2,316
edits
Changes
no edit summary
|80
|-
|AgNi 0,AgNi0.15<br />ARGODUR-Spezial
|99.85
|10.5
|85
|-
|AgCu24,.5Ni0,.5
|75
|10.0
|92
|-
|Ag99,.5NiMg<br />ARGODUR 32<br />Not heat treated
|99.5
|10.5
<caption>'''<!--Table 2.14:-->Mechanical Properties of Silver and Silver Alloys'''</caption>
<table class="twocolortable">
<tr><th><p class="s12">Material</p></th><th><p class="s12">Hardness</p><p class="s12">Condition</p></th><th><p class="s12">Tensile Strength</p><p class="s12">R<span class="s31">m </span>[MPa]</p></th><th><p class="s12">Elongation A [%] min.</p></th><th><p class="s12">Vickers Hardness</p><p class="s12">HV 10</p></th></tr><tr><td><p class="s12">Ag</p></td><td><p class="s12">R 200</p><p class="s12">R 250</p><p class="s12">R 300</p><p class="s12">R 360</p></td><td><p class="s12">200 - 250</p><p class="s12">250 - 300</p><p class="s12">300 - 360</p><p class="s12">> 360</p></td><td><p class="s12">30</p><p class="s12">8</p><p class="s12">3</p><p class="s12">2</p></td><td><p class="s12">30</p><p class="s12">60</p><p class="s12">80</p><p class="s12">90</p></td></tr><tr><td><p class="s12">AgNi 0,AgNi0.15</p><p class="s12">ARGODUR Special</p></td><td><p class="s12">R 220</p><p class="s12">R 270</p><p class="s12">R 320</p><p class="s12">R 360</p></td><td><p class="s12">220 - 270</p><p class="s12">270 - 320</p><p class="s12">320 - 360</p><p class="s12">> 360</p></td><td><p class="s12">25</p><p class="s12">6</p><p class="s12">2</p><p class="s12">1</p></td><td><p class="s12">40</p><p class="s12">70</p><p class="s12">85</p><p class="s12">100</p></td></tr><tr><td><p class="s12">AgCu3</p></td><td><p class="s12">R 250</p><p class="s12">R 330</p><p class="s12">R 400</p><p class="s12">R 470</p></td><td><p class="s12">250 - 330</p><p class="s12">330 - 400</p><p class="s12">400 - 470</p><p class="s12">> 470</p></td><td><p class="s12">25</p><p class="s12">4</p><p class="s12">2</p><p class="s12">1</p></td><td><p class="s12">45</p><p class="s12">90</p><p class="s12">115</p><p class="s12">120</p></td></tr><tr><td><p class="s12">AgCu5</p></td><td><p class="s12">R 270</p><p class="s12">R 350</p><p class="s12">R 460</p><p class="s12">R 550</p></td><td><p class="s12">270 - 350</p><p class="s12">350 - 460</p><p class="s12">460 - 550</p><p class="s12">> 550</p></td><td><p class="s12">20</p><p class="s12">4</p><p class="s12">2</p><p class="s12">1</p></td><td><p class="s12">55</p><p class="s12">90</p><p class="s12">115</p><p class="s12">135</p></td></tr><tr><td><p class="s12">AgCu10</p></td><td><p class="s12">R 280</p><p class="s12">R 370</p><p class="s12">R 470</p><p class="s12">R 570</p></td><td><p class="s12">280 - 370</p><p class="s12">370 - 470</p><p class="s12">470 - 570</p><p class="s12">> 570</p></td><td><p class="s12">15</p><p class="s12">3</p><p class="s12">2</p><p class="s12">1</p></td><td><p class="s12">60</p><p class="s12">95</p><p class="s12">130</p><p class="s12">150</p></td></tr><tr><td><p class="s12">AgCu28</p></td><td><p class="s12">R 300</p><p class="s12">R 380</p><p class="s12">R 500</p><p class="s12">R 650</p></td><td><p class="s12">300 - 380</p><p class="s12">380 - 500</p><p class="s12">500 - 650</p><p class="s12">> 650</p></td><td><p class="s12">10</p><p class="s12">3</p><p class="s12">2</p><p class="s12">1</p></td><td><p class="s12">90</p><p class="s12">120</p><p class="s12">140</p><p class="s12">160</p></td></tr><tr><td><p class="s12">Ag98CuNi</p><p class="s12">ARGODUR 27</p></td><td><p class="s12">R 250</p><p class="s12">R 310</p><p class="s12">R 400</p><p class="s12">R 450</p></td><td><p class="s12">250 - 310</p><p class="s12">310 - 400</p><p class="s12">400 - 450</p><p class="s12">> 450</p></td><td><p class="s12">20</p><p class="s12">5</p><p class="s12">2</p><p class="s12">1</p></td><td><p class="s12">50</p><p class="s12">85</p><p class="s12">110</p><p class="s12">120</p></td></tr><tr><td><p