnO) contact materials with mostly 6 - 10 wt% oxide content including other small metal oxides are produced exclusively by powder metallurgy (Figs. 76 – 81),. Adding Ag2WO4 in the process b) as described in the preceding chapter on Ag/SnO2 has proven most effective for applications in AC relays, wiring devices, and appliance controls. Just like with the other Ag metal oxide materials, semi-finished materials in strip and wire form are used to manufacture contact tips and rivets. Because of their high resistance against welding and arc erosion Ag/ZnO materials present an economic alternative to Cd free Ag-tin oxide contact materials Table 20 and Table 21.


Table 18: Physical and Mechanical Properties as well as Manufacturing Processes and Forms of Supply of Extruded Silver-Zinc Oxide (DODURIT ZnO) Contact
Material/
DODUCO-
Designation
Silver Content
[wt%]
Additives Density
[g/cm3]
Electrical
Resistivity
[μΩ·cm]
Electrical
Conductivity
[% IACS] [MS/m]
Vickers
Hardness
Hv1
Tensile
Strength
[MPa]
Elongation
(soft annealed)
A[%]min.
Manufacturing
Process
Form of
Supply
Ag/ZnO 92/8P
DODURIT ZnO 8P
91 - 93 9.8 2.22 78 45 60 - 95 220 - 350 25 Powder Metallurgy
a) indiv. powders
1
Ag/ZnO 94/6PW25
DODURIT ZnO 6PW25
93 - 95 Ag2WO4 9.7 2.0 86 50 60 - 100 200 - 320 30 Powder Metallurgy
c) coated
1
Ag/ZnO 92/8PW25
DODURIT ZnO 8PW25
91 - 93 Ag2WO4 9.6 2.08 83 48 65 - 105 230 - 340 25 Powder Metallurgy
c) coated
1
Ag/ZnO 90/10PW25
DODURIT ZnO 10PW25
89 - 91 Ag2WO4 9.6 2.17 79 46 65 - 100 230 - 350 20 Powder Metallurgy
c) coated
1
Ag/ZnO 92/8WP
DODURIT ZnO 8WP
91 - 93 9.8 2.0 86 50 60 - 95 Powder Metallurgy
with Ag backing a) individ.
2
AgZnO 94/6WPW25
DODURIT ZnO 6WPW25
93 - 95 Ag2WO4 9.7 2.0 86 50 60 - 95 Powder Metallurgy
c) coated
2
Ag/ZnO 92/8WPW25
DODURIT ZnO 8WPW25
91 - 93 Ag2WO4 9.6 2.08 83 48 65 - 105 Powder Metallurgy
c) coated
2
Ag/ZnO 90/10WPW25
DODURIT ZnO 10WPW25
89 - 91 Ag2WO4 9.6 2.7 79 46 65 - 110 Powder Metallurgy
c) coated
2

1 = Wires, Rods, Contact rivets, 2 = Strips, Profiles, Contact tips


Figure 76 Strain hardening of Ag/ZnO 92/8 PW25 by cold working

Figure 77 Softening of Ag/ZnO 92/8 PW25 after annealing for 1 hr after 30% cold working

Figure 78 Strain hardening of Ag/ZnO 92/8 WPW25 by cold working

Figure 79 Softening of Ag/ZnO 92/8 WPW25 after annealing for 1hr after different degrees of cold working

Figure 80 Micro structure of Ag/ZnO 92/8 Pw25: a) perpendicular to extrusion direction b) parallel to extrusion direction

Figure 81 Micro structure of Ag/ZnO 92/8 WPW25:a) perpendicular to extrusion direction b) parallel to extrusion direction, 1) Ag/ZnO contact layer, 2) Ag backing layer

Figure 76: Strain hardening of Ag/ZnO 92/8 PW25 by cold working
Figure 77: Softening of Ag/ZnO 92/8 PW25 after annealing for 1 hr after 30% cold working
Figure 78: Strain hardening of Ag/ZnO 92/8 WPW25 by cold working
Figure 79: Softening of Ag/ZnO 92/8 WPW25 after annealing for 1hr after different degrees of cold working
Figure 80: Micro structure of Ag/ZnO 92/8 Pw25: a) perpendicular to extrusion direction b) parallel to extrusion direction
Figure 81: Micro structure of Ag/ZnO 92/8 WPW25:a) perpendicular to extrusion direction b) parallel to extrusion direction, 1) Ag/ZnO contact layer, 2) Ag backing layer


