Changes

Jump to: navigation, search

Precipitation Hardening Copper Alloys

6,419 bytes removed, 17:49, 10 March 2014
m
Reverted edits by Doduco Redaktion (talk) to last revision by Doduco Redaktion
The cause for precipitation hardening of CuBe materials is the rapidly diminishing solubility of beryllium in copper as temperature decrease. As the
phase diagram for CuBe shows, 2.4 wt% of Be are soluble in Cu at 780°C <xr id="fig:Phase diagram of copperberyllium with temperature ranges for brazing and annealing treatments"/> ''(Fig. 5.28)''. In this temperature range annealed CuBe alloys are homogeneous(solution annealing). The homogeneous state can be frozen through rapid cooling to room temperature (quenching). Through a subsequent annealing at 325°C the desired precipitation hardening is achieved which results in a significant increase in mechanical strength and electrical conductivity of CuBe ''(Table 5.17)''. The final strength and hardness values depend on the annealing temperature and time as well as on the initial degree of cold working ''(Table 5.18)'' and [[#figures7|(Figs. 43 – 75)]]''(Figs. 5.29 - 5.31)''.
<figure id="fig:Phase diagram of copperberyllium with temperature ranges for brazing and annealing treatments">Fig. 5.28: Phase diagram of copperberyllium with temperature ranges for brazing and annealing treatments[[File:Phase diagram of copper beryllium with temperature ranges.jpg|right|thumb|Phase diagram of copper- beryllium with temperature ranges for brazing and annealing treatments]]</figure>
As precipitation hardening alloys CuBe materials, mainly CuBe2 and CuBe1.7 have gained broad usage as current carrying contact springs because of their outstanding mechanical properties. Besides these CuCo2Be and CuNi2Be, which have medium mechanical strength and a relatively high electrical
Since Beryllium is rated as a carcinogen by the European regulation EU-67/548, it has been tried to reach the application properties of the well established CuBe1.7 and CuBe2 alloys with a lower Be content. The development efforts for alternate precipitation hardening materials without toxic and declaration requiring additive materials, for example CuNiCoSi, are aimed at the replacement of CuBe.
<div id="figures7"><xr id="fig:Precipitation hardening of CuBe2 at 325°C after different cold working"/> Fig. 5.29: Precipitation hardening of CuBe2 at 325°C after different cold working
<xr id="fig:Precipitation hardening of CuBe2 (soft) at 325°C"/> Fig. 5.30: Precipitation hardening of CuBe2 (soft) at 325°C
<xr id="fig:Precipitation hardening of CuBe2 (half hard) at different annealing temperatures"/> Fig. 5.31: Precipitation hardening of CuBe2 (half hard) at different annealing temperatures</div>
<div class="multiple-images"><figure id="figTable 5.17:Precipitation hardening Physical Properties of CuBe2 at 325°C after different cold working"> [[File:Precipitation hardening of CuBe2 at 325C.jpg|right|thumb|Precipitation hardening of CuBe2 at 325°C after different cold working]]</figure>Selected Copper-Beryllium Alloys (2 Teile!)
<figure id="fig:Precipitation hardening of CuBe2 (soft) at 325°C"> [[File:Precipitation hardening of CuBe2 (soft) at 325C.jpg|right|thumb|Precipitation hardening of CuBe2 (soft) at 325°C]]</figure> <figure id="fig:Precipitation hardening of CuBe2 (half hard) at different annealing temperatures"> [[File:Precipitation hardening of CuBe2 half hard.jpg|right|thumb|Precipitation hardening of CuBe2 (half hard) at different annealing temperatures]]</figure></div><div class="clear"></div> '''Table 5.17: Physical Properties of Selected Copper-Beryllium Alloys''' (2 Teile!) '''Table 5.18: Mechanical Properties of Selected Copper-Beryllium Alloys''' (2 Teile!)
