Difference between revisions of "Switching Contacts"

From Electrical Contacts
Jump to: navigation, search
Line 33: Line 33:
 
<li>'''Influence of corrosive gases on the contact resistance'''</li>
 
<li>'''Influence of corrosive gases on the contact resistance'''</li>
  
<xr id="fig:fig6.11"/> Fig. 6.11: Distribution of cumulative frequency H of the contact resistance for solid contact rivets after 10 days exposure in a three-component test environment with 400 ppb each of H<sub>2</sub>S, SO<sub>2</sub> and NO<sub>2</sub> at 25°C, 75% RH; Contact force 10cN; Measuring parameters: ≤ 40 mV<sub>DC</sub>,10 mA; Probing
+
<xr id="fig:Distribution of cumulative frequency H of the contact resistance for solid contact rivets"/> Fig. 6.11: Distribution of cumulative frequency H of the contact resistance for solid contact rivets after 10 days exposure in a three-component test environment with 400 ppb each of H<sub>2</sub>S, SO<sub>2</sub> and NO<sub>2</sub> at 25°C, 75% RH; Contact force 10cN; Measuring parameters: ≤ 40 mV<sub>DC</sub>,10 mA; Probing
 
contact: Gold rivet
 
contact: Gold rivet
  
 
<div class="multiple-images">
 
<div class="multiple-images">
<figure id="fig:fig6.11">
+
<figure id="fig:Distribution of cumulative frequency H of the contact resistance for solid contact rivets">
 
[[File:Distribution of cumulative frequency H of the contact resistance for solid contact rivets.jpg|left|thumb|<caption>Distribution of cumulative frequency H of the contact resistance for solid contact rivets after 10 days exposure in a three-component test environment with 400 ppb each of H<sub>2</sub>S, SO<sub>2</sub> and NO<sub>2</sub> at 25°C, 75% RH; Contact force 10cN; Measuring parameters: ≤ 40 mV<sub>DC</sub>,10 mA; Probing
 
[[File:Distribution of cumulative frequency H of the contact resistance for solid contact rivets.jpg|left|thumb|<caption>Distribution of cumulative frequency H of the contact resistance for solid contact rivets after 10 days exposure in a three-component test environment with 400 ppb each of H<sub>2</sub>S, SO<sub>2</sub> and NO<sub>2</sub> at 25°C, 75% RH; Contact force 10cN; Measuring parameters: ≤ 40 mV<sub>DC</sub>,10 mA; Probing
 
contact: Gold rivet</caption>]]
 
contact: Gold rivet</caption>]]
Line 52: Line 52:
 
<li>'''Material transfer'''</li>
 
<li>'''Material transfer'''</li>
  
<xr id="fig:fig6.12"/> Fig. 6.12: Material transfer under DC load a) Cathode; b) Anode. <br /> Material: AgNi0.15; Switching parameters: 12V<sub>DC</sub>, 3 A, 2x10<sup>6</sup> operations
+
<xr id="fig:Material transfer under DC load"/> Fig. 6.12: Material transfer under DC load a) Cathode; b) Anode. <br /> Material: AgNi0.15; Switching parameters: 12V<sub>DC</sub>, 3 A, 2x10<sup>6</sup> operations
  
<div class="multiple-images"><figure id="fig:fig6.12">[[File:Material transfer under DC load.jpg|left|thumb|<caption>Material transfer under DC load a) Cathode; b) Anode. <br /> Material: AgNi0.15; Switching parameters: 12V<sub>DC</sub>, 3 A, 2x10<sup>6</sup> perations</caption>]]</figure></div>
+
<div class="multiple-images"><figure id="fig:Material transfer under DC load">[[File:Material transfer under DC load.jpg|left|thumb|<caption>Material transfer under DC load a) Cathode; b) Anode. <br /> Material: AgNi0.15; Switching parameters: 12V<sub>DC</sub>, 3 A, 2x10<sup>6</sup> perations</caption>]]</figure></div>
 
<div class="clear"></div>
 
<div class="clear"></div>
  
 
<li>'''Arc erosion'''</li>
 
<li>'''Arc erosion'''</li>
  
<xr id="fig:fig6.13"/> Fig. 6.13: Arc erosion of a Ag/SnO<sub>2</sub> contact pair after extreme arcing conditions a) Overall view; b) Partial detail view
+
<xr id="fig:Arc erosion of a AgSnO2 contact pair after extreme arcing conditions"/> Fig. 6.13: Arc erosion of a Ag/SnO<sub>2</sub> contact pair after extreme arcing conditions a) Overall view; b) Partial detail view
  
<div class="multiple-images"><figure id="fig:fig6.13">[[File:Arc erosion of a AgSnO2 contact pair after extreme arcing conditions.jpg|left|thumb|<caption>Arc erosion of a Ag/SnO<sub>2</sub> contact pair after extreme arcing conditions a) Overall view; b) Partial detail view</caption>]]</figure></div>
+
<div class="multiple-images"><figure id="fig:Arc erosion of a AgSnO2 contact pair after extreme arcing conditions">[[File:Arc erosion of a AgSnO2 contact pair after extreme arcing conditions.jpg|left|thumb|<caption>Arc erosion of a Ag/SnO<sub>2</sub> contact pair after extreme arcing conditions a) Overall view; b) Partial detail view</caption>]]</figure></div>
 
