Changes

Jump to: navigation, search

Trägerwerkstoffe

471 bytes added, 23:05, 19 September 2014
temp edit
The purity of technically pure and un-alloyed copper used for electrical applications depends on the type used and ranges between > 99.90 and 99.95
wt%. The copper types are designated mainly by their oxygen content as oxygen containing, oxygen-free, and de-oxidized with phosphorus as
described in DIN EN 1652 <xr id="tab:MaterialDesignations"/> and <xr id="tab:Composition of Some Pure Copper Types"/><!--5.2-->. <xr id="tab:Physical Properties of Some Copper Types"/><!--Tables 5.3.--> and <xr id="tab:Mechanical Properties of Some Copper Types"/><!--5.4--> show the physical and mechanical properties of these copper materials. According to these, Cu-ETP, Cu-OFE, and Cu-HCP are the types of copper for which minimum values for the electrical conductivity are guaranteed.
CuDie Reinheit des für elektrische Zwecke verwendeten technisch reinen, unlegiertenKupfers liegt je nach Kupfersorte bei > 99,90 bzw. 99,95 Massen-ETP is less suitable for welding or for brazing %.Die unterteilt in sauerstoffhaltige, sauerstofffreie und mit Phosphor desoxidiertenKupfersorten sind in reducing atmosphere because of the oxygen content DIN EN 1652 festgelegt (danger <xr id="tab:MaterialDesignations"/> und <xr id="tab:Composition of hydrogen embrittlementSome Pure Copper Types"/><!--5.2-->). Die physikalischenund mechanischen Eigenschaften einiger Reinkupfersorten sind in<xr id="tab:Physical Properties of Some Copper Types"/><!--Tables 5.3.--> and <xr id="tab:Mechanical Properties of Some Copper Types"/><!--5.4--> aufgeführt. Demnach sind Cu-ETP, Cu-OF und Cu-HCPKupfersorten, bei denen bestimmte Mindestwerte für die elektrische Leitfähigkeitgarantiert werden.
Cu-ETP eignet sich wegen seines Sauerstoffanteils nicht zum Schweißen oderHartlöten in reduzierender Atmosphäre (Gefahr der Wasserstoffkrankheit). Cu-HCP, Cu-DLP, and und Cu-DHP are oxygen free copper types de-oxidized with different phosphorus contentssind sauerstofffreie, mit unterschiedlichenPhosphorgehalten desoxidierte Kupfersorten. With increasing phosphorus content theMit zunehmendem Phosphorgehaltelectrical conductivity decreasessinkt die elektrische Leitfähigkeit. Cu-OFE, also called OFHC copper, is free of oxygen and also free of de-oxidizing compoundsOF ist sowohl frei von Sauerstoffals auch von Desoxidationsmittel.
<figtable id="tab:MaterialDesignations">
<caption>'''<!--Table 5.1:-->Material Designations of Some Copper TypesWerkstoffbezeichnung einiger Reinkupfersorten'''</caption>
<table class="twocolortable" border="1" cellspacing="0" style="border-collapse:collapse">
<tr>
<th>WerkstMaterialENWerkstoffbezeichnung EN-DesignationKurzzeichen</th><th>EN-NumberNummer</th><th>DIN-DesignationKurzzeichen</th><th>DIN-NumberNummer</th><th>UNS</th></tr>
<tr><td>Cu-ETP</td><td>CW004A</td><td>E-Cu 58</td><td>2.0065</td><td>C11000</td></tr>
<tr><td>Cu-OF</td><td>CW008A</td><td>OF-Cu</td><td>2.0040</td><td>C10200</td></tr>
</figtable>
 