Table 19: Optimizing of Silver–Tin Oxide Materials Regarding their Switching Properties and Forming Behavior

Material/

Material Group

Special Properties

Ag/SnO2 PE

Especially suitable for automotive relays

(lamp loads)

Good formability (contact rivets)

Ag/SnO2 98/2 PX/PC

Especially good heat resistance

Easily riveted, can be directly welded

Ag/SnO2 TOS F

Especially suited for high inductive

DC loads

Very good formability (contact rivets)

Ag/SnO2 WPC

For AC-3 and AC-4 applications in motor

switches (contactors)

Ag/SnO2 WPD

Especially suited for severe loads (AC-4)

and high switching currents

Ag/SnO2 WPX

For standard motor loads (AC-3) and

Resistive loads (AC-1), DC loads (DC-5)

Ag/SnO2 WTOSF

Especially suitable for high inductive DC

loads


Table 20: Contact and Switching Properties of Silver–Metal Oxide Materials
Material/DODUCO-Designation Properties
Ag/CdO
DODURIT CdO
High resistance against welding during current on switching for currents up to
5kA especially for powder metallurgical materials,

Weld resistance increases with higher oxide contents,
Low and stable contact resistance over the life of the device and good
temperature rise properties,
High arc erosion resistance and contact life at switching currents
of 100A – 5kA,
Very good arc moving properties for materials produced by internal oxidation,
Good arc extinguishing properties,
Formability better than the one of Ag/SnO2 and Ag/ZnO materials,
Use of Ag/CdO in automotive components is prohibited because of Cd toxicity,
Prohibition of use in consumer products and appliances in EU.

Ag/SnO2
SISTADOX
Environmentally friendly materials,

Very high resistance against welding during current on switching,
Weld resistance increases with higher oxide contents,
Low and stable contact resistance over the life of the device and good
temperature rise properties through use of special additives,
High arc erosion resistance and contact life,
Very low and flat material transfer during DC load switching,
Good arc moving and very good arc extinguishing properties

Ag/ZnO
DODURIT ZnO
Environmentally friendly materials,

High resistance against welding during current on switching
(capacitor contactors),
Low and stable contact resistance through special oxide additives,
Very high arc erosion resistance at high switching currents,
Less favorable than Ag/SnO2 for electrical life and material transfer,
With Ag2WO4 additive especially suitable for AC relays


Table 21: Application Examples of Silver–Metal Oxide Materials

Material

Application Examples

Ag/CdO

Micro switches, Network relays, Wiring devices, Appliance switches, Main switches, contactors, Small (main) power switches

Ag/SnO2

Micro switches, Network relays, Automotive relays, Appliance switches,

Main switches, contactors, Fault current protection relays (paired against

Ag/C), (Main) Power switches

Ag/ZnO

Wiring devices, AC relays, Appliance switches, Motor-protective circuit

breakers (paired with Ag/Ni or Ag/C), Fault current circuit breakers paired againct Ag/C, (Main) Power switches

Silver–Graphite (GRAPHOR)-Materials

Ag/C (GRAPHOR) contact materials are usually produced by powder metallurgy with graphite contents of 2 – 5 wt% Table 22. The earlier typical manufacturing process of single pressed tips by pressing - sintering - repressing (PSR) has been replaced in Europe for quite some time by extrusion. In North America and some other regions however the PSR process is still used to some extend mainly for cost reasons.

The extrusion of sintered billets is now the dominant manufacturing method for semi-finished AgC materials . The hot extrusion process results in a high density material with graphite particles stretched and oriented in the extrusion direction (Figs. 86 – 89). Depending on the extrusion method in either rod or strip form the graphite particles can be oriented in the finished contact tips perpendicular (GRAPHOR) or parallel (GRAPHOR D) to the switching contact surface Figure 87 and Figure 88.

