Changes

Jump to: navigation, search

Precipitation Hardening Copper Alloys

15,511 bytes added, 14:33, 20 September 2014
no edit summary
Besides the naturally hard copper materials precipitation hardening copper alloys play also an important role as carrier materials for electrical contacts. By means of a suitable heat treatment finely dispersed precipitations of a second phase can be achieved which increase the mechanical strength of these copper alloys significantly.  ====<!--5.1.6.1 -->Copper-Beryllium Alloys (Beryllium Bronze)====
The cause for precipitation hardening of CuBe materials is the rapidly diminishing solubility of beryllium in copper as temperature decrease. As the
phase diagram for CuBe shows, 2.4 wt% of Be are soluble in Cu at 780°C ''<xr id="fig:Phase_diagram_of_copperberyllium_with_temperature_ranges_for_brazing_and_annealing_treatments"/><!--(Fig. 5.28)''-->. In this temperature range annealed CuBe alloys are homogeneous(solution annealing). The homogeneous state can be frozen through rapid cooling to room temperature (quenching). Through a subsequent annealing at 325°C the desired precipitation hardening is achieved which results in a significant increase in mechanical strength and electrical conductivity of CuBe ''<xr id="tab:Physical_Properties_of_Selected_Copper_Beryllium_Alloys"/><!--(Table Tab. 5.17)''-->. The final strength and hardness values depend on the annealing temperature and time as well as on the initial degree of cold working ''<xr id="tab:Mechanical Properties of Selected Copper-Beryllium Alloys"/><!--(Table 5.18)'' --> and ''[[#figures7|(Figs. 43 – 75)]]<!--(Figs. 5.29 - 5.31)''-->.
Fig. 5.28:
Phase diagram of copperberyllium
with temperature ranges for
brazing and annealing treatments
As precipitation hardening alloys CuBe materials, mainly CuBe2 and CuBe1.7 have gained broad usage as current carrying contact springs because of their outstanding mechanical properties. Besides these CuCo2Be and CuNi2Be, which have medium mechanical strength and a relatively high electrical
Since Beryllium is rated as a carcinogen by the European regulation EU-67/548, it has been tried to reach the application properties of the well established CuBe1.7 and CuBe2 alloys with a lower Be content. The development efforts for alternate precipitation hardening materials without toxic and declaration requiring additive materials, for example CuNiCoSi, are aimed at the replacement of CuBe.
<div id="figures7"> <xr id="fig:Phase_diagram_of_copperberyllium_with_temperature_ranges_for_brazing_and_annealing_treatments"/><!--Fig. 5.28:--> Phase diagram of copper- beryllium with temperature ranges for brazing and annealing treatments <xr id="fig:Precipitation_hardening_of_CuBe2_at_325°C_after_different_cold_working"/><!--Fig. 5.29:--> Precipitation hardening of CuBe2 at 325°C after different cold working <xr id="fig:Precipitation_hardening_of_CuBe2_(soft)_at_325°C"/><!--Fig. 5.30:--> Precipitation hardeningof CuBe2 (soft) at 325°C <xr id="fig:Precipitation_hardening_of_CuBe2_(half hard)_at_different_annealing_temperatures"/><!