Changes

Jump to: navigation, search

Aushärtbare Kupfer-Legierungen

327 bytes removed, 09:22, 12 January 2023
Kupfer-Chrom-Legierungen
Temperatur rasch abnehmende Löslichkeit des Berylliums im Kupfer. Wie aus
dem Zustandsschaubild für CuBe ersichtlich, sind bei ca. 780°C 2,4 Massen-%
Be in Kupfer löslich (<xr id="fig:Phase_diagram_of_copperberyllium_with_temperature_ranges_for_brazing_and_annealing_treatments"/><!--(Fig. 5.28)-->). In diesem Temperaturbereich wärmebehandelte
CuBe-Legierungen sind homogen („lösungsglühen“). Der homogene Zustand
kann durch schnelles Abkühlen auf Raumtemperatur eingefroren werden („abschrecken“).
von 325°C wird die gewünschte Ausscheidungshärtung erreicht, die einen
deutlichen Anstieg der Festigkeit und der elektrischen Leitfähigkeit von CuBe
bewirkt (<xr id="tab:Physical_Properties_of_Selected_Copper_Beryllium_Alloys"/><!--(Tab. 5.17)-->). Die erreichbaren Festigkeits- und Härtewerte sind abhängigvon der Glühtemperatur und Glühdauer sowie vom Umformgrad (Tab. 5.18) und<xr id="tab:Mechanical Properties of Selected Copper-Beryllium Alloys"/><!--(Table 5.18)--> and und [[#figures7|(Figs. 43 2 754)]]<!--(Figs. 5.29 - 5.31)-->.
Kupfer-Legierungen ohne toxische bzw. deklarationspfichtige
Elemente z.B. CuNiCoSi zielt in Richtung CuBe-Ersatz.
 
<div id="figures7">
 
<xr id="fig:Phase_diagram_of_copperberyllium_with_temperature_ranges_for_brazing_and_annealing_treatments"/><!--Fig. 5.28:--> Zustandsdiagramm Kupfer-Beryllium mit Temperaturbereichen für Hartlötungen und Wärmebehandlungen
 
<xr id="fig:Precipitation_hardening_of_CuBe2_at_325°C_after_different_cold_working"/><!--Fig. 5.29:--> Aushärtung von CuBe2 bei 325°C nach unterschiedlicher Kaltumformung
 
<xr id="fig:Precipitation_hardening_of_CuBe2_(soft)_at_325°C"/><!--Fig. 5.30:--> Precipitation hardening of CuBe2 (soft) at 325°C
 
<xr id="fig:Precipitation_hardening_of_CuBe2_(half hard)_at_different_annealing_temperatures"/><!--Fig. 5.31:--> Precipitation hardening of CuBe2 (half hard) at different annealing temperatures
</div>
<div class="multiple-images">
<figure id="fig:Precipitation_hardening_of_CuBe2_(soft)_at_325°C">
[[File:Precipitation hardening of CuBe2 (soft) at 325C.jpg|left|thumb|<caption>Precipitation hardening of Aushärtung von CuBe2 (softweich) at bei 325°C</caption>]]
</figure>
<figure id="fig:Precipitation_hardening_of_CuBe2_(half hard)_at_different_annealing_temperatures">
[[File:Precipitation hardening of CuBe2 half hard.jpg|left|thumb|<caption>Precipitation hardening of Aushärtung von CuBe2 (half hardhalbhart) at different annealing temperaturesbei verschiedenen Anlasstemperaturen</caption>]]
</figure>
</div>
<figtable id="tab:Physical_Properties_of_Selected_Copper_Beryllium_Alloys">
<caption>'''<!--Table 5.17:-->Physical Properties of Selected CopperPhysikalische Eigenschaften einiger Kupfer-Beryllium Alloys-Legierungen'''</caption>
{| class="twocolortable" style="text-align: left; font-size: 12px"
|-
!Material<br />DesignationWerkstoff Bezeichnung<br />EN UNS !CompositionZusammensetzung<br />[wtMassen-%]!DensityDichte<br />[g/cm<sup>3</sup>]!colspan="2" style="text-align:center"|Electrical<br />Conductivity Elektr. Leitfähigkeit!Electrical<br />ResistivityElektr. Widerstand<br />[μΩ·cm]!Thermal<br />ConductivityWärmeleitfähigkeit<br />[W/(m·K)]!CoeffLin. Ausdehnungskoeff. of Linear<br />Thermal<br />Expansion<br />[10<sup>-6</sup>/K]!Modulus of<br />ElasticityE-Modul<br />[GPa]!Softening TemperatureErweichungstemperatur<br />(approxca. 10% loss in<br />strengthFestigkeitsabfall)<br />[°C]!Melting<br />Temp RangeSchmelzbereich<br />[°C]
|-
!