Since the graphite particles in the Ag matrix of Ag/C materials prevent contact tips from directly being welded or brazed, a graphite free bottom layer is required. This is achieved by either burning out (de-graphitizing) the graphite selectively on one side of the tips or by compound extrusion of a Ag/C billet covered with a fine silver shell.

Ag/C contact materials exhibit on the one hand an extremely high resistance to contact welding but on the other have a low arc erosion resistance. This is caused by the reaction of graphite with the oxygen in the surrounding atmosphere at the high temperatures created by the arcing. The weld resistance is especially high for materials with the graphite particle orientation parallel to the arcing contact surface. Since the contact surface after arcing consists of pure silver the contact resistance stays consistently low during the electrical life of the contact parts.

A disadvantage of the Ag/C materials is their rather high erosion rate. In materials with parallel graphite orientation this can be improved if part of the graphite is incorporated into the material in the form of fibers (GRAPHOR DF), Figure 89. The weld resistance is determined by the total content of graphite particles.

Ag/C tips with vertical graphite particle orientation are produced in a specific sequence: Extrusion to rods, cutting of double thickness tips, burning out of graphite to a controlled layer thickness, and a second cutting to single tips. Such contact tips are especially well suited for applications which require both, a high weld resistance and a sufficiently high arc erosion resistance Table 23. For attachment of Ag/C tips welding and brazing techniques are applied.

welding the actual process depends on the material's graphite orientation. For Ag/C tips with vertical graphite orientation the contacts are assembled with single tips. For parallel orientation a more economical attachment starting with contact material in strip or profile tape form is used in integrated stamping and welding operations with the tape fed into the weld station, cut off to tip form and then welded to the carrier material before forming the final contact assembly part. For special low energy welding the Ag/C profile tapes GRAPHOR D and DF can be pre-coated with a thin layer of high temperature brazing alloys such as CuAgP.

In a rather limited way, Ag/C with 2 – 3 wt% graphite can be produced in wire form and headed into contact rivet shape with low head deformation ratios.

The main applications for Ag/C materials are protective switching devices such as miniature molded case circuit breakers, motor-protective circuit breakers, and fault current circuit breakers, where during short circuit failures highest resistance against welding is required Table 24. For higher currents the low arc erosion resistance of Ag/C is compensated by asymmetrical pairing with more erosion resistant materials such as Ag/Ni and Ag/W.

Figure 82 Strain hardening of Ag/C 96/4 D by cold working

Figure 83 Softening of Ag/C 96/4 D after annealing

Figure 84 Strain hardening of Ag/C DF by cold working

Figure 85 Softening of Ag/C DF after annealing

Figure 86 Micro structure of Ag/C 97/3: a) perpendicular to extrusion direction b) parallel to extrusion direction, 1) Ag/C contact layer, 2) Ag backing layer

Figure 87 Micro structure of Ag/C 95/5: a) perpendicular to extrusion direction b) parallel to extrusion direction, 1) Ag/C contact layer, 2) Ag backing layer

Figure 88 Micro structure of Ag/C 96/4 D: a) perpendicular to extrusion direction b) parallel to extrusion direction, 1) Ag/C contact layer, 2) Ag backing layer

Figure 89 Micro structure of Ag/C DF: a) perpendicular to extrusion direction b) parallel to extrusion direction, 1) Ag/C contact layer, 2) Ag/Ni 90/10 backing layer