--Fig. 5.31:--> Precipitation hardening of CuBe2 (half hard) at different annealing temperatures</div> <div class="multiple-images"> <figure id="fig:Phase_diagram_of_copperberyllium_with_temperature_ranges_for_brazing_and_annealing_treatments">[[File:Phase diagram of copper beryllium with temperature ranges.jpg|left|thumb|<caption>Phase diagram of copper- beryllium with temperature ranges for brazing and annealing treatments</caption>]]</figure> <figure id="fig:Precipitation_hardening_of_CuBe2_at_325°C_after_different_cold_working"> [[File:Precipitation hardening of CuBe2 at 325C.jpg|left|thumb|<caption>Precipitation hardening of CuBe2 at 325°C afterdifferent cold working</caption>]]</figure> <figure id="fig:Precipitation_hardening_of_CuBe2_(soft)_at_325°C"> [[File:Precipitation hardening of CuBe2 (soft) at 325C.jpg|left|thumb|<caption>Precipitation hardening of CuBe2 (soft) at 325°C</caption>]]</figure> <figure id="fig:Precipitation_hardening_of_CuBe2_(half hard)_at_different_annealing_temperatures"> [[File:Precipitation hardening of CuBe2 half hard.jpg|left|thumb|<caption>Precipitation hardening of CuBe2 (half hard) at different annealing temperatures</caption>]]</figure></div><div class="clear"></div>
Fig. 5.30:
Precipitation
hardening of CuBe2
(soft) at 325°C
Fig. <figtable id="tab:Physical_Properties_of_Selected_Copper_Beryllium_Alloys"><caption>'''<!--Table 5.3117:Precipitationhardening -->Physical Properties of CuBe2(half hard) at differentannealing temperaturesSelected Copper-Beryllium Alloys'''</caption>
Table {| class="twocolortable" style="text-align: left; font-size: 12px"|-!Material<br />Designation<br />EN UNS !Composition<br />[wt%]!Density<br />[g/cm<sup>3</sup>]!colspan="2" style="text-align:center"|Electrical<br />Conductivity !Electrical<br />Resistivity<br />[μΩ·cm]!Thermal<br />Conductivity<br />[W/(m·K)]!Coeff. of Linear<br />Thermal<br />Expansion<br />[10<sup>-6</sup>/K]!Modulus of<br />Elasticity<br />[GPa]!Softening Temperature<br />(approx. 10% loss in<br />strength)<br />[°C]!Melting<br />Temp Range<br />[°C]|-! !!![MS/m] ![% IACS]!!!!!!|-|CuBe1.7<br />CW100C<br />C17000|Be 1.6 - 1.8<br />Co 0.3<br />Ni 0.3<br />Cu Rest|8.4|8 - 9<sup>a</sup><br />12 - 13<sup>b</sup><br />11<sup>c</sup>|14 - 16<br />21 - 22<br />19|11 - 12.5<sup>a</sup><br />7.7 - 8.3<sup>b</sup><br />9.1<sup>c</sup>|110|17|125<sup>a</sup><br />135<sup>b</sup>|ca. 380|890 - 1000|-|CuBe2<br />CW101C<br />C17200|Be 1.8 - 2.1<br />Co 0.3<br />Ni 0.3<br />Cu Rest|8.3|8 - 9<sup>a</sup><br />12 - 13<sup>b</sup><br />11<sup>c</sup>|14 - 16<br />21 - 22<br />19|11 - 12.5<sup>a</sup><br />7.7 - 8.3<sup>b</sup><br />9.1<sup>c</sup>|110|17: Physical Properties of Selected Copper|125<sup>a</sup><br />135<sup>b</sup>|ca. 380|870 - 980|-|CuCo2Be<br />CW104C<br />C17500|Co 2.0 - 2.8<br />Be 0.4 - 0.7<br />Ni 0.3<br />Cu Rest|8.8|11 - 14<sup>a</sup><br />25 - 27<sup>b</sup><br />27 - 34<sup>c</sup>|19 - 24<br />43 - 47<br />47 - 59|7.1 - 9.1<sup>a</sup><br />3.7 - 4.0<sup>b</sup><br />2.9<sup>c</sup>|210|18|131<sup>a</sup><br />138<sup>b</sup>|ca. 450|1030 - 1070|-|CuNi2Be<br />CW110C<br />C17510|Ni 1.4 - 2.2<br />Be 0.2 - 0.6<br />Co 0.3<br />Cu Rest|8.8|11 - 14<sup>a</sup><br />25 - 27<sup>b</sup><br />27 - 34<sup>c</sup>|19 - 24<br />43 - 47<br />47 - 59|7.1 - 9.1<sup>a</sup><br />3.7 -Beryllium Alloys (4.0<sup>b</sup><br />2 Teile!).9<sup>c</sup>|230|18|131<sup>a</sup><br />138<sup>b</sup>|ca. 480|1060 - 1100|}</figtable>
Table 5.18: Mechanical Properties of Selected Copper-Beryllium Alloys <sup>a</sup>solution annealed, and cold rolled<br /> <sup>b</sup>solution annealed, cold rolled, and precipitation hardened<br /> <sup>c</sup>solution annealed, cold rolled, and precipitation hardened at mill (2 Teile!mill hardened)
====5.1.6.2 Other Precipitation Hardening Copper Alloys====
<figtable id====="tab:Mechanical Properties of Selected Copper-Beryllium Alloys"><caption>'''<!--Table 5.1.6.2.1 18:-->Mechanical Properties of Selected Copper-Chromium Beryllium Alloys====='''</caption>