|Be 1.6 - 1.8<br />Co 0.3<br />Ni 0.3<br />Cu Rest
|8.4
|8 - 9[[#text-reference1|<sup>a</sup>]]<br />12 - 13[[#text-reference2|<sup>b</sup>]]<br />11[[#text-reference3|<sup>c</sup>]]
|14 - 16<br />21 - 22<br />19
|11 - 12.5[[#text-reference1|<sup>a</sup>]]<br />7.7 - 8.3[[#text-reference2|<sup>b</sup>]]<br />9.1[[#text-reference3|<sup>c</sup>]]
|110
|17
|125[[#text-reference1|<sup>a</sup>]]<br />135[[#text-reference2|<sup>b</sup>]]
|ca. 380
|890 - 1000
|Be 1.8 - 2.1<br />Co 0.3<br />Ni 0.3<br />Cu Rest
|8.3
|8 - 9[[#text-reference1|<sup>a</sup>]]<br />12 - 13[[#text-reference2|<sup>b</sup>]]<br />11[[#text-reference3|<sup>c</sup>]]
|14 - 16<br />21 - 22<br />19
|11 - 12.5[[#text-reference1|<sup>a</sup>]]<br />7.7 - 8.3[[#text-reference2|<sup>b</sup>]]<br />9.1[[#text-reference3|<sup>c</sup>]]
|110
|17
|125[[#text-reference1|<sup>a</sup>]]<br />135[[#text-reference2|<sup>b</sup>]]
|ca. 380
|870 - 980
|Co 2.0 - 2.8<br />Be 0.4 - 0.7<br />Ni 0.3<br />Cu Rest
|8.8
|11 - 14[[#text-reference1|<sup>a</sup>]]<br />25 - 27[[#text-reference2|<sup>b</sup>]]<br />27 - 34[[#text-reference3|<sup>c</sup>]]
|19 - 24<br />43 - 47<br />47 - 59
|7.1 - 9.1[[#text-reference1|<sup>a</sup>]]<br />3.7 - 4.0[[#text-reference2|<sup>b</sup>]]<br />2.9[[#text-reference3|<sup>c</sup>]]
|210
|18
|131[[#text-reference1|<sup>a</sup>]]<br />138[[#text-reference2|<sup>b</sup>]]
|ca. 450
|1030 - 1070
|Ni 1.4 - 2.2<br />Be 0.2 - 0.6<br />Co 0.3<br />Cu Rest
|8.8
|11 - 14[[#text-reference1|<sup>a</sup>]]<br />25 - 27[[#text-reference2|<sup>b</sup>]]<br />27 - 34[[#text-reference3|<sup>c</sup>]]
|19 - 24<br />43 - 47<br />47 - 59
|7.1 - 9.1[[#text-reference1|<sup>a</sup>]]<br />3.7 - 4.0[[#text-reference2|<sup>b</sup>]]<br />2.9[[#text-reference3|<sup>c</sup>]]
|230
|18
|131[[#text-reference1|<sup>a</sup>]]<br />138[[#text-reference2|<sup>b</sup>]]
|ca. 480
|1060 - 1100
|}
<div id="text-reference1"><sub>a</sub> lösungsgeglüht und kaltumgeformt</div>
<div id="text-reference2"><sub>b</sub> lösungsgeglüht, kaltumgeformt und ausscheidungsgehärtet</div>
<div id="text-reference3"><sub>c</sub> lösungsgeglüht, kaltumgeformt und ausscheidungsgehärtet im Werk (werksvergütet)</div>
</figtable>
 <sup>a</sup>solution annealed, and cold rolled<br /> <sup>b</sup>solution annealed, cold rolled, and precipitation hardened<br /> <sup>c</sup>solution annealed, cold rolled, and precipitation hardened at mill (mill hardened)
<figtable id="tab:Mechanical Properties of Selected Copper-Beryllium Alloys">
<caption>'''<!--Table 5.18:-->Mechanical Properties of Selected CopperMechanische Eigenschaften von Kupfer-Beryllium Alloys-Legierungen'''</caption>
{| class="twocolortable" style="text-align: left; font-size: 12px"
|-
!MaterialWerkstoff!Hardness<br />ConditionZustand!Tensile Strength Zugfestigkeit R<sub>m</sub><br />[MPa]!0,2% Yield StrengthDehngrenze<br />R<sub>p02</sub><br />[MPa]!ElongationBruchdehnung<br />A<sub>50</sub><br />[%]!Vickers<br />HardnessVickershärte<br />HV!Bend RadiusBiegeradius[[#text-reference4|<sup>1)</sup>]]<br />perpendicular tomin senkrecht zur<br />rolling directionWalzrichtung!Bend RadiusBiegeradius[[#text-reference4|<sup>1)</sup>]]<br />min parallel tozur<br />rolling directionWalzrichtung!Spring BendingFederbiegegrenze<br />Limit σ<sub>FB</sub><br />[MPa]!Spring FatigueBiegewechselfestigkeit<br />Limit σ<sub>BW</sub><br />[MPa]