Figure 82: Strain hardening of Ag/C 96/4 D by cold working
Figure 83: Softening of Ag/C 96/4 D after annealing
Figure 84: Strain hardening of Ag/C DF by cold working
Figure 85: Softening of Ag/C DF after annealing
Figure 86: Micro structure of Ag/C 97/3: a) perpendicular to extrusion direction b) parallel to extrusion direction, 1) Ag/C contact layer, 2) Ag backing layer
Figure 87: Micro structure of Ag/C 95/5: a) perpendicular to extrusion direction b) parallel to extrusion direction, 1) Ag/C contact layer, 2) Ag backing layer
Figure 88: Micro structure of Ag/C 96/4 D: a) perpendicular to extrusion direction b) parallel to extrusion direction, 1) Ag/C contact layer, 2) Ag backing layer
Figure 89: Micro structure of Ag/C DF: a) perpendicular to extrusion direction b) parallel to extrusion direction, 1) Ag/C contact layer, 2) Ag/Ni 90/10 backing layer
Table 22: Physical Properties of Silver–Graphite (GRAPHOR) Contact Materials
Material/
DODUCO-
Designation
Silver Content
[wt%]
Density
[g/cm3]
Melting Point
[°C]
Electrical Resistivity
[μΩ·cm]
Electrical
Conductivity
[% IACS] [MS/m]
Vickers-Hardnes
HV10
42 - 45
Ag/C 98/2
GRAPHOR 2
97.5 - 98.5 9.5 960 1.85 - 1.92 90 - 93 48 - 50 42 - 44
Ag/C 97/3
GRAPHOR 3
96.5 - 97.5 9.1 960 1.92 - 2.0 86 - 90 45 - 48 41 - 43
Ag/C 96/4
GRAPHOR 4
95.5 - 96.5 8.7 960 2.04 - 2.13 81 - 84 42 - 46 40 - 42
Ag/C 95/5
GRAPHOR 5
94.5 - 95.5 8.5 960 2.12 - 2.22 78 - 81 40 - 44 40 - 60
Ag/C 97/3D
GRAPHOR 3D*)
96.5 - 97.5 9.1 - 9.3 960 1.92 - 2.08 83 - 90 45 - 50 35 - 55
Ag/C 96/4D
GRAPHOR 4D*)
95.5 - 96.5 8.8 - 9.0 960 2.04 - 2.22 78 - 84 43 - 47 35 - 60
AgCDF
GRAPHOR DF**)
95.7 - 96.7 8.7 - 8.9 960 2.27 - 2.50 69 - 76 40 - 44

*) Graphite particles parallel to switching surface
**) Graphite content 3.8 wt%, Graphite particles and fibers parallel to switching surface


Table 23: Contact and Switching properties of Silver–Graphite (GRAPHOR) Contact Materials

Material/

DODUCO-Designation

Properties

Ag/C

GRAPHOR

Highest resistance against welding during make operations at high currents,

High resistance against welding of closed contacts during short circuit,

Increase of weld resistance with higher graphite contents, Low contact resistance,

Low arc erosion resistance, especially during break operations, Higher arc erosion with increasing graphite contents, at the same time carbon build-up on switching chamber walls increases, GRAPHOR with vertical orientation has better arc erosion resistance, parallel orientation has better weld resistance,

Limited arc moving properties, therefore paired with other materials,

Limited formability,

Can be welded and brazed with decarbonized backing, GRAPHOR DF is optimized for arc erosion resistance and weld resistance


Table 24: Application Examples and Forms of Supply of Silver– Graphite (GRAPHOR) Contact Materials

Material/

DODUCO Designation

Application Examples

Form of Supply

Ag/C 98/2

GRAPHOR 2

Motor circuit breakers, paired with Ag/Ni

Contact tips, brazed and welded contact parts, some contact rivets

Ag/C 97/3

GRAPHOR 3

Ag/C 96/4

GRAPHOR 4

Ag/C 95/5

GRAPHOR 5

GRAPHOR 3D GRAPHOR 4D GRAPHOR DF

Circuit breakers, paired with Cu, Motor-protective circuit breakers, paired with Ag/Ni,

Fault current circuit breakers, paired with Ag/Ni, Ag/W, Ag/WC, Ag/SnO2, Ag/ZnO,

(Main) Power switches, paired with Ag/Ni, Ag/W

Contact tips, brazed and welded contact

parts, some contact rivets with

Ag/C97/3

Ag/C 97/3

GRAPHOR 3

Ag/C 96/4

GRAPHOR 4

Ag/C 95/5

GRAPHOR 5

GRAPHOR 3D GRAPHOR 4D GRAPHOR DF

Circuit breakers, paired with Cu, Motor-protective circuit breakers, paired with Ag/Ni,

Fault current circuit breakers, paired with Ag/Ni, Ag/W, Ag/WC, Ag/SnO2, Ag/ZnO,

(Main) Power switches, paired with Ag/Ni, Ag/W

Contact profiles (weld tapes), Contact tips, brazed and welded contact parts

Referenzen

Referenzen