{| class="twocolortable" style="text-align: left; font-size: 12px"|-!Material!Hardness<br />Condition!Tensile Strength R<sub>m</sub><br />[MPa]!0,2% Yield Strength<br />R<sub>p02</sub><br />[MPa]!Elongation<br />A<sub>50</sub><br />[%]!Vickers<br />Hardness<br />HV!Bend Radius<sup>1)</sup><br />perpendicular to<br />rolling direction!Bend Radius<sup>1)</sup><br />parallel to<br />rolling direction!Spring Bending<br />Limit σ<sub>FB</sub><br />[MPa]!Spring Fatigue<br />Limit σ<sub>BW</sub><br />[MPa]|-|CuBe1,7|R 390<sup>a</sup><br />R 680<sup>a</sup><br />R 1030<sup>b</sup><br />R 1240<sup>b</sup><br />R 680<sup>c</sup><br />R 1100<sup>c</sup>|380 -520<br />680 - 820<br />1030 - 1240<br />1240 - 1380<br />680 - 750<br />1100 - 1200|&ge; 180<br />&ge; 600<br />&ge; 900<br />&ge; 1070<br />&ge; 480<br />&ge; 930|35<br />2<br />3<br />1<br />18<br />3|80 - 135<br />210 - 250<br />330 - 380<br />360 - 420<br />220 - 350<br />330 - 370|0 x t<br />1 x t<br />1 x t<br /><br />1 x t<br />6 x t|0 x t<br />3 x t<br />1.5 x t<br /><br />1 x t<br />10 x t| <br /> <br />700<br />1000<br />390<br />790| <br /> <br />260<br />280<br /> <br />260|-|CuBe2|R 410<sup>a</sup><br />R 690<sup>a</sup><br />R 1140<sup>b</sup><br />R 1310<sup>b</sup><br />R 690<sup>c</sup><br />R 1200<sup>c</sup>|410 -540<br />690 - 820<br />1140 - 1310<br />1310 - 1480<br />690 - 760<br />1200 - 1320|&ge; 190<br />&ge; 650<br />&ge; 1000<br />&ge; 1150<br />&ge; 480<br />&ge; 1030|35<br />2<br />3<br />1<br />18<br />3|90 - 140<br />215 - 260<br />350 - 400<br />380 - 450<br />220 - 250<br />360 - 410|0 x t<br />1 x t<br /> <br /> <br />1 x t<br />5 x t|0 x t<br />3 x t<br /> <br /> <br />1.5 x t<br />10 x t| <br /> <br />800<br />1040<br />400<br />900| <br /> <br />270<br />300<br /> <br />280|-|CuCo2Be<br />CuNi2Be|R 250<sup>a</sup><br />R 550<sup>a</sup><br />R 650<sup>b</sup><br />R 850<sup>b</sup><br />R 520<sup>c</sup>|250 - 380<br />550 - 700<br />650 - 820<br />850 - 1000<br />520 - 620|&ge; 140<br />&ge; 450<br />&ge; 520<br />&ge; 750<br />&ge; 340|20<br />2<br />10<br />1<br />5|60 - 90<br />160 - 200<br />195 - 230<br />240 - 290<br />150 - 180|0 x t<br />3 x t<br />1 x t<br />3 x t<br />1 x t|0 x t<br /> <br />1 x t<br />3.5 x t<br />1 x t| <br /> <br />360<br />650<br />300| <br /> <br />220<br />250<br />210|}</figtable><sup>1)</sup> t: Strip thickness max. 0.5 mm<br /><sup>a</sup>solution annealed, and cold rolled<br /> <sup>b</sup>solution annealed, cold rolled, and precipitation hardened<br /> <sup>c</sup>solution annealed, cold rolled, and precipitation hardened at mill (mill hardened) ====<!--5.1.6.2-->Other Precipitation Hardening Copper Alloys==== =====<!--5.1.6.2.1-->Copper-Chromium Alloys===== As the phase diagram shows, copper-chromium has a similar hardening profile compared to CuBe ''<xr id="fig:Copper corner of the copper-chromium phase diagram for up to 0.8 wt% chromium"/><!--(Fig. 5.32)''-->. In the hardened stage CuCr has limitations to work hardening. Compared to copper it has a better temperature stability with good electrical conductivity. Hardness and electrical conductivity as a function of cold working and precipitation hardening conditions are illustrated in [[#figures8|(Figs. 6 – 9)]]<!--Figs. 5.33-5.35 ''-->, <xr id="tab:Physical Properties of Other Precipitation Hardening Copper Alloys"/><!--(Tables 5.19 )--> and <xr id="tab:Mechanical Properties of Other Precipitation Hardening Copper Alloys"/><!--(Tab. 5.20)''-->.