class="s12">AgCu24,5Ni0,5</p></td><td><p class="s12">R 300</p><p class="s12">R 600</p></td><td><p class="s12">300 - 380</p><p class="s12">> 600</p></td><td><p class="s12">10</p><p class="s12">1</p></td><td><p class="s12">105</p><p class="s12">180</p></td></tr><tr><td><p class="s12">Ag99,5NiMg</p><p class="s12">ARGODUR 32</p><p class="s12">Not heat treated</p></td><td><p class="s12">R 220</p><p class="s12">R 260</p><p class="s12">R 310</p><p class="s12">R 360</p></td><td><p class="s12">220</p><p class="s12">260</p><p class="s12">310</p><p class="s12">360</p></td><td><p class="s12">25</p><p class="s12">5</p><p class="s12">2</p><p class="s12">1</p></td><td><p class="s12">40</p><p class="s12">70</p><p class="s12">85</p><p class="s12">100</p></td></tr><tr><td><p class="s12">ARGODUR 32 Heat treated</p></td><td><p class="s12">R 400</p></td><td><p class="s12">400</p></td><td><p class="s12">2</p></td><td><p class="s12">130-170</p></td></tr></table>
</figtable>
====Fine-Grain Silver====
Fine-Grain silver (ARGODUR-Spezial) is defined as a silver alloy with an addition of 0.15 wt% of nickel. Silver and nickel are not soluble in each other in solid form. In liquid silver, only a small amount of nickel is soluble as the phase diagram illustrates (<xr id="fig:Phase diagram of silver nickel"/><!--(Fig. 2.51)-->) illustrates. During solidification of the melt, this nickel addition gets finely dispersed in the silver matrix and eliminates the pronounce coarse grain growth after prolonged influence of elevated temperatures (<xr id="fig:Coarse grain micro structure of Ag"/><!--(Fig. 2.49)--> and <xr id="fig:Fine grain microstructure of AgNiO"/><!--(Fig. 2.50)-->).
<div class="multiple-images">
</figure>
<figure id="fig:Strain hardening of AgNiO15 AgNi0.15 by cold working">
[[File:Strain hardening of AgNiO15 by cold working.jpg|left|thumb|<caption>Strain hardening of AgNiO15 by cold working</caption>]]
</figure>
<figure id="fig:Softening of AgNiO15 AgNi0.15 after annealing">
[[File:Softening of AgNiO15 after annealing.jpg|left|thumb|<caption>Softening of AgNiO15 after annealing</caption>]]
</figure>
!colspan="2" | Properties
|-
|Ag<br />AgNi0,.15<br />ARGODUR-Special
|Highest electrical and thermal conductivity, high affinity to sulfur (sulfide formation), low welding resistance, low contact resistance, very good formability
|Oxidation resistant at higher make currents, limited arc erosion resistance, tendency to material transfer in DC circuits, easy to braze and weld to carrier materials
!Form of Supply
|-
|Ag<br />AgNi0,.15<br />ARGODUR-Spezial<br />AgCu3<br />AgNi98NiCu2<br />ARGODUR 27<br />AgCu24,5Ni0,5
|Relays,<br />Micro switches,<br />Auxiliary current switches,<br />Control circuit devices,<br />Appliance switches,<br />Wiring devices (≤ 20A),<br />Main switches
|'''Semi-finished Materials:''' <br />Strips, wires, contact profiles, clad contact strips, toplay profiles, seam- welded strips<br />'''Contact Parts:'''<br />Contact tips, solid and composite rivets, weld buttons; clad, welded and riveted contact parts
|'''Semi-finished Materials:'''<br />Strips, wires, contact profiles, clad contact strips, seam-welded strips<br />'''Contact parts:'''<br />Contact tips, solid contact rivets, weld buttons; clad, welded and riveted contact parts
|-
|Ag99, .5NiOMgO<br />ARGODUR 32
|Miniature relays, aerospace relays and contactors, erosion wire for injection nozzles
|Contact springs, contact carrier parts
AgPd alloys are hard, arc erosion resistant, and have a lower tendency towards material transfer under DC loads (<xr id="tab:Contact and Switching Properties of Silver-Palladium Alloys"/>)<!--(Table 2.19)-->. On the other hand, the electrical conductivity is decreased at higher Pd contents. The ternary alloy AgPd30Cu5 has an even higher hardness, which makes it suitable for use in sliding contact systems.
