Contact Materials for Electrical Engineering

From Electrical Contacts
Revision as of 12:00, 3 December 2013 by Ermisch (talk | contribs) (Created page with "===2.1 Introduction=== The contact parts are important components in switching devices. They have to maintain their function from the new state until the end of the functional...")

(diff) ← Older revision | Approved revision (diff) | Latest revision (diff) | Newer revision → (diff)
Jump to: navigation, search

2.1 Introduction

The contact parts are important components in switching devices. They have to maintain their function from the new state until the end of the functional life of the devices.

The requirements on contacts are rather broad. Besides typical contact properties such as

  • High arc erosion resistance
  • High resistance against welding
  • Low contact resistance
  • Good arc moving properties
  • Good arc extinguishing capability

they have to exhibit physical, mechanical, and chemical properties like high electrical and thermal conductivity, high hardness, high corrosion resistance, etc and besides this should have good mechanical workability, and also be suitable for good weld and brazing attachment to contact carriers. In addition they must be made from environmentally friendly materials.

Materials suited for use as electrical contacts can be divided into the following groups based on their composition and metallurgical structure:

  • Pure metals
  • Alloys
  • Composite materials
  • Pure metals

From this group silver has the greatest importance for switching devices in the higher energy technology. Other precious metals such as gold and platinum are only used in applications for the information technology in the form of thin surface layers. As a nonprecious metal tungsten is used for some special applications such as for example as automotive horn contacts. In some rarer cases pure copper is used but mainly paired to a silver-based contact material.

  • Alloys

Besides these few pure metals a larger number of alloy materials made by melt technology are available for the use as contacts. An alloy is characterized by the fact that its components are completely or partially soluble in each other in the solid state. Phase diagrams for multiple metal compositions show the number and type of the crystal structure as a function of the temperature and composition of the alloying components.

They indicate the boundaries of liquid and solid phases and define the parameters of solidification. Alloying allows to improve the properties of one material at the cost of changing them for the second material. As an example, the hardness of a base metal may be increased while at the same time the electrical conductivity decreases with even small additions of the second alloying component.

  • Composite Materials

Composite materials are a material group whose properties are of great importance for electrical contacts that are used in switching devices for higher electrical currents. Those used in electrical contacts are heterogeneous materials composed of two or more uniformly dispersed components in which the largest volume portion consists of a metal. The properties of composite materials are determined mainly independent from each other by the properties of their individual components. Therefore it is for example possible to combine the high melting point and arc erosion resistance of tungsten with the low melting and good electrical conductivity of copper, or the high conductivity of silver with the weld resistant metalloid graphite.

Figure 2.1 shows the schematic manufacturing processes from powder blending to contact material. Three basic process variations are typically applied:

  • Sintering without liquid phase (Press-Sinter-Repress, PSR)
  • Sintering with liquid phase
  • Infiltration (Press-Sinter-Infiltrate, PSI)

During sintering without a liquid phase (left side of schematic) the powder mix is first densified by pressing, then undergoes a heat treatment (sintering), and eventually is re-pressed again to further increase the density. The sintering atmosphere depends on the material components and later application; a vacuum is used for example for the low gas content material Cu/Cr. This process is used for individual contact parts and also termed press-sinterrepress (PSR). For materials with high silver content the starting point at pressing is most a larger block (or billet) which is then after sintering hot extruded into wire, rod, or strip form. The extrusion further increases the density of these composite materials and contributes to higher arc erosion resistance. Materials such as Ag/Ni, Ag/MeO, and Ag/C are typically produced by this process.

Sintering with liquid phase has the advantage of shorter process times due to the accelerated diffusion and also results in near-theoretical densities of the

Fig. 2.1: Powder-metallurgical manufacturing of composite materials (schematic) T = Melting point of the lower melting component

composite material. To ensure the shape stability during the sintering process it is however necessary to limit the volume content of the liquid phase material.