|-
|CuBe1,7
|R 390[[#text-reference5|<sup>a</sup>]]<br />R 680[[#text-reference5|<sup>a</sup>]]<br />R 1030[[#text-reference6|<sup>b</sup>]]<br />R 1240[[#text-reference6|<sup>b</sup>]]<br />R 680[[#text-reference7|<sup>c</sup>]]<br />R 1100[[#text-reference7|<sup>c</sup>]]
|380 -520<br />680 - 820<br />1030 - 1240<br />1240 - 1380<br />680 - 750<br />1100 - 1200
|&ge; 180<br />&ge; 600<br />&ge; 900<br />&ge; 1070<br />&ge; 480<br />&ge; 930
|-
|CuBe2
|R 410[[#text-reference5|<sup>a</sup>]]<br />R 690[[#text-reference5|<sup>a</sup>]]<br />R 1140[[#text-reference6|<sup>b</sup>]]<br />R 1310[[#text-reference6|<sup>b</sup>]]<br />R 690[[#text-reference7|<sup>c</sup>]]<br />R 1200[[#text-reference7|<sup>c</sup>]]
|410 -540<br />690 - 820<br />1140 - 1310<br />1310 - 1480<br />690 - 760<br />1200 - 1320
|&ge; 190<br />&ge; 650<br />&ge; 1000<br />&ge; 1150<br />&ge; 480<br />&ge; 1030
|-
|CuCo2Be<br />CuNi2Be
|R 250[[#text-reference5|<sup>a</sup>]]<br />R 550[[#text-reference5|<sup>a</sup>]]<br />R 650[[#text-reference6|<sup>b</sup>]]<br />R 850[[#text-reference6|<sup>b</sup>]]<br />R 520[[#text-reference7|<sup>c</sup>]]
|250 - 380<br />550 - 700<br />650 - 820<br />850 - 1000<br />520 - 620
|&ge; 140<br />&ge; 450<br />&ge; 520<br />&ge; 750<br />&ge; 340
| <br /> <br />220<br />250<br />210
|}
</figtablediv id="text-reference4"><supsub>1)</supsub> t: Strip thickness Banddicke max. 0.,5 mm<br /div><supdiv id="text-reference5"><sub>a</supsub>solution annealed, and cold rolledlösungsgeglüht und kaltumgeformt<br /div> <supdiv id="text-reference6"><sub>b</supsub>solution annealedlösungsgeglüht, cold rolled, and precipitation hardenedkaltumgeformt und ausscheidungsgehärtet<br /div> <supdiv id="text-reference7"><sub>c</supsub>solution annealed, cold rolledlösungsgeglüht, and precipitation hardened at mill kaltumgeformt und ausscheidungsgehärtet im Werk (mill hardenedwerksvergütet)</div></figtable> ====<!--5.1.6.2--br/>Other Precipitation Hardening Copper Alloys==== =====<!--5.1.6.2.1--br/>Copper-Chromium Alloys=====
As the phase diagram shows, copper-chromium has a similar hardening profile compared to CuBe <xr id="fig:Copper corner of the copper-chromium phase diagram for up to 0.8 wt% chromium"/>===<!--(Fig. 5.32)-->. In the hardened stage CuCr has limitations to work hardening. Compared to copper it has a better temperature stability with good electrical conductivity. Hardness and electrical conductivity as a function of cold working and precipitation hardening conditions are illustrated in [[#figures8|(Figs1. 6 – 9)]]<!--Figs. 5.332-5.35->Weitere aushärtbare Kupfer->, <xr idLegierungen==="tab:Physical Properties of Other Precipitation Hardening Copper Alloys"/><!--(Tables 5.19)--> and <xr id="tab:Mechanical Properties of Other Precipitation Hardening Copper Alloys"/><!--(Tab. 5.20)-->.