AgPd alloys are mostly used in relays for the switching of medium to higher loads (> 60V, > 2A) as shown in (<xr id="tab:Application Examples and Forms of Suppl for Silver-Palladium Alloys"/><!--(Table 2.20)-->). Because of the high palladium price, these formerly solid contacts have been widely replaced by multi-layer designs such as AgNi0.15 or AgNi10 with a thin Au surface layer. A broader field of application for AgPd alloys remains in the wear resistant sliding contact systems.
!Silver Content<br />[wt%]
!Additives
!Theoretical<br />Density<br />[g/cm<sup>3</sup>]!Electrical<br />Resistivity<br />[μΩ·cm]!colspan="2" style="text-align:center"|Electrical<br />Conductivity<br />[% IACS] [MS/m]!Vickers<br />Hardness<br />Hv1[HV0,1]
!Tensile<br />Strength<br />[MPa]
!Elongation<br />(soft annealed)<br />A[%]min.
!Manufacturing<br />Process
!Form ofSupply|-|Ag/SnO<sub>2<br /sub>Supply98/2 SPW|97 - 99|WO<sub>3</sub>|10,4|59 ± 2|57 ± 15|215|35|Powder Metallurgy|1
|-
|Ag/SnO<sub>2</sub> 92/8PW10<br />8 SPW
|91 - 93
|WO<sub>3</sub>
|10,1
|51 ± 2
|62 ± 15
|255
|25
|Powder Metallurgy
|1
|-
|Ag/SnO<sub>2</sub> 90/10 SPW
|89 - 91
|WO<sub>3</sub>
|10
|47 ± 5
|
|250
|25
|Powder Metallurgy
|1
|-
|Ag/SnO<sub>2</sub> 88/12 SPW
|87 - 89
|WO<sub>3</sub>
|9.9
|246 ± 5|8667 ± 15|50270|50 - 95|200 - 320|3020|Powder Metallurgy<br />
|1
|-
|Ag/SnO<sub>2</sub> 9092/8 SPW4|91 - 93|WO<sub>3</sub>|10,1|51 ± 2|62 ± 15|255|25|Powder Metallurgy|1,2|-|Ag/10PW10SnO<sub>2<br /sub>90/10 SPW4
|89 - 91
|WO<sub>3</sub>
|10
|
|
|
|
|Powder Metallurgy
|1,2
|-
|Ag/SnO<sub>2</sub> 88/12 SPW4<br />
|87 - 89
|WO<sub>3</sub>
|9,8
|46 ± 5
|80 ± 10
|
|
|Powder Metallurgy
|1,2
|-
|Ag/SnO<sub>2</sub> 88/12 SPW6
|87 - 89
|MoO<sub>3</sub>
|9.8
|42 ± 5|70 ± 10|||Powder Metallurgy|2.08|83-|48Ag/SnO<sub>2</sub> 97/3 SPW7|55 96 - 10098|Bi<sub>2</sub>O<sub>3</sub> and WO<sub>3</sub>|||||220 |Powder Metallurgy|2|-|Ag/SnO<sub>2</sub> 90/10 SPW7|89 - 33091|Bi<sub>2</sub>O<sub>3</sub> and WO<sub>3</sub>|9,9||||28
|Powder Metallurgy
|12
|-
|Ag/SnO<sub>2</sub> 88/12PW10<br />12 SPW7
|87 - 89
|Bi<sub>2</sub>O<sub>3</sub> and WO<sub>3</sub>|9.78|42 ± 5|70 ± 10|||Powder Metallurgy|2|-|Ag/SnO<sub>2</sub> 98/2 PMT1|97 - 99|Bi<sub>2</sub>O<sub>3</sub> and CuO|10,4|57 ± 2.17|79|46215|35|Powder Metallurgy|1,2|-|Ag/SnO<sub>2</sub> 96/4 PMT1|95 - 97|Bi<sub>2</sub>O<sub>3</sub> and CuO||||||Powder Metallurgy|1,2|-|Ag/SnO<sub>2</sub> 94/6 PMT1|93 - 95|Bi<sub>2</sub>O<sub>3</sub> and CuO||||||Powder Metallurgy|1,2|-|Ag/SnO<sub>2</sub> 92/8 PMT1|91 - 93|Bi<sub>2</sub>O<sub>3</sub> and CuO|10|50 ± 2|62 ± 15|240|25|Powder Metallurgy|1,2|60 - 106|230 Ag/SnO<sub>2</sub> 90/10 PMT1|89 - 33091|Bi<sub>2</sub>O<sub>3</sub> and CuO|10|48 ± 2|65 ± 15|240
|25
|Powder Metallurgy
|1,2|-|Ag/SnO<sub>2</sub> 88/12 PMT1|87 - 89|Bi<sub>2</sub>O<sub>3</sub> and CuO|9,9|46 ± 5||260|20|Powder Metallurgy|1,2