Copper-chromium materials are especially suitable for use as electrodes for resistance welding. During brazing the loss in hardness is limited if low melting brazing alloys and reasonably short heating times are used.
Fig. 5.32:Copper corner of the copper-chromiumphase diagram for up to 0.8 wt% chromium<div id="figures5">
<xr id="fig:Copper corner of the copper-chromium phase diagram for up to 0.8 wt% chromium"/><!--Fig. 5.3332:Softening --> Copper corner of precipitationthe copper-hardenedand subsequently coldworked CuCr1 after4hrs annealingchromium phase diagram for up to 0.8 wt% chromium
<xr id="fig:Softening of precipitation hardened and subsequently cold worked CuCr1"/><!--Fig. 5.34 a33:Electrical conductivity --> Softening ofprecipitation -hardenedCuCr 0.6 as a function ofand subsequently cold worked CuCr1 after 4hrs annealing conditions
<xr id="fig:Electrical conductivity of precipitation hardened CuCr 0.6"/><!--Fig. 5.34 ba:Hardness --> Electrical conductivity ofprecipitation hardenedCuCr 0.6 as a functionof annealing conditions
<xr id="fig:Hardness of precipitation hardened CuCr 0.6"/><!--Fig. 5.3534 b:Electrical conductivityand hardness --> Hardness of precipitationhardened CuCr 0.6 aftercold workingas a function of annealing conditions
Table <xr id="fig:Electrical conductivity and hardness of precipitation hardened CuCr 0.6"/><!--Fig. 5.1935: Physical Properties --> Electrical conductivity and hardness of Other Precipitation Hardening Copper Alloys (2 Teile!)precipitation hardened CuCr 0.6 after cold working</div>
Table 5.20: Mechanical Properties of Other Precipitation Hardening Copper Alloys<div class="multiple-images">
<figure id="fig:Copper corner of the copper-chromium phase diagram for up to 0.8 wt% chromium">
[[File:Copper corner of the copper chromium phase diagram.jpg|left|thumb|<caption>Copper corner of the copper-chromium phase diagram for up to 0.8 wt% chromium</caption>]]
</figure>
<figure id=====5.1.6.2"fig:Softening of precipitation hardened and subsequently cold worked CuCr1"> [[File:Softening of precipitation hardened and subsequently cold worked CuCr1.2 Copperjpg|left|thumb|<caption>Softening of precipitation-Zirconium Alloys=====hardened and subsequently cold worked CuCr1 after 4hrs annealing</caption>]]</figure>
The solubility <figure id="fig:Electrical conductivity of Zirconium in copper is precipitation hardened CuCr 0.15 wt% Zr at the eutectic temperature 6"> [[File:Electrical conductivity of 980°C ''(Figprecipitation hardened CuCr 0. 56.36)''jpg|left|thumb|<caption>Electrical conductivity of precipitation hardened CuCr 0. Copper-zirconium materials have 6 as a similar properties spectrum compared to the one for copper-chromium materials. At room temperature the mechanical properties function of copper-zirconium are less suitable than those of copper chromium, its temperature stability is however at least the same.annealing conditions</caption>]]</figure>
<figure id=====5"fig:Hardness of precipitation hardened CuCr 0.16"> [[File:Hardness of precipitation hardened CuCr 0.6.2jpg|left|thumb|<caption>Hardness of precipitation hardened CuCr 0.3 Copper-Chromium-Zirconium Alloys=====6 as a function of annealing conditions</caption>]]</figure>
The earlier used <figure id="fig:Electrical conductivity and hardness of precipitation hardened CuCr and CuZr materials have been partially replaced over the years by the capitation hardening three materials alloy CuCr1Zr0. This material exhibits high mechanical strength at elevated temperatures 6"> [[File:Electrical conductivity and good oxidation resistance as well as high softening temperatures. In its hardness of precipitation hardened condition CuCr1Zr has also a high electrical conductivity (Bild 5CuCr 0.37)6. Their usage extends from mechanically jpg|left|thumb|<caption>Electrical conductivity and thermally highly stressed parts such as contact tulips in high voltage switchgear to electrodes for resistance weldinghardness of precipitation hardened CuCr 0.6 after cold working</caption>]]</figure></div><div class="clear"></div>
