Difference between revisions of "Contact Spring Calculations"

From Electrical Contacts
Jump to: navigation, search
Line 4: Line 4:
 
</figure>
 
</figure>
 
The influence of the dimensions can be illustrated best by using the single side fixed beam model <xr id="fig:One side fixed contact bending spring"/> (Fig. 6.20). For small deflections the following equation is valid:
 
The influence of the dimensions can be illustrated best by using the single side fixed beam model <xr id="fig:One side fixed contact bending spring"/> (Fig. 6.20). For small deflections the following equation is valid:
:<math>F = \frac{3 x E x J}{L^3} x</math>
+
:<math>F = \frac{3 \cdot E \cdot J}{L^3} \cdot </math>
  
 
where J is the momentum of inertia of the rectangular cross section of the beam
 
where J is the momentum of inertia of the rectangular cross section of the beam

Revision as of 14:08, 30 April 2014

6.4.7 Contact Spring Calculations

One side fixed contact bending spring

The influence of the dimensions can be illustrated best by using the single side fixed beam model Figure 1 (Fig. 6.20). For small deflections the following equation is valid:

F = \frac{3 \cdot E \cdot J}{L^3} \cdot

where J is the momentum of inertia of the rectangular cross section of the beam

J = \frac{B x D^3}{12}

For springs with a circular cross-sectional area the momentum of inertia is

J=\pi D^4/64
D= Durchmesser

To avoid plastic deformation of the spring the max bending force σmax cannot be exceeded

\sigma_{max} = \frac{3 x E x D}{2L^2}x_{max}

The stress limit is defined through the fatigue limit and the 0.2% elongation limit resp.

x_{max} = \frac{2 x L^2}{3 x D x E}R_{p0,2}


and/or

F_{max} = \frac{B x D^2}{6L}R_{p0,2}


  • Special Spring Shapes
    • Triangular spring
    • Deflection

      x = \frac{F}{2 x E x J}L^3


      = \frac{6 x F}{E x B}x \frac{L^3}{D^3}


      Max. bending force

      \sigma_{max}= \frac{18 x F x L}{B x D^2}
    • Trapezoidal spring
    • Deflection

      x= \frac{F}{(2 + B_{min} /B_{max})}\times \frac{L^3}{E x J}


      x= \frac{12 x F}{(2 + B_{min} /B_{max})}\times \frac{L^3}{E \times B \times D^3}


      Max. bending force

      \sigma_{max}= \frac{18 x F x L}{(2 + B_{min} /B_{max}) x B_{max} x D^2 }

    References

    References