|-
|Ag/SnO<sub>2</sub> 90/10PE<br />10 PE
|89 - 91
|Bi<sub>2</sub>O<sub>3</sub> and CuO
|9.,8|48 ± 2.04|84|49
|55 - 100
|230 - 330
|1
|-
|Ag/SnO<sub>2</sub> 88/12PE<br />12 PE
|87 - 89
|Bi<sub>2</sub>O<sub>3</sub> and CuO
|9.,7|2.17|79|46± 5
|60 - 106
|235 - 330
|1
|-
|Ag/SnO<sub>2</sub> 88/12 TOS F<br />PMT2
|87 - 89
|In<sub>2</sub>O<sub>3</sub>CuO|9.8|2.22|78,9|45|100 - 12090 ± 10|330 -430|25|Inernal OxidationPowder Metallurgy
|1,2
|-
|Ag/SnO<sub>2</sub> 9086/10WPD<br />14 PMT3|89 85 - 9187|AgBi<sub>2</sub>MoOO<sub>43</sub>and CuO|9.9|2.13,8|81|47|70 - 12095 ± 10
|
|
|2
|-
|Ag/SnO<sub>2</sub> 8894/12WPD<br />6 LC1|87 93 - 8995|AgBi<sub>2</sub>O<sub>3</sub> and In<sub>2</sub>MoOO<sub>43</sub>|9.,8|2.27|76|4445 ± 5|75 - 12055 ± 10
|
|
|Powder Metallurgy
|2
|-
|Ag/SnO<sub>2</sub> 90/10 POX1
|89 - 91
|In<sub>2</sub>O<sub>3</sub>
|9,9
|50 ± 5
|85 ± 15
|310
|25
|Internal Oxidation
|1,2
|-
|Ag/SnO<sub>2</sub> 90/10 POX1
|87 - 89
|In<sub>2</sub>O<sub>3</sub>
|9,8
|48 ± 5
|90 ± 15
|325
|25
|Internal Oxidation
|1,2
|-
|Ag/SnO<sub>2</sub> 90/10 POX1
|85 - 87
|In<sub>2</sub>O<sub>3</sub>
|9,6
|45 ± 5
|95 ± 15
|330
|20
|Internal Oxidation
|1,2
|-
|}
</figtable>
</figure>
<figure id="fig:Micro structure of Ag ZnO 92 8 Pw25PW25"> [[File:Micro structure of Ag ZnO 92 8 Pw25.jpg|left|thumb|<caption>Micro structure of Ag/ZnO 92/8 Pw25PW25: a) perpendicular to extrusion direction b) parallel to extrusion direction</caption>]]
</figure>
{| class="twocolortable" style="text-align: left; font-size: 12px"
|-
!Material
!Properties
|-
|Ag/SnO<sub>2</sub><br />
<caption>'''<!--Table 2.31:-->Application Examples of Silver–Metal Oxide Materials'''</caption>
<table class="twocolortable">
<tr><th><p class="s12">Material</p></th><th><p class="s12">Application Examples</p></th></tr><tr><td><p class="s12">Ag/SnO<sub>2</sub><span class="s48">2</span></p></td><td><p class="s12">Micro switches, Network relays, Automotive relays, Appliance switches,</p><p class="s12">Main switches, contactors, Fault current protection relays (paired against</p><p class="s12">Ag/C), (Main) Power switches</p></td></tr><tr><td><p class="s12">Ag/ZnO</p></td><td><p class="s12">Wiring devices, AC relays, Appliance switches, Motor-protective circuit</p><p class="s12">breakers (paired with Ag/Ni or Ag/C), Fault current circuit breakers paired againct Ag/C, (Main) Power switches</p></td></tr></table>
</figtable>
Ag/C contact materials are usually produced by powder metallurgy with graphite contents of 2 – 6 wt% (<xr id="tab:tab2.32"/>)<!--(Table 2.32)-->. The earlier typical manufacturing process of single pressed tips by pressing - sintering - repressing (PSR) has been replaced in Europe for quite some time by extrusion. In North America and some other regions however the PSR process is still used to some extend mainly for cost reasons.