====5.1.6.2 Other Precipitation Hardening Copper Alloys====
=====5.1.6.2.1 Copper-Chromium Alloys=====
As the phase diagram shows, copper-chromium has a similar hardening profile compared to CuBe <xr id="fig:Copper corner of the copper-chromium phase diagram for up to 0.8 wt% chromium"/>''(Fig. 5.32)''. In the hardened stage CuCr has limitations to work hardening. Compared to copper it has a better temperature stability with good electrical conductivity. Hardness and electrical conductivity as a function of cold working and precipitation hardening conditions are illustrated in [[#figures8|(Figs. 43 – 75)]]Figs. 5.33-5.35, ''(Tab. Tables 5.19 and Tab. 5.20)''.
Copper-chromium materials are especially suitable for use as electrodes for resistance welding. During brazing the loss in hardness is limited if low melting brazing alloys and reasonably short heating times are used.
<figure id="fig:Copper corner of the copper-chromium phase diagram for up to 0.8 wt% chromium">Fig. 5.32: Copper corner of the copper-chromium phase diagram for up to 0.8 wt% chromium[[File:Copper corner of the copper chromium phase diagram.jpg|right|thumb|Copper corner of the copper-chromium phase diagram for up to 0.8 wt% chromium]] </figure> <div id="figures8"><xr id="fig:Softening of precipitation hardened and subsequently cold worked CuCr1"/> Fig. 5.33: Softening of precipitation-hardened and subsequently cold worked CuCr1 after 4hrs annealing <xr id="fig:Electrical conductivity of precipitation hardened CuCr 0.6"/> Fig. 5.34 a: Electrical conductivity of precipitation hardened CuCr 0.6 as a function of annealing conditions <xr id="fig:Hardness of precipitation hardened CuCr 0.6"/> Fig. 5.34 b: Hardness of precipitation hardened CuCr 0.6 as a function of annealing conditions <xr id="fig:Electrical conductivity and hardness of precipitation hardened CuCr 0.6"/> Fig. 5.35: Electrical conductivity and hardness of precipitation hardened CuCr 0.6 after cold working</div> <div class="multiple-images"><figure id="fig:Softening of precipitation hardened and subsequently cold worked CuCr1"> </figure>
<figure id="figFig. 5.33:Electrical conductivity Softening of precipitation -hardened CuCr 0.6"> </figure>and subsequently coldworked CuCr1 after4hrs annealing
<figure id="figFig. 5.34 a:Hardness Electrical conductivity of precipitation hardened CuCr 0.6">as a function of</figure> annealing conditions
<figure id="figFig. 5.34 b:Electrical conductivity and hardness Hardness of precipitation hardened CuCr 0.6"> as a function</figure> </div><div class="clear"></div>of annealing conditions
Fig. 5.35:
Electrical conductivity
and hardness of precipitation
hardened CuCr 0.6 after
cold working
'''Table 5.19: Physical Properties of Other Precipitation Hardening Copper Alloys''' (2 Teile!)
'''Table 5.20: Mechanical Properties of Other Precipitation Hardening Copper Alloys'''
<table border="1" cellspacing="0" style="border-collapse:collapse"><tr><td><p class="s16">Material</p></td><td><p class="s16">Hardness</p><p class="s16">Condi- tion</p></td><td><p class="s16">Tensile</p><p class="s16">Strength R<span class="s18">m</span></p><p class="s16">[MPa]</p></td><td><p class="s16">0,2% Yield</p><p class="s16">Strength R<span class="s18">p02</span></p><p class="s16">[MPa]</p></td><td><p class="s16">Elongation</p><p class="s16">A50</p><p class="s16">[%]</p></td><td><p class="s16">Vickers</p><p class="s16">Hardness</p><p class="s16">HV</p></td><td><p class="s16">Spring Bending</p><p class="s16">Limit <span class="s19">F</span><span class="s18">FB </span>[MPa]</p></td></tr><tr><td><p class="s16">CuCr</p></td><td><p class="s16">R 230<span class="s18">a</span></p><p class="s16">R 400<span class="s18">a </span>R 450<span class="s18">b </span>R 550<span class="s18">b</span></p></td><td><p class="s33">&gt;<span class="s16"> 230</span></p><p class="s33">&gt;<span class="s16"> 400</span></p><p class="s33">&gt;<span class="s16"> 450</span></p><p class="s33">&gt;<span class="s16"> 550</span></p></td><td><p class="s33">&gt;<span class="s16"> 80</span></p><p class="s33">&gt;<span class="s16"> 295</span></p><p class="s33">&gt;<span class="s16"> 325</span></p><p class="s33">&gt;<span class="s16"> 440</span></p></td><td><p class="s16">30</p><p class="s16">10</p><p class="s16">10</p><p class="s16">8</p></td><td><p class="s33">&gt;<span class="s16"> 55</span></p><p class="s33">&gt;<span class="s16"> 120</span></p><p class="s33">&gt;<span class="s16"> 130</span></p><p class="s33">&gt;<span class="s16"> 150</span></p></td><td><p class="s16">350</p></td></tr><tr><td><p class="s16">CuZr</p></td><td><p class="s16">R 260<span class="s18">a</span></p><p class="s16">R 370<span class="s18">a </span>R 400<span class="s18">b </span>R 420<span class="s18">b</span></p></td><td><p class="s33">&gt;<span class="s16"> 260</span></p><p class="s33">&gt;<span class="s16"> 370</span></p><p class="s33">&gt;<span class="s16"> 400</span></p><p class="s33">&gt;<span class="s16"> 420</span></p></td><td><p class="s33">&gt;<span class="s16"> 100</span></p><p class="s33">&gt;<span class="s16"> 270</span></p><p class="s33">&gt;<span class="s16"> 280</span></p><p class="s33">&gt;<span class="s16"> 400</span></p></td><td><p class="s16">35</p><p class="s16">12</p><p class="s16">12</p><p class="s16">10</p></td><td><p class="s33">&gt;<span class="s16"> 55</span></p><p class="s33">&gt;<span class="s16"> 100</span></p><p class="s33">&gt;<span class="s16"> 105</span></p><p class="s33">&gt;<span class="s16"> 115</span></p></td><td><p class="s16">280</p></td></tr><tr><td><p class="s16">CuCr1Zr</p></td><td><p class="s16">R 200<span class="s18">a</span></p><p class="s16">R 400<span class="s18">b</span></p><p class="s16">R 450<span class="s18">b</span></p></td><td><p class="s33">&gt;<span class="s16"> 200</span></p><p class="s33">&gt;<span class="s16"> 400</span></p><p class="s33">&gt;<span class="s16"> 450</span></p></td><td><p class="s33">&gt;<span class="s16"> 60</span></p><p class="s33">&gt;<span class="s16"> 210</span></p><p class="s33">&gt;<span class="s16"> 360</span></p></td><td><p class="s16">30</p><p class="s16">12</p><p class="s16">10</p></td><td><p class="s33">&gt;<span class="s16"> 70</span></p><p class="s33">&gt;<span class="s16"> 140</span></p><p class="s33">&gt;<span class="s16"> 155</span></p></td><td><p class="s16">420</p></td></tr></table>
=====5.1.6.2.2 Copper-Zirconium Alloys=====
The earlier used CuCr and CuZr materials have been partially replaced over the years by the capitation hardening three materials alloy CuCr1Zr. This material exhibits high mechanical strength at elevated temperatures and good oxidation resistance as well as high softening temperatures. In its hardened condition CuCr1Zr has also a high electrical conductivity (Bild 5.37). Their usage extends from mechanically and thermally highly stressed parts such as contact tulips in high voltage switchgear to electrodes for resistance welding.
Fig. 5.36: Copper corner of the copperzirconium for up to 0.5 wt% zirconium[[File:Copper corner of the copper zirconium for up to 0.5-wt zirconium.jpg|right|thumb|Copper corner of the copper- zirconium for up to 0.5 wt% zirconium]]
Fig. 5.37: Softening of CuCr1Zr after 1 hr annealing and after 90% cold working[[File:Softening of CuCr1Zr after 1hr annealing.jpg|right|thumb|Softening of CuCr1Zr after 1 hr annealing and after 90% cold working]]
==References==
[[Contact Carrier Materials#References|References]]

Navigation menu

Powered by