Fig. 5.36:
Copper corner of the copperzirconium
for up to 0.5 wt%
zirconium
<figtable id="tab:Physical Properties of Other Precipitation Hardening Copper Alloys"><caption>'''<!--Table 5.19:-->Physical Properties of Other Precipitation Hardening Copper Alloys'''</caption>  {| class="twocolortable" style="text-align: left; font-size: 12px"|-!Material<br />Designation<br />EN UNS !Composition<br />[wt%]!Density<br />[g/cm<sup>3</sup>]!colspan="2" style="text-align:center"|Electrical<br />Conductivity !Electrical<br />Resistivity<br />[μΩ·cm]!Thermal<br />Conductivity<br />[W/(m·K)]!Coeff. of Linear<br />Thermal<br />Expansion<br />[10<sup>-6</sup>/K]!Modulus of<br />Elasticity<br />[GPa]!Softening Temperature<br />(approx. 10% loss in<br />strength)<br />[°C]!Melting<br />Temp Range<br />[°C]|-!!!![MS/m] ![% IACS]!!!!!!|-|CuCr|Cr 0.3 - 1.2<br />Cu Rest|8.89|26<sup>a</sup><br />48<sup>b</sup>|45<sup>a</sup><br />83<sup>b</sup>|3.8<sup>a</sup><br />2.1<sup>b</sup>|170<sup>a</sup><br />315<sup>b</sup>|17|112|ca. 450|980 - 1080|-|CuZr|Zr 0.1 - 0.3<br />Cu Rest|8.9|35<sup>a</sup><br />52<sup>b</sup>|60<sup>a</sup><br />90<sup>b</sup>|2.9<sup>a</sup><br />1.9<sup>b</sup>|340<sup>a</sup>|16|135|ca. 500|1020 - 1080|-|CuCr1Zr<br />CW106C<br />C18150|Cr 0.5 - 1.2<br />Zr 0.03 - 0.3<br />Cu Rest|8.92|20<sup>a</sup><br />43<sup>b</sup>|34<sup>a</sup><br />74<sup>b</sup>|5.0<sup>a</sup><br />2.3<sup>b</sup>|170<sup>a</sup><br />310 - 330<sup>b</sup>|16|110<sup>a</sup><br />130<sup>b</sup>|ca. 500|1070 - 1080|}</figtable> <sup>a</sup>solution annealed, and cold rolled<br /> <sup>b</sup>solution annealed, cold rolled, and precipitation hardened<br />   <figtable id="tab:Mechanical Properties of Other Precipitation Hardening Copper Alloys"><caption>'''<!--Table 5.20:-->Mechanical Properties of Other Precipitation Hardening Copper Alloys'''</caption> <table class="twocolortable"><tr><th><p class="s16">Material</p></th><th><p class="s16">Hardness</p><p class="s16">Condi- tion</p></th><th><p class="s16">Tensile</p><p class="s16">Strength R<span class="s18">m</span></p><p class="s16">[MPa]</p></th><th><p class="s16">0,2% Yield</p><p class="s16">Strength R<span class="s18">p02</span></p><p class="s16">[MPa]</p></th><th><p class="s16">Elongation</p><p class="s16">A50</p><p class="s16">[%]</p></th><th><p class="s16">Vickers</p><p class="s16">Hardness</p><p class="s16">HV</p></th><th><p class="s16">Spring Bending</p><p class="s16">Limit <span class="s19">F</span><span class="s18">FB </span>[MPa]</p></th></tr><tr><td><p class="s16">CuCr</p></td><td><p class="s16">R 230<span class="s18">a</span></p><p class="s16">R 400<span class="s18">a </span>R 450<span class="s18">b </span>R 550<span class="s18">b</span></p></td><td><p class="s33">&gt;<span class="s16"> 230</span></p><p class="s33">&gt;<span class="s16"> 400</span></p><p class="s33">&gt;<span class="s16"> 450</span></p><p class="s33">&gt;<span class="s16"> 550</span></p></td><td><p class="s33">&gt;<span class="s16"> 80</span></p><p class="s33">&gt;<span class="s16"> 295</span></p><p class="s33">&gt;<span class="s16"> 325</span></p><p class="s33">&gt;<span class="s16"> 440</span></p></td><td><p class="s16">30</p><p class="s16">10</p><p class="s16">10</p><p class="s16">8</p></td><td><p class="s33">&gt;<span class="s16"> 55</span></p><p class="s33">&gt;<span class="s16"> 120</span></p><p class="s33">&gt;<span class="s16"> 130</span></p><p class="s33">&gt;<span class="s16"> 150</span></p></td><td><p class="s16">350</p></td></tr><tr><td><p class="s16">CuZr</p></td><td><p class="s16">R 260<span class="s18">a</span></p><p