38
edits
Changes
no edit summary
===<!--6.4.7-->Contact Spring Calculations===
<figure id="fig:Oneside_fixed_contact_bending_spring">
[[File:One side fixed contact bending spring.jpg|right|thumb|One side fixed contact bending spring]]
</figure>
The influence of the dimensions can be illustrated best by using the single side fixed beam model <xr id="fig:Oneside_fixed_contact_bending_spring"/><!--(Fig. 6.20)-->. For small deflections the following equation is valid:
:<math>$F = \frac{3 \cdot E \cdot J}{L^3} </math>
where J is the momentum of inertia of the rectangular cross section of the beam
:<math>J = \frac{B \cdot D^3}{12}</math>
For springs with a circular cross-sectional area the momentum of inertia is
:<math>J=\pi D^4/64</math>
:<math>D= Durchmesser</math>
To avoid plastic deformation of the spring the max bending force σ<sub>max</sub> cannot be exceeded
:<math>\sigma_{max} = \frac{3 \cdot E \cdot D}{2L^2}\cdot_{max}</math>
The stress limit is defined through the fatigue limit and the 0.2% elongation limit resp.
:<math>\times_{max} = \frac{2 \cdot L^2}{3 \cdot D \cdot E}R_{p0,2}</math>
<br />and/or<br />
:<math>F_{max} = \frac{B \cdot D^2}{6L}R_{p0,2}</math>
<li>'''Special Spring Shapes'''</li>
<ul>
<li>'''Triangular spring'''</li>
Deflection
:<math> \times = \frac{F}{2 \cdot E \cdot J}L^3</math>
:<math>= \frac{6 \cdot F}{E \cdot B}\cdot \frac{L^3}{D^3}</math>
Max. bending force
:<math>\sigma_{max}= \frac{18 \cdot F \cdot L}{B \cdot D^2}</math>
<li>'''Trapezoidal spring'''</li>
Deflection
:<math> \times = \frac{F}{(2 + B_{min} /B_{max})}\times \frac{L^3}{E \cdot J}</math>
:<math>\times= \frac{12 \cdot F}{(2 + B_{min} /B_{max})}\cdot \frac{L^3}{E \cdot B \cdot D^3}</math>
Max. bending force
:<math>\sigma_{max}= \frac{18 \cdot F \cdot L}{(2 + B_{min} /B_{max}) \cdot B_{max} \cdot D^2 }</math>
</ul>
==References==
[[Application Tables and Guideline Data for Use of Electrical Contact Design#References|References]]
[[de:Berechnung_von_Kontaktfedern]]
$
where J is the momentum of inertia of the rectangular cross section of the beam
:$J = \frac{B \cdot D^3}{12}$
For springs with a circular cross-sectional area the momentum of inertia is
:$J=\pi D^4/64$
:$D= Durchmesser$
To avoid plastic deformation of the spring the max bending force σ<sub>max</sub> cannot be exceeded
:$\sigma_{max} = \frac{3 \cdot E \cdot D}{2L^2}\cdot_{max}$
The stress limit is defined through the fatigue limit and the 0.2% elongation limit resp.
:$\times_{max} = \frac{2 \cdot L^2}{3 \cdot D \cdot E}R_{p0,2}$
<br />and/or<br />
:$F_{max} = \frac{B \cdot D^2}{6L}R_{p0,2}$
<li>'''Special Spring Shapes'''</li>
<ul>
<li>'''Triangular spring'''</li>
Deflection
:$ \times = \frac{F}{2 \cdot E \cdot J}L^3$
:$= \frac{6 \cdot F}{E \cdot B}\cdot \frac{L^3}{D^3}$
Max. bending force
:$\sigma_{max}= \frac{18 \cdot F \cdot L}{B \cdot D^2}$
<li>'''Trapezoidal spring'''</li>
Deflection
:$ \times = \frac{F}{(2 + B_{min} /B_{max})}\times \frac{L^3}{E \cdot J}$
:$\times= \frac{12 \cdot F}{(2 + B_{min} /B_{max})}\cdot \frac{L^3}{E \cdot B \cdot D^3}$
Max. bending force
:$\sigma_{max}= \frac{18 \cdot F \cdot L}{(2 + B_{min} /B_{max}) \cdot B_{max} \cdot D^2 }$
</ul>
==References==
[[Application Tables and Guideline Data for Use of Electrical Contact Design#References|References]]
[[de:Berechnung_von_Kontaktfedern]]
<ul><li>--</li></ul>