Difference between revisions of "Contact Spring Calculations"

From Electrical Contacts
Jump to: navigation, search
(6.4.7 Contact Spring Calculations)
(Blanked the page)
(Tag: Blanking)
 
(15 intermediate revisions by 5 users not shown)
Line 1: Line 1:
===6.4.7 Contact Spring Calculations===
 
<figure id="fig:One side fixed contact bending spring">
 
[[File:One side fixed contact bending spring.jpg|right|thumb|One side fixed contact bending spring]]
 
</figure>
 
The influence of the dimensions can be illustrated best by using the single side fixed beam model <xr id="fig:One side fixed contact bending spring"/> (Fig. 6.20). For small deflections the following equation is valid:
 
:<math>F = \frac{3 \cdot E \cdot J}{L^3} </math>
 
  
where J is the momentum of inertia of the rectangular cross section of the beam
 
:<math>J = \frac{B \cdot D^3}{12}</math>
 
 
For springs with a circular cross-sectional area the momentum of inertia is
 
:<math>J=\pi D^4/64</math>
 
:<math>D= Durchmesser</math>
 
 
To avoid plastic deformation of the spring the max bending force σ<sub>max</sub> cannot be exceeded
 
:<math>\sigma_{max} = \frac{3 \cdot E \cdot D}{2L^2}\cdot_{max}</math>
 
 
The stress limit is defined through the fatigue limit and the 0.2% elongation limit resp.
 
:<math>\times_{max} = \frac{2 \cdot L^2}{3 \cdot D \cdot E}R_{p0,2}</math>
 
 
<br />and/or<br />
 
:<math>F_{max} = \frac{B \cdot D^2}{6L}R_{p0,2}</math>
 
 
 
<li>'''Special Spring Shapes'''</li>
 
<ul>
 
<li>'''Triangular spring'''</li>
 
 
Deflection
 
:<math> \times = \frac{F}{2 \cdot E \cdot J}L^3</math>
 
 
 
:<math>= \frac{6 \cdot F}{E \cdot B}\cdot \frac{L^3}{D^3}</math>
 
 
 
Max. bending force
 
:<math>\sigma_{max}= \frac{18 \cdot F \cdot L}{B \cdot D^2}</math>
 
 
<li>'''Trapezoidal spring'''</li>
 
 
Deflection
 
:<math> \times = \frac{F}{(2 + B_{min} /B_{max})}\times \frac{L^3}{E \cdot J}</math>
 
 
 
:<math>\times= \frac{12 \cdot F}{(2 + B_{min} /B_{max})}\times \frac{L^3}{E \times B \times D^3}</math>
 
 
 
Max. bending force
 
:<math>\sigma_{max}= \frac{18 \cdot F \cdot L}{(2 + B_{min} /B_{max}) \cdot B_{max} \cdot D^2 }</math>
 
</ul>
 
 
==References==
 
[[Application Tables and Guideline Data for Use of Electrical Contact Design#References|References]]
 

Latest revision as of 14:00, 27 March 2023