Copper=====<!-chromium materials are especially suitable for use as electrodes for resistance welding-5.1.6. During brazing the loss in hardness is limited if low melting brazing alloys and reasonably short heating times are used2.1-->Kupfer-Chrom-Legierungen=====
Kupfer-Chrom ist, wie das Zustandsdiagramm zeigt, ähnlich wie Kupfer-Beryllium aushärtbar (<div xr id="figures5fig:Copper corner of the copper-chromium phase diagram for up to 0.8 wt% chromium"/><!--(Fig. 5.32)-->). Im ausgehärteten Zustand ist CuCr begrenztkaltumformbar. Es weist gegenüber Kupfer eine stark erhöhte Warmfestigkeitbei hoher elektrischer Leitfähigkeit auf. Härte und elektrische Leitfähigkeit vonKupfer-Chrom in Abhängigkeit von der Kaltumformung und den Aushärtebedingungensind in Figure [[#figures8|6 bis 9]]<!--Figs. 5.33 und 5.35--> dargestellt (<xr id="tab:Physical Properties of Other Precipitation Hardening Copper Alloys"/><!--(Tables 5.19)--> und <xr id="tab:Mechanical Properties of Other Precipitation Hardening Copper Alloys"/><!--(Tab. 5.20)-->).
<xr id="fig:Copper corner of the copperKupfer-chromium phase diagram for up to 0.8 wt% chromium"/><!--Fig. 5.32:--> Copper corner of the copper-chromium phase diagram for up to 0.8 wt% chromium <xr id="fig:Softening of precipitation hardened and subsequently cold worked CuCr1"/><!Chrom-Werkstoffe eignen sich besonders für Widerstands-Fig. 5Schweißelektroden.33:--> Softening of precipitation-hardened and subsequently cold worked CuCr1 after 4hrs annealingBeim Hartlöten tritt nur ein geringer Härteabfall auf, wenn mit<xr id="fig:Electrical conductivity of precipitation hardened CuCr 0niedrigschmelzenden Silberloten und kurzer Lötzeit gearbeitet wird.6"/><!--Fig. 5.34 a:--> Electrical conductivity of precipitation hardened CuCr 0.6 as a function of annealing conditions <xr id="fig:Hardness of precipitation hardened CuCr 0.6"/><!--Fig. 5.34 b:--> Hardness of precipitation hardened CuCr 0.6 as a function of annealing conditions <xr id="fig:Electrical conductivity and hardness of precipitation hardened CuCr 0.6"/><!--Fig. 5.35:--> Electrical conductivity and hardness of precipitation hardened CuCr 0.6 after cold working</div>
<div class="multiple-images">
<figure id="fig:Copper corner of the copper-chromium phase diagram for up to 0.8 wt% chromium">
[[File:Copper corner of the copper chromium phase diagram.jpg|left|thumb|<caption>Copper corner of the copperKupferecke des Zustandsdiagramms Kupfer-chromium phase diagram for up to Chrom bis 0.,8 wtMassen-% chromiumChrom</caption>]]
</figure>
<figure id="fig:Softening of precipitation hardened and subsequently cold worked CuCr1">
[[File:Softening of precipitation hardened and subsequently cold worked CuCr1.jpg|left|thumb|<caption>Softening of precipitation-hardened and subsequently cold worked Erweichungsverhalten von warmausgehärtetem und nachverformtem CuCr1 after 4hrs annealing</caption>]]
</figure>
<figure id="fig:Electrical conductivity of precipitation hardened CuCr 0.6">
[[File:Electrical conductivity of precipitation hardened CuCr 0.6.jpg|left|thumb|<caption>Electrical conductivity of precipitation hardened CuCr 0.Abhängigkeit der elektrischen Leitfähigkeit von lösungsgeglühtem CuCr0,6 as a function of annealing conditionsvon der Glühbehandlung</caption>]]
</figure>
<figure id="fig:Hardness of precipitation hardened CuCr 0.6">