<div class="small">
:Cu- ETP: electrolytic tough-pitch copper
:Cu-OFE: Oxygen Free Electronic Copper
:Cu-HCP: High Conductivity Phosphorus Deoxidized Copper
:Cu-DLP: phosphorous-deoxidized copper
:Cu-DHP: Phosphorous Deoxidized High Conductivity Copper
</div>
<figtable id="tab:Composition of Some Pure Copper Types">
<caption>'''<!--Table 5.2:-->Composition of Some Pure Copper TypesZusammensetzung einiger Reinkupfersorten'''</caption>
{| class="twocolortable" style="text-align: left; font-size: 12px"
|-
!MaterialWerkstoff!colspan="6" style="text-align:center"| Composition (wtZusammensetzung Massenanteile [%)]
|-
!EN DesignationKurzzeichen
!Cu
!Bi
!P
!Pb
!OthersSonstige
|-
|Cu-ETP
|bis 0.040
|
|up to bis 0.005|up to bis 0.03
|-
|Cu-OF
|
|
|up to bis 0.005|up to bis 0.03
|-
|Cu-HCP
|
|0.005-0.013
|up to bis 0.005|up to bis 0.03
|-
|Cu-DHP
<figtable id="tab:Physical Properties of Some Copper Types">
<caption>'''<!--Table 5.3:-->Physical Properties of Some Copper TypesPhysikalische Eigenschaften einiger Reinkupfersorten'''</caption>
<table class="twocolortable">
<tr><th><p class="s3">MaterialWerkstoffbezeichnung</p></th><th ><p class="s3">DensityDichte</p></th><th colspan="2"><p class="s3">ElectricalElektr.</p><p class="s3">ConductivitytLeitfähigkeit</p></th><th ><p class="s3">Electrical ConductivityElektr. Widerstand</p></th><th><p class="s3">Thermal</p><p class="s3">ConductivityWärmeleitfähigkei</p></th><th><p class="s3">Coeff. of</p><p class="s3">Linear Thermal ExpansionLin. Ausdehnungskoeffizient</p></th><th><p class="s3">ModulusE-Moduls</p><p class="s3">of</p><p class="s3">Elasticity</p></th><th><p class="s3">SofteningErweichungstemp.</p><p class="s3">Temperatur (approxca.</p>10% loss in strengthFestigkeitsabfall)</th><th><p class="s3">Melting</p><p class="s3">TemperatureSchmelztemperatur</p></th></tr><tr><th><p class="s3">EN- DesignationKurzzeichen</p></th>
<th >[g/cm³]</th><th>[MS/m]</th><th>[% IACS]</th><th>[μΩ· cm]</th><th>[W/(m· K)]</th>
<th>[10<sup>-6</sup>/K]</th><th>[GPa]</th><th>[°C]</th><th>[°C]</th></tr>
<figtable id="tab:Mechanical Properties of Some Copper Types">
<caption>'''<!--Table 5.4:-->Mechanical Properties of Some Copper TypesMechanische Eigenschaften einiger Reinkupfersorten'''</caption>
<table class="twocolortable" border="1" cellspacing="0" style="border-collapse:collapse">
<tr>
<th><p class="s3">MaterialWerkstoff</p></th><th><p class="s3">ConditionZustand</p></th><th><p class="s3">Tensile StrengthZugfestigkeit</p><p class="s3">R<span class="s11">m</span></p><p class="s3">[MPa]</p></th><th><p class="s3">0,2% Yield</p><p class="s3">Strength Dehngrenze R<span class="s11">p0,2</span></p><p class="s3">[MPa]</p></th><th><p class="s3">ElongationBruchdehnung</p><p class="s3">A<span class="s11">50</span></p><p class="s3">[ %]</p></th><th><p class="s3">HardnessHärte</p><p class="s3">HV</p></th>
</tr><tr>
<td class="multirow" rowspan="4">
</figtable>
<xr id="fig:Strain hardening of Cu-ETP by cold working"/><!--Fig. 5.1:--> Strain hardening of Verfestigungsverhalten von Cu-ETP by cold working
<xr id="fig:Softening of Cu-ETP after annealing for 3hrs after 25% cold working"/><!--Fig. 5.2:--> Softening of Erweichungsverhalten von Cu-ETP after annealing for 3hrs after nach 3h Glühdauer und einer Kaltumformung von 25% cold working
<xr id="fig:Softening of Cu-ETP after annealing for 3hrs after 50% cold working"/><!--Fig. 5.3:--> Softening of Erweichungsverhalten von Cu-ETP after annealing for 3hrs after nach 3h Glühdauer und einer Kaltumformung von 50% cold working
<figure id="fig:Strain hardening of Cu-ETP by cold working">
[[File:Strain hardening of Cu ETP by cold working.jpg|left|thumb|<caption>Strain hardening of Verfestigungsverhalten von Cu-ETP by cold working</caption>]]
</figure>
<figure id="fig:Softening of Cu-ETP after annealing for 3hrs after 25% cold working">
[[File:Softening of Cu ETP after annealing.jpg|left|thumb|<caption>Softening of Erweichungsverhalten von Cu-ETP after annealing for 3hrs after nach 3h Glühdauer und einer Kaltumformung von 25% cold working</caption>]]
</figure>
<figure id="fig:Softening of Cu-ETP after annealing for 3hrs after 50% cold working">
[[File:Softening of Cu ETP after annealing 50.jpg|left|thumb|<caption>Softening of Erweichungsverhalten von Cu-ETP after annealing for 3hrs after nach 3h Glühdauer und einer Kaltumformung von 50% cold working</caption>]]
</figure>
</div>
<div class="clear"></div>
===<!--5.1.3-->High Cu Content Copper AlloysNiedriglegierte Kupfer-Werkstoffe===
The high Cu content alloy materials are closest in their properties to pure copper materials. By defined addition of small amounts of alloying elements it is possible to increase the mechanical strength and especially the softening temperature of copper and at the same time decrease the electrical conductivity only insignificantly <xr id="fig:Influence of small additions on the electrical conductivity of copper"/><!--(Fig. 5.4)-->. Silver, iron, tin, zinc, nickel, chromium, zirconium, silicon, and titanium are used. Usually the additive amounts are significantly below 3 wt%. This group of materials consists of mixed crystal as well as precipitation hardening alloys. The precipiytion hardening copper-beryllium and copper-chromium-zirconium materials are decribed later in a separate section.

Navigation menu

Powered by