Changes

Jump to: navigation, search

Contact Carrier Materials

122 bytes added, 14:29, 5 March 2014
5.1.2 Pure Copper
The purity of technically pure and un-alloyed copper used for electrical applications depends on the type used and ranges between > 99.90 and 99.95
wt%. The copper types are designated mainly by their oxygen content as oxygen containing, oxygen-free, and de-oxidized with phosphorus as
described in DIN EN 1652 ''(<xr id="tab:MaterialDesignations"/> and <xr id="tab:tab5.2"/> 5.2)''. <xr id="tab:tab5.3"/> Tables 5.3. and <xr id="tab:tab5.4"/> 5.4 show the physical and mechanical properties of these copper materials. According to these, Cu-ETP, Cu-OFE, and Cu-HCP are the types of copper for which minimum values for the electrical conductivity are guaranteed.
Cu-ETP is less suitable for welding or for brazing in reducing atmosphere because of the oxygen content (danger of hydrogen embrittlement).
</figtable>
 
<figtable id="tab:tab5.3">
'''Table 5.3: Physical Properties of Some Copper Types'''
<table border="1" cellspacing="0" style="border-collapse:collapse"><tr><td><p class="s3">Material</p><p class="s3">EN- Desig- nation</p></td><td><p class="s3">Density</p><p class="s3">[g/cm³]</p></td><td><p class="s3">Electrical</p><p class="s3">Conductivityt</p></td><td><p class="s3">Electrical Conduc- tivity</p><p class="s3">[µ<span class="s10">S · </span>cm]</p></td><td><p class="s3">Thermal</p><p class="s3">Conduc- tivity</p><p class="s3">[W/(m.K)]</p></td><td><p class="s3">Coeff. of</p><p class="s3">Linear Thermal Expan- sion</p><p class="s3">[10<span class="s11">-6</span>/K]</p></td><td><p class="s3">Modulus</p><p class="s3">of</p><p class="s3">Elasticity</p><p class="s3">[GPa]</p></td><td><p class="s3">Softening</p><p class="s3">Tempera- tur (approx.</p><p class="s3">10% loss in</p><p class="s3">strength) [°C]</p></td><td><p class="s3">Melting</p><p class="s3">Tempera- ture</p><p class="s3">[°C]</p></td></tr><tr><td><p class="s3">Material</p><p class="s3">EN- Desig- nation</p></td><td><p class="s3">Density</p><p class="s3">[g/cm³]</p></td><td><p class="s3">[MS/m]</p></td><td><p class="s3">[% IACS]</p></td><td><p class="s3">Electrical Conduc- tivity</p><p class="s3">[µ<span class="s10">S · </span>cm]</p></td><td><p class="s3">Thermal</p><p class="s3">Conduc- tivity</p><p class="s3">[W/(m.K)]</p></td><td><p class="s3">Coeff. of</p><p class="s3">Linear Thermal Expan- sion</p><p class="s3">[10<span class="s11">-6</span>/K]</p></td><td><p class="s3">Modulus</p><p class="s3">of</p><p class="s3">Elasticity</p><p class="s3">[GPa]</p></td><td><p class="s3">Softening</p><p class="s3">Tempera- tur (approx.</p><p class="s3">10% loss in</p><p class="s3">strength) [°C]</p></td><td><p class="s3">Melting</p><p class="s3">Tempera- ture</p><p class="s3">[°C]</p></td></tr><tr><td><p class="s3">Cu-ETP</p></td><td><p class="s3">8.94</p></td><td><p class="s12">&gt;5<span class="s3">8</span></p></td><td><p class="s3">100</p></td><td><p class="s3">1.72</p></td><td><p class="s3">390</p></td><td><p class="s3">17.7</p></td><td><p class="s3">127</p></td><td><p class="s3">ca. 220</p></td><td><p class="s3">1083</p></td></tr><tr><td><p class="s3">Cu-OF</p></td><td><p class="s3">8.94</p></td><td><p class="s12">&gt;5<span class="s3">8</span></p></td><td><p class="s3">100</p></td><td><p class="s3">1.72</p></td><td><p class="s3">394</p></td><td><p class="s3">17.7</p></td><td><p class="s3">127</p></td><td><p class="s3">ca. 220</p></td><td><p class="s3">1083</p></td></tr><tr><td><p class="s3">Cu-HCP</p></td><td><p class="s3">8.94</p></td><td><p class="s12">&gt;5<span class="s3">4</span></p></td><td><p class="s3">93</p></td><td><p class="s3">1.85</p></td><td><p class="s3">380</p></td><td><p class="s3">17.7</p></td><td><p class="s3">127</p></td><td><p class="s3">ca. 220</p></td><td><p class="s3">1083</p></td></tr><tr><td><p class="s3">Cu-DLP</p></td><td><p class="s3">8.94</p></td><td><p class="s3">52</p></td><td><p class="s3">90</p></td><td><p class="s3">1.92</p></td><td><p class="s3">350</p></td><td><p class="s3">17.7</p></td><td><p class="s3">132</p></td><td><p class="s3">ca. 220</p></td><td><p class="s3">1083</p></td></tr><tr><td><p class="s3">Cu-DHP</p></td><td><p class="s3">8.94</p></td><td><p class="s12">&gt;4<span class="s3">6</span></p></td><td><p class="s3">80</p></td><td><p class="s3">2.17</p></td><td><p class="s3">310</p></td><td><p class="s3">17.6</p></td><td><p class="s3">132</p></td><td><p class="s3">ca. 220</p></td><td><p class="s3">1083</p></td></tr></table>
</figtable>
<figtable id="tab:tab5.4">
'''Table 5.4: Mechanical Properties of Some Copper Types'''
<table class="twocolortable" border="1" cellspacing="0" style="border-collapse:collapse">
<td>&gt;110</td></tr>
</table>
</figtable>
Fig. 5.1: Strain hardening of Cu-ETP by cold working

Navigation menu

Powered by