[[File:Hardness of precipitation hardened CuCr 0.6.jpg|left|thumb|<caption>Hardness of precipitation hardened Abhängigkeit der Härte von lösungsgeglühtem CuCr 0.,6 as a function of annealing conditionsvon der Glühbehandlung</caption>]]
</figure>
<figure id="fig:Electrical conductivity and hardness of precipitation hardened CuCr 0.6">
[[File:Electrical conductivity and hardness of precipitation hardened CuCr 0.6.jpg|left|thumb|<caption>Electrical conductivity and hardness of precipitation hardened Elektrische Leitfähigkeit und Härte von warmausgehärtetem CuCr 0.,6 after cold workingnach Kaltumformung</caption>]]
</figure>
</div>
<figtable id="tab:Physical Properties of Other Precipitation Hardening Copper Alloys">
<caption>'''<!--Table 5.19:-->Physical Properties of Other Precipitation Hardening Copper AlloysPhysikalische Eigenschaften weiterer aushärtbarer Kupfer-Legierungen'''</caption>
{| class="twocolortable" style="text-align: left; font-size: 12px"
|-
!Material<br />DesignationWerkstoff Bezeichnung<br />EN UNS !CompositionZusammensetzung<br />[wtMassen-%]!DensityDichte<br />[g/cm<sup>3</sup>]!colspan="2" style="text-align:center"|Electrical<br />Conductivity Elektr. Leitfähigkeit!Electrical<br />ResistivityElektr. Widerstand<br />[μΩ·cm]!Thermal<br />ConductivityWärmeleitfähigkeit<br />[W/(m·K)]!CoeffLin. Ausdehnungskoeff. of Linear<br />Thermal<br />Expansion<br />[10<sup>-6</sup>/K]!Modulus of<br />ElasticityE-Modul<br />[GPa]!Softening TemperatureErweichungstemperatur<br />(approxca. 10% loss in<br />strengthFestigkeitsabfall)<br />[°C]!Melting<br />Temp RangeSchmelzbereich<br />[°C]
|-
!
|Cr 0.3 - 1.2<br />Cu Rest
|8.89
|26[[#text-reference8|<sup>a</sup>]]<br />48[[#text-reference9|<sup>b</sup>]]|45[[#text-reference8|<sup>a</sup>]]<br />83[[#text-reference9|<sup>b</sup>]]|3.8[[#text-reference8|<sup>a</sup>]]<br />2.1[[#text-reference9|<sup>b</sup>]]|170[[#text-reference8|<sup>a</sup>]]<br />315[[#text-reference9|<sup>b</sup>]]
|17
|112
|Zr 0.1 - 0.3<br />Cu Rest
|8.9
|35[[#text-reference8|<sup>a</sup>]]<br />52[[#text-reference9|<sup>b</sup>]]|60[[#text-reference8|<sup>a</sup>]]<br />90[[#text-reference9|<sup>b</sup>]]|2.9[[#text-reference8|<sup>a</sup>]]<br />1.9[[#text-reference9|<sup>b</sup>]]|340[[#text-reference8|<sup>a</sup>]]
|16
|135
|Cr 0.5 - 1.2<br />Zr 0.03 - 0.3<br />Cu Rest
|8.92
|20[[#text-reference8|<sup>a</sup>]]<br />43[[#text-reference9|<sup>b</sup>]]|34[[#text-reference8|<sup>a</sup>]]<br />74[[#text-reference9|<sup>b</sup>]]|5.0[[#text-reference8|<sup>a</sup>]]<br />2.3[[#text-reference9|<sup>b</sup>]]|170[[#text-reference8|<sup>a</sup>]]<br />310 - 330[[#text-reference9|<sup>b</sup>]]
|16
|110<sup>a</sup><br />130[[#text-reference9|<sup>b</sup>]]
|ca. 500
|1070 - 1080
|}
<div id="text-reference8"><sub>a</sub> lösungsgeglüht und kaltumgeformt</div>
<div id="text-reference9"><sub>b</sub> lösungsgeglüht, kaltumgeformt und ausscheidungsgehärtet</div>
</figtable>
 <sup>a</sup>solution annealed, and cold rolled<br /> <sup>b</sup>solution annealed, cold rolled, and precipitation hardened<br />
<figtable id="tab:Mechanical Properties of Other Precipitation Hardening Copper Alloys">
<caption>'''<!--Table 5.20:-->Mechanical Properties of Other Precipitation Hardening Copper AlloysMechanische Eigenschaften weiterer aushärtbarer Kupfer-Legierungen'''</caption>
<table class="twocolortable">