As opposed to the liquid phase sintering which has limited use for electrical contact manufacturing, the Infiltration process as shown on the right side of the schematic has a broad practical range of applications. In this process the powder of the higher melting component sometimes also as a powder mix with a small amount of the second material is pressed into parts and after sintering the porous skeleton is infiltrated with liquid metal of the second material. The filling up of the pores happens through capillary forces. This process reaches after the infiltration near-theoretical density without subsequent pressing and is widely used for Ag- and Cu-refractory contacts. For Ag/W or Ag/WC contacts, controlling the amount or excess on the bottom side of the contact of the infiltration metal Ag results in contact tips that can be easily attached to their carriers by resistance welding. For larger Cu/W contacts additional machining is often used to obtain the final shape of the contact component.

2.2 Gold Based Materials

Pure Gold is besides Platinum the chemically most stable of all precious metals. In its pure form it is not very suitable for use as a contact material in electromechanical devices because of its tendency to stick and cold-weld at even low contact forces. In addition it is not hard or strong enough to resist mechanical wear and exhibits high materials losses under electrical arcing loads. This limits its use in form of thin electroplated or vacuum deposited layers.

For most electrical contact applications gold alloys are used. Depending on the alloying metal the melting is performed either under in a reducing atmosphere or in a vacuum. The choice of alloying metals depends on the intended use of the resulting contact material. The binary Au alloys with typically <10 wt% of other precious metals such as Pt, Pd, or Ag or non-precious metals like Ni, Co, and Cu are the more commonly used ones (Table 2.2). On one hand these alloy additions improve the mechanical strength and electrical switching properties but on the other hand reduce the electrical conductivity and chemical corrosion resistance (Fig. 2.2) to varying degrees. Under the aspect of reducing the gold content ternary alloys with a gold content of approximately 70 wt% and additions of Ag and Cu or Ag and Ni resp., for example AuAg25Cu5 or AuAg20Cu10 are used which exhibit for many applications good mechanical stability while at the same time have sufficient resistance against the formation of corrosion layers (Table 2.3). Other ternary alloys based on the AuAg system are AuAg26Ni3 and AuAg25Pt6. These alloys are mechanically similar to the AuAgCu alloys but have significantly higher oxidation resistance at elevated temperatures (Table 2.4). Caused by higher gold prices over the past years the development of alloys with further reduced gold content had a high priority. The starting point has been the AuPd system which has continuous solubility of the two components. Besides the binary alloy of AuPd40 and the ternary one AuPd35Ag9 other multiple component alloys were developed. These alloys typically have < 50 wt% Au and often can be solution hardened in order to obtain even higher hardness and tensile strength. They are mostly used in sliding contact applications. Gold alloys are used in the form of welded wire or profile (also called weldtapes), segments, contact rivets, and stampings produced from clad strip materials. The selection of the bonding process is based on the cost for the joining process, and most importantly on the economical aspect of using the least possible amount of the expensive precious metal component. Besides being used as switching contacts in relays and pushbuttons, gold alloys are also applied in the design of connectors as well as sliding contacts for potentiometers, sensors, slip rings, and brushes in miniature DC motors (Table 2.5).

Table 2.3: Mechanical Properties of Gold and Gold-Alloys

Table 2.1: Commonly Used Grades of Gold

Table 2.2: Physical Properties of Gold and Gold-Alloys

Fig. 2.2: Influence of 1-10 atomic% of different alloying metals on the electrical resistivity of gold (according to J. O. Linde)

Fig. 2.3: Phase diagram of goldplatinum

Fig. 2.4: Phase diagram of gold-silver

Fig. 2.5: Phase diagram of gold-copper

Fig. 2.6: Phase diagram of gold-nickel

Fig. 2.7: Phase diagram of gold-cobalt

Fig. 2.8: Strain hardening of Au by cold working

Fig. 2.9: Softening of Au after annealing for 0.5 hrs after 80% cold working

Fig. 2.10: Strain hardening of AuPt10 by cold working

Fig. 2.11: Strain hardening of AuAg20 by cold working

Fig. 2.12: Strain hardening of AuAg30 by cold working

Fig. 2.13: Strain hardening of AuNi5 by cold working

Fig. 2.14: Softening of AuNi5 after annealing for 0.5 hrs after 80% cold working