class="s16">R 370<span class="s18">a </span>R 400<span class="s18">b </span>R 420<span class="s18">b</span></p></td><td><p class="s33">&gt;<span class="s16"> 260</span></p><p class="s33">&gt;<span class="s16"> 370</span></p><p class="s33">&gt;<span class="s16"> 400</span></p><p class="s33">&gt;<span class="s16"> 420</span></p></td><td><p class="s33">&gt;<span class="s16"> 100</span></p><p class="s33">&gt;<span class="s16"> 270</span></p><p class="s33">&gt;<span class="s16"> 280</span></p><p class="s33">&gt;<span class="s16"> 400</span></p></td><td><p class="s16">35</p><p class="s16">12</p><p class="s16">12</p><p class="s16">10</p></td><td><p class="s33">&gt;<span class="s16"> 55</span></p><p class="s33">&gt;<span class="s16"> 100</span></p><p class="s33">&gt;<span class="s16"> 105</span></p><p class="s33">&gt;<span class="s16"> 115</span></p></td><td><p class="s16">280</p></td></tr><tr><td><p class="s16">CuCr1Zr</p></td><td><p class="s16">R 200<span class="s18">a</span></p><p class="s16">R 400<span class="s18">b</span></p><p class="s16">R 450<span class="s18">b</span></p></td><td><p class="s33">&gt;<span class="s16"> 200</span></p><p class="s33">&gt;<span class="s16"> 400</span></p><p class="s33">&gt;<span class="s16"> 450</span></p></td><td><p class="s33">&gt;<span class="s16"> 60</span></p><p class="s33">&gt;<span class="s16"> 210</span></p><p class="s33">&gt;<span class="s16"> 360</span></p></td><td><p class="s16">30</p><p class="s16">12</p><p class="s16">10</p></td><td><p class="s33">&gt;<span class="s16"> 70</span></p><p class="s33">&gt;<span class="s16"> 140</span></p><p class="s33">&gt;<span class="s16"> 155</span></p></td><td><p class="s16">420</p></td></tr></table></figtable> =====<!--5.1.6.2.2-->Copper-Zirconium Alloys===== The solubility of Zirconium in copper is 0.15 wt% Zr at the eutectic temperature of 980°C <xr id="fig:Copper corner of the copper zirconium for up to 0.5-wt zirconium"/><!--(Fig. 5.36)-->. Copper-zirconium materials have a similar properties spectrum compared to the one for copper-chromium materials. At room temperature the mechanical properties of copper-zirconium are less suitable than those of copper chromium, its temperature stability is however at least the same. =====<!--5.1.6.2.3-->Copper-Chromium-Zirconium Alloys===== The earlier used CuCr and CuZr materials have been partially replaced over the years by the capitation hardening three materials alloy CuCr1Zr. This material exhibits high mechanical strength at elevated temperatures and good oxidation resistance as well as high softening temperatures. In its hardened condition CuCr1Zr has also a high electrical conductivity <xr id="fig:Softening of CuCr1Zr after 1hr annealing"/><!--(Bild 5.37)-->. Their usage extends from mechanically and thermally highly stressed parts such as contact tulips in high voltage switchgear to electrodes for resistance welding. <xr id="fig:Copper corner of the copper zirconium for up to 0.5-wt zirconium"/><!--Fig. 5.36:--> Copper corner of the copper- zirconium for up to 0.5 wt% zirconium <xr id="fig:Softening of CuCr1Zr after 1hr annealing"/><!--Fig. 5.37:--> Softening of CuCr1Zr after 1 hr annealing and after 90% cold working <div class="multiple-images"><figure id="fig:Copper corner of the copper zirconium for up to 0.5-wt zirconium">[[File:Copper corner of the copper zirconium for up to 0.5-wt zirconium.jpg|right|thumb|Copper corner of the copper- zirconium for up to 0.5 wt% zirconium]] </figure> <figure id="fig:Softening of CuCr1Zr after1hr annealing">[[File:Softening of CuCr1Zr after 1hr annealing.jpg|right|thumb|Softening of CuCr1Zr after 1 hr annealing and after 90%cold working]]</figure></div><div class="clear"></div>
==References==
[[Contact Carrier Materials#References|References]]
 
[[de:Aushärtbare_Kupfer-Legierungen]]

Navigation menu

Powered by