<tr><th><p class="s16">MaterialWerkstoff</p></th><th><p class="s16">Hardness</p><p class="s16">Condi- tionZustand</p></th><th><p class="s16">TensileZugfestigkeit</p><p class="s16">Strength R<span class="s18">m</span></p><p class="s16">[MPa]</p></th><th><p class="s16">0,2% YieldDehngrenze</p><p class="s16">Strength R<span class="s18">p02</span></p><p class="s16">[MPa]</p></th><th><p class="s16">ElongationBruchdehnung</p><p class="s16">A50</p><p class="s16">[%]</p></th><th><p class="s16">Vickers</p><p class="s16">HardnessVickershärte</p><p class="s16">HV</p></th><th><p class="s16">Spring BendingFederbiegegrenze</p><p class="s16">Limit <span class="s19">F</span><span class="s18">FB </span>[MPa]</p></th></tr><tr><td><p class="s16">CuCr</p></td><td><p class="s16">R 230<span class="s18">a</span></p><p class="s16">R 400<span class="s18">a </span>R 450<span class="s18">b </span>R 550<span class="s18">b</span></p></td><td><p class="s33">&gt;<span class="s16"> 230</span></p><p class="s33">&gt;<span class="s16"> 400</span></p><p class="s33">&gt;<span class="s16"> 450</span></p><p class="s33">&gt;<span class="s16"> 550</span></p></td><td><p class="s33">&gt;<span class="s16"> 80</span></p><p class="s33">&gt;<span class="s16"> 295</span></p><p class="s33">&gt;<span class="s16"> 325</span></p><p class="s33">&gt;<span class="s16"> 440</span></p></td><td><p class="s16">30</p><p class="s16">10</p><p class="s16">10</p><p class="s16">8</p></td><td><p class="s33">&gt;<span class="s16"> 55</span></p><p class="s33">&gt;<span class="s16"> 120</span></p><p class="s33">&gt;<span class="s16"> 130</span></p><p class="s33">&gt;<span class="s16"> 150</span></p></td><td><p class="s16">350</p></td></tr><tr><td><p class="s16">CuZr</p></td><td><p class="s16">R 260<span class="s18">a</span></p><p class="s16">R 370<span class="s18">a </span>R 400<span class="s18">b </span>R 420<span class="s18">b</span></p></td><td><p class="s33">&gt;<span class="s16"> 260</span></p><p class="s33">&gt;<span class="s16"> 370</span></p><p class="s33">&gt;<span class="s16"> 400</span></p><p class="s33">&gt;<span class="s16"> 420</span></p></td><td><p class="s33">&gt;<span class="s16"> 100</span></p><p class="s33">&gt;<span class="s16"> 270</span></p><p class="s33">&gt;<span class="s16"> 280</span></p><p class="s33">&gt;<span class="s16"> 400</span></p></td><td><p class="s16">35</p><p class="s16">12</p><p class="s16">12</p><p class="s16">10</p></td><td><p class="s33">&gt;<span class="s16"> 55</span></p><p class="s33">&gt;<span class="s16"> 100</span></p><p class="s33">&gt;<span class="s16"> 105</span></p><p class="s33">&gt;<span class="s16"> 115</span></p></td><td><p class="s16">280</p></td></tr><tr><td><p class="s16">CuCr1Zr</p></td><td><p class="s16">R 200<span class="s18">a</span></p><p class="s16">R 400<span class="s18">b</span></p><p class="s16">R 450<span class="s18">b</span></p></td><td><p class="s33">&gt;<span class="s16"> 200</span></p><p class="s33">&gt;<span class="s16"> 400</span></p><p class="s33">&gt;<span class="s16"> 450</span></p></td><td><p class="s33">&gt;<span class="s16"> 60</span></p><p class="s33">&gt;<span class="s16"> 210</span></p><p class="s33">&gt;<span class="s16"> 360</span></p></td><td><p class="s16">30</p><p class="s16">12</p><p class="s16">10</p></td><td><p class="s33">&gt;<span class="s16"> 70</span></p><p class="s33">&gt;<span class="s16"> 140</span></p><p class="s33">&gt;<span class="s16"> 155</span></p></td><td><p class="s16">420</p></td></tr></table>
