Difference between revisions of "Contact Spring Calculations"

From Electrical Contacts
Jump to: navigation, search
(Contact Spring Calculations)
m (Reverted edits by Doduco Redaktion (talk) to last revision by STZAdmin)
(Tag: Rollback)
Line 1: Line 1:
{|
+
===<!--6.4.7-->Contact Spring Calculations===
|'''Editor''':
+
<figure id="fig:Oneside_fixed_contact_bending_spring">
|DODUCO Holding GmbH<br>
+
[[File:One side fixed contact bending spring.jpg|right|thumb|One side fixed contact bending spring]]
Im Altgefäll 12<br>
+
</figure>
75181 Pforzheim / Germany<br>
+
The influence of the dimensions can be illustrated best by using the single side fixed beam model <xr id="fig:Oneside_fixed_contact_bending_spring"/><!--(Fig. 6.20)-->. For small deflections the following equation is valid:
Phone +49 (0) 7231 602-0<br>
+
:$F = \frac{3 \cdot E \cdot J}{L^3} $
Fax +49 (0) 7231 602-398<br>
 
Mail: info@doduco.net<br>
 
|-
 
|'''Managing Directors''':
 
|
 
Dr. Hans-Joachim Dittloff (Vorsitzender)<br>
 
Dr. Franz Kaspar<br>
 
Hajo Kufahl<br>
 
|-
 
|'''Registration''':
 
|HRB 710592 AG Mannheim
 
|-
 
  
|'''Consulting and Realisation''':
+
where J is the momentum of inertia of the rectangular cross section of the beam
|Steinbeis - Transferzentrum Unternehmensentwicklung an der Hochschule Pforzheim (SZUE)<br>
+
:$J = \frac{B \cdot D^3}{12}$
Blücherstraße 32 <br>
+
 
75177 Pforzheim <br>
+
For springs with a circular cross-sectional area the momentum of inertia is
https://www.szue.de/
+
:$J=\pi D^4/64$
|-
+
:$D= Durchmesser$
|'''Revision and German version''':
+
 
|Christian Teitscheid - Teitscheid Freelance IT<br>
+
To avoid plastic deformation of the spring the max bending force σ<sub>max</sub> cannot be exceeded
Barbarastraße 22 <br>
+
:$\sigma_{max} = \frac{3 \cdot E \cdot D}{2L^2}\cdot_{max}$
47495 Rheinberg <br>
+
 
http://www.teitscheid-freelance.de/
+
The stress limit is defined through the fatigue limit and the 0.2% elongation limit resp.
|-
+
:$\times_{max} = \frac{2 \cdot L^2}{3 \cdot D \cdot E}R_{p0,2}$
|}
+
 
 +
<br />and/or<br />
 +
:$F_{max} = \frac{B \cdot D^2}{6L}R_{p0,2}$
 +
 
 +
 
 +
<li>'''Special Spring Shapes'''</li>
 +
<ul>
 +
<li>'''Triangular spring'''</li>
 +
 
 +
Deflection
 +
:$ \times = \frac{F}{2 \cdot E \cdot J}L^3$
 +
 
 +
 
 +
:$= \frac{6 \cdot F}{E \cdot B}\cdot \frac{L^3}{D^3}$
 +
 
 +
 
 +
Max. bending force
 +
:$\sigma_{max}= \frac{18 \cdot F \cdot L}{B \cdot D^2}$
 +
 
 +
<li>'''Trapezoidal spring'''</li>
 +
 
 +
Deflection
 +
:$ \times = \frac{F}{(2 + B_{min} /B_{max})}\times \frac{L^3}{E \cdot J}$
 +
 
 +
 
 +
:$\times= \frac{12 \cdot F}{(2 + B_{min} /B_{max})}\cdot \frac{L^3}{E \cdot B \cdot D^3}$
 +
 
 +
 
 +
Max. bending force
 +
:$\sigma_{max}= \frac{18 \cdot F \cdot L}{(2 + B_{min} /B_{max}) \cdot B_{max} \cdot D^2 }$
 +
</ul>
 +
 
 +
 
 +
==References==
 +
[[Application Tables and Guideline Data for Use of Electrical Contact Design#References|References]]
 +
 
 +
[[de:Berechnung_von_Kontaktfedern]]

Revision as of 08:55, 11 January 2023

Contact Spring Calculations

One side fixed contact bending spring

The influence of the dimensions can be illustrated best by using the single side fixed beam model Figure 1. For small deflections the following equation is valid:

$F = \frac{3 \cdot E \cdot J}{L^3} $

where J is the momentum of inertia of the rectangular cross section of the beam

$J = \frac{B \cdot D^3}{12}$

For springs with a circular cross-sectional area the momentum of inertia is

$J=\pi D^4/64$
$D= Durchmesser$

To avoid plastic deformation of the spring the max bending force σmax cannot be exceeded

$\sigma_{max} = \frac{3 \cdot E \cdot D}{2L^2}\cdot_{max}$

The stress limit is defined through the fatigue limit and the 0.2% elongation limit resp.

$\times_{max} = \frac{2 \cdot L^2}{3 \cdot D \cdot E}R_{p0,2}$


and/or

$F_{max} = \frac{B \cdot D^2}{6L}R_{p0,2}$


  • Special Spring Shapes
    • Triangular spring
    • Deflection

      $ \times = \frac{F}{2 \cdot E \cdot J}L^3$


      $= \frac{6 \cdot F}{E \cdot B}\cdot \frac{L^3}{D^3}$


      Max. bending force

      $\sigma_{max}= \frac{18 \cdot F \cdot L}{B \cdot D^2}$
    • Trapezoidal spring
    • Deflection

      $ \times = \frac{F}{(2 + B_{min} /B_{max})}\times \frac{L^3}{E \cdot J}$


      $\times= \frac{12 \cdot F}{(2 + B_{min} /B_{max})}\cdot \frac{L^3}{E \cdot B \cdot D^3}$


      Max. bending force

      $\sigma_{max}= \frac{18 \cdot F \cdot L}{(2 + B_{min} /B_{max}) \cdot B_{max} \cdot D^2 }$


    References

    References