<div class="clear"></div>
 
<div class="clear"></div>
  
 
<li>'''Contact welding'''</li>
 
<li>'''Contact welding'''</li>
  
<xr id="fig:fig6.14"/> Fig. 6.14: Micro structure of a welded contact pair (Ag/SnO<sub>2</sub>88/12 - Ag/CdO88/12) after extremely high current load. a) Ag/SnO<sub>2</sub>88/12; b) Ag/CdO88/12
+
<xr id="fig:Micro structure of a welded contact pair after extremely high current load"/> Fig. 6.14: Micro structure of a welded contact pair (Ag/SnO<sub>2</sub>88/12 - Ag/CdO88/12) after extremely high current load. a) Ag/SnO<sub>2</sub>88/12; b) Ag/CdO88/12
  
 
<div class="multiple-images">
 
<div class="multiple-images">
<figure id="fig:fig6.14">
+
<figure id="fig:Micro structure of a welded contact pair after extremely high current load">
 
[[File:Micro structure of a welded contact pair after extremely high current load.jpg|left|thumb|<caption>Micro structure of a welded contact pair (Ag/SnO<sub>2</sub>88/12 - Ag/CdO88/12) after extremely high current load. a) Ag/SnO<sub>2</sub>88/12; b) Ag/CdO88/12</caption>]]
 
[[File:Micro structure of a welded contact pair after extremely high current load.jpg|left|thumb|<caption>Micro structure of a welded contact pair (Ag/SnO<sub>2</sub>88/12 - Ag/CdO88/12) after extremely high current load. a) Ag/SnO<sub>2</sub>88/12; b) Ag/CdO88/12</caption>]]
 
</figure>
 
</figure>

Revision as of 14:57, 14 May 2014

6.4.4 Switching Contacts

  • Effects during switching operations
  • Figure 1 Fig. 6.7: Contact opening with arc formation schematic

    Figure 1: Contact opening with arc formation (schematic)
  • Influence of out-gasing from plastics
  • Figure 2 Fig. 6.9: Histogram of the contact resistance Rk of an electroplated palladium layer (3 μm) with and without hard gold flash plating (0.2 μm) after exposure with different plastic materials

    Figure 3 Fig. 6.10: Contact resistance with exposure to out gasing from plastics as a function of numbers of operations at 6 VDC,100 mA: 1 Silicon containing plastic; 2 Plastics with strongly out-gasing components; 3 Plastics with minimal out-gasing components


    Figure 2: Histogram of the contact resistance RK of an electroplated palladium layer (3 μm) with and without hard gold flash plating (0.2 μm) after exposure with different plastic materials
    Figure 3: Contact resistance with exposure to out-gasing from plastics as a function of numbers of operations at 6 VDC,100 mA: 1 Silicon containing plastic; 2 Plastics with strongly out-gasing components; 3 Plastics with minimal out-gasing components


  • Influence of corrosive gases on the contact resistance
  • Figure 4 Fig. 6.11: Distribution of cumulative frequency H of the contact resistance for solid contact rivets after 10 days exposure in a three-component test environment with 400 ppb each of H2S, SO2 and NO2 at 25°C, 75% RH; Contact force 10cN; Measuring parameters: ≤ 40 mVDC,10 mA; Probing contact: Gold rivet

    Figure 4: Distribution of cumulative frequency H of the contact resistance for solid contact rivets after 10 days exposure in a three-component test environment with 400 ppb each of H2S, SO2 and NO2 at 25°C, 75% RH; Contact force 10cN; Measuring parameters: ≤ 40 mVDC,10 mA; Probing contact: Gold rivet


    Fig. 6.8: Influences on contact areas in relays

    Influences on contact areas in relays
  • Contact Phenomena under the influence of arcing Matertia
    • Material transfer
    • Figure 5 Fig. 6.12: Material transfer under DC load a) Cathode; b) Anode.
      Material: AgNi0.15; Switching parameters: 12VDC, 3 A, 2x106 operations

      Figure 5: Material transfer under DC load a) Cathode; b) Anode.
      Material: AgNi0.15; Switching parameters: 12VDC, 3 A, 2x106 perations
    • Arc erosion
    • Figure 6 Fig. 6.13: Arc erosion of a Ag/SnO2 contact pair after extreme arcing conditions a) Overall view; b) Partial detail view

      Figure 6: Arc erosion of a Ag/SnO2 contact pair after extreme arcing conditions a) Overall view; b) Partial detail view
    • Contact welding
    • Figure 7 Fig. 6.14: Micro structure of a welded contact pair (Ag/SnO288/12 - Ag/CdO88/12) after extremely high current load. a) Ag/SnO288/12; b) Ag/CdO88/12

      Figure 7: Micro structure of a welded contact pair (Ag/SnO288/12 - Ag/CdO88/12) after extremely high current load. a) Ag/SnO288/12; b) Ag/CdO88/12

References

References