</figtable>
=====<!--5.1.6.2.2-->CopperKupfer-Zirconium Alloys===== The solubility of Zirconium in copper is 0.15 wt% Zr at the eutectic temperature of 980°C <xr id="fig:Copper corner of the copper zirconium for up to 0.5Zirkon-wt zirconium"/><!--(Fig. 5.36)-->. Copper-zirconium materials have a similar properties spectrum compared to the one for copper-chromium materials. At room temperature the mechanical properties of copper-zirconium are less suitable than those of copper chromium, its temperature stability is however at least the same. =====<!--5.1.6.2.3-->Copper-Chromium-Zirconium AlloysLegierungen=====
The earlier used CuCr and CuZr materials have been partially replaced over the years by the capitation hardening three materials alloy CuCr1ZrDie Löslichkeit von Zirkon in Kupfer beträgt ca. This material exhibits high mechanical strength at elevated temperatures and good oxidation resistance as well as high softening temperatures. In its hardened condition CuCr1Zr has also a high electrical conductivity 0,15 Massen-% Zr bei dereutektischen Temperatur von 980° C (<xr id="fig:Softening Copper corner of CuCr1Zr after 1hr annealingthe copper zirconium for up to 0.5-wt zirconium"/><!--(Bild Fig. 5.3736)-->). Their usage extends from mechanically and thermally highly stressed parts such as contact tulips Kupfer-Zirkon-Werkstoffe weisenein ähnliches Eigenschaftsspektrum wie die Kupfer-Chrom-Werkstoffe auf. BeiRaumtemperatur ist Kupfer-Zirkon in high voltage switchgear to electrodes for resistance weldingden mechanischen Eigenschaften demKupfer-Chrom unterlegen, bezüglich Warmfestigkeit jedoch mindestensgleichwertig.
<xr id="fig:Copper corner of the copper zirconium for up to 0.5-wt zirconium"/>====<!--Fig5.1.6. 52.36:3--> Copper corner of the copperKupfer-Chrom-Zirkon- zirconium for up to 0.5 wt% zirconiumLegierungen=====
Anstatt der früher üblichen Werkstoffe CuCr und CuZr wird seit einigen Jahren dieaushärtbare Dreistofflegierung CuCr1Zr eingesetzt. Dieser Werkstoff zeichnet sichdurch hohe Festigkeitswerte auch bei erhöhten Temperaturen und eine sehr hoheAnlaufbeständigkeit sowie hohe Erweichungstemperaturen aus. Im ausgehärtetenZustand weist CuCr1Zr eine hohe elektrische Leitfähigkeit auf (<xr id="fig:Softening of CuCr1Zr after 1hr annealing"/><!--Fig. (Bild 5.37:)--> Softening of CuCr1Zr after 1 hr annealing and after 90% cold working).Neben ihrem Einsatz als mechanisch und thermisch hochbeanspruchbare Teile,z.B. als Kontakttulpen in Hochspannungsschaltern, ist auch ihre Verwendung alsElektrodenwerkstoffe für das Widerstandsschweißen hervorzuheben.
<div class="multiple-images">
<figure id="fig:Copper corner of the copper zirconium for up to 0.5-wt zirconium">
[[File:Copper corner of the copper zirconium for up to 0.5-wt zirconium.jpg|right|thumb|Copper corner of the copperFigure 10: Kupferecke des Zustandsdiagramms Kupfer- zirconium for up to Zirkon bis 0.,5 wtMassen-% zirconiumZirkon]]
</figure>
<figure id="fig:Softening of CuCr1Zr after 1hr annealing">
[[File:Softening of CuCr1Zr after 1hr annealing.jpg|right|thumb|Softening of Figure 11: Erweichungsverhalten von CuCr1Zr after 1 hr annealing and after nach 1h Glühdauer und einer Kaltumformung von 90% cold working]]
</figure>
</div>

Navigation menu

Powered by