Difference between revisions of "Contact Spring Calculations"

From Electrical Contacts
Jump to: navigation, search
(6.4.7 Contact Spring Calculations)
Line 4: Line 4:
 
</figure>
 
</figure>
 
The influence of the dimensions can be illustrated best by using the single side fixed beam model <xr id="fig:One side fixed contact bending spring"/> (Fig. 6.20). For small deflections the following equation is valid:
 
The influence of the dimensions can be illustrated best by using the single side fixed beam model <xr id="fig:One side fixed contact bending spring"/> (Fig. 6.20). For small deflections the following equation is valid:
:<math>F = \frac{3 \cdot E \cdot J}{L^3} </math>
+
:$F = \frac{3 \cdot E \cdot J}{L^3} $
  
 
where J is the momentum of inertia of the rectangular cross section of the beam
 
where J is the momentum of inertia of the rectangular cross section of the beam
:<math>J = \frac{B \cdot D^3}{12}</math>
+
:$J = \frac{B \cdot D^3}{12}$
  
 
For springs with a circular cross-sectional area the momentum of inertia is
 
For springs with a circular cross-sectional area the momentum of inertia is
:<math>J=\pi D^4/64</math>
+
:$J=\pi D^4/64$
:<math>D= Durchmesser</math>
+
:$D= Durchmesser$
  
 
To avoid plastic deformation of the spring the max bending force σ<sub>max</sub> cannot be exceeded
 
To avoid plastic deformation of the spring the max bending force σ<sub>max</sub> cannot be exceeded
:<math>\sigma_{max} = \frac{3 \cdot E \cdot D}{2L^2}\cdot_{max}</math>
+
:$\sigma_{max} = \frac{3 \cdot E \cdot D}{2L^2}\cdot_{max}$
  
 
The stress limit is defined through the fatigue limit and the 0.2% elongation limit resp.
 
The stress limit is defined through the fatigue limit and the 0.2% elongation limit resp.
:<math>\times_{max} = \frac{2 \cdot L^2}{3 \cdot D \cdot E}R_{p0,2}</math>
+
:$\times_{max} = \frac{2 \cdot L^2}{3 \cdot D \cdot E}R_{p0,2}$
  
 
<br />and/or<br />
 
<br />and/or<br />
:<math>F_{max} = \frac{B \cdot D^2}{6L}R_{p0,2}</math>
+
:$F_{max} = \frac{B \cdot D^2}{6L}R_{p0,2}$
  
  
Line 28: Line 28:
  
 
Deflection
 
Deflection
:<math> \times = \frac{F}{2 \cdot E \cdot J}L^3</math>
+
:$ \times = \frac{F}{2 \cdot E \cdot J}L^3$
  
  
:<math>= \frac{6 \cdot F}{E \cdot B}\cdot \frac{L^3}{D^3}</math>
+
:$= \frac{6 \cdot F}{E \cdot B}\cdot \frac{L^3}{D^3}$
  
  
 
Max. bending force
 
Max. bending force
:<math>\sigma_{max}= \frac{18 \cdot F \cdot L}{B \cdot D^2}</math>
+
:$\sigma_{max}= \frac{18 \cdot F \cdot L}{B \cdot D^2}$
  
 
<li>'''Trapezoidal spring'''</li>
 
<li>'''Trapezoidal spring'''</li>
  
 
Deflection
 
Deflection
:<math> \times = \frac{F}{(2 + B_{min} /B_{max})}\times \frac{L^3}{E \cdot J}</math>
+
:$ \times = \frac{F}{(2 + B_{min} /B_{max})}\times \frac{L^3}{E \cdot J}$
  
  
:<math>\times= \frac{12 \cdot F}{(2 + B_{min} /B_{max})}\cdot \frac{L^3}{E \cdot B \cdot D^3}</math>
+
:$\times= \frac{12 \cdot F}{(2 + B_{min} /B_{max})}\cdot \frac{L^3}{E \cdot B \cdot D^3}$
  
  
 
Max. bending force
 
Max. bending force
:<math>\sigma_{max}= \frac{18 \cdot F \cdot L}{(2 + B_{min} /B_{max}) \cdot B_{max} \cdot D^2 }</math>
+
:$\sigma_{max}= \frac{18 \cdot F \cdot L}{(2 + B_{min} /B_{max}) \cdot B_{max} \cdot D^2 }$
 
</ul>
 
</ul>
  
 
==References==
 
==References==
 
[[Application Tables and Guideline Data for Use of Electrical Contact Design#References|References]]
 
[[Application Tables and Guideline Data for Use of Electrical Contact Design#References|References]]

Revision as of 18:24, 6 May 2014

6.4.7 Contact Spring Calculations

One side fixed contact bending spring

The influence of the dimensions can be illustrated best by using the single side fixed beam model Figure 1 (Fig. 6.20). For small deflections the following equation is valid:

$F = \frac{3 \cdot E \cdot J}{L^3} $

where J is the momentum of inertia of the rectangular cross section of the beam

$J = \frac{B \cdot D^3}{12}$

For springs with a circular cross-sectional area the momentum of inertia is

$J=\pi D^4/64$
$D= Durchmesser$

To avoid plastic deformation of the spring the max bending force σmax cannot be exceeded

$\sigma_{max} = \frac{3 \cdot E \cdot D}{2L^2}\cdot_{max}$

The stress limit is defined through the fatigue limit and the 0.2% elongation limit resp.

$\times_{max} = \frac{2 \cdot L^2}{3 \cdot D \cdot E}R_{p0,2}$


and/or

$F_{max} = \frac{B \cdot D^2}{6L}R_{p0,2}$


  • Special Spring Shapes
    • Triangular spring
    • Deflection

      $ \times = \frac{F}{2 \cdot E \cdot J}L^3$


      $= \frac{6 \cdot F}{E \cdot B}\cdot \frac{L^3}{D^3}$


      Max. bending force

      $\sigma_{max}= \frac{18 \cdot F \cdot L}{B \cdot D^2}$
    • Trapezoidal spring
    • Deflection

      $ \times = \frac{F}{(2 + B_{min} /B_{max})}\times \frac{L^3}{E \cdot J}$


      $\times= \frac{12 \cdot F}{(2 + B_{min} /B_{max})}\cdot \frac{L^3}{E \cdot B \cdot D^3}$


      Max. bending force

      $\sigma_{max}= \frac{18 \cdot F \cdot L}{(2 + B_{min} /B_{max}) \cdot B_{max} \cdot D^2 }$

    References

    References