The extrusion of sintered billets is now the dominant manufacturing method for semi-finished AgC materials <!--[[#figures3|(Figs. 64 – 7167)]]<!--(Figs. 2.126 – 2.129)-->. The hot extrusion process results in a high density material with graphite particles stretched and oriented in the extrusion direction [[#figures4|(Figs. 68 – 71)]]<!--(Figs. 2.130 – 2.133)-->. Depending on the extrusion method in either rod or strip form , the graphite particles can be oriented in the finished contact tips perpendicular or parallel to the switching contact surface (<xr id="fig:Micro structure of Ag C 95 5"/><!--(Fig. 2.131)--> and <xr id="fig:Micro structure of Ag C 96 4 D"/>)<!--(Fig. 2.132)-->.
Since the graphite particles in the Ag matrix of Ag/C materials prevent contact tips from directly being welded or brazed, a graphite free bottom layer is required. This is achieved by burning out (de-graphitizing) the graphite selectively on one side of the tips.
Ag/C contact materials exhibit on the one hand an extremely high resistance to contact welding but on the other have a low arc erosion resistance. This is caused by the reaction of graphite with the oxygen in the surrounding atmosphere at the high temperatures created by the arcing. The weld resistance is especially high for materials with the graphite particle orientation parallel to the arcing contact surface. Since the contact surface after arcing consists of pure silver, the contact resistance stays consistantly low during the electrical life of the contact parts.
A disadvantage of the Ag/C materials is their rather high erosion rate. In materials with parallel graphite orientation this can be improved, if a part of the graphite is incorporated into the material (GRAPHOR Ag/C DF) in the form of fibers (<xr id="fig:Micro structure of Ag C DF"/>)<!--(Fig. 2.133)-->. The weld resistance is determined by the total content of graphite particles.
Ag/C tips with vertical graphite particle orientation are produced in a specific sequence: Extrusion to rods, cutting of double thickness tips, burning out of graphite to a controlled layer thickness, and a second cutting to single tips. Such contact tips are especially well suited for applications which require both, a high weld resistance and a sufficiently high arc erosion resistance (<xr id="tab:tab2.33"/>)<!--(Table 2.33)-->. For attachment of Ag/C tips welding and brazing techniques are applied.
|40 - 60
|-
|AgCDFAgC DF<br />GRAPHOR DF*)[[#text-reference1|<sup>1</sup>]]
|95.7 - 96.7
|8.7 - 8.9
|69 - 76
|40 - 44
|-
|}
<div id="text-reference1"><sub>1</sub> Graphite content 3.8 wt%, Graphite particles and fibers parallel to switching surface</div>
</figtable>
<caption>'''<!--Table 2.34:-->Application Examples and Forms of Supply of Silver– Graphite Contact Materials'''</caption>
<table class="twocolortable">
<tr><th><p class="s12">Material</p><p class="s12"></p></th><th><p class="s12">Application Examples</p></th><th><p class="s12">Form of Supply</p></th></tr><td><p class="s12">Ag/C 98/2</p><p class="s12"></p></td><td><p class="s12">Motor circuit breakers, paired with Ag/Ni</p></td><td><p class="s12">Contact tips, brazed and welded contact parts, some contact rivets </p><p class="s12">Contact profiles (weld tapes), Contact tips, brazed and welded contact parts</p></td></tr><tr><td><p class="s12">Ag/C 97/3</p><p class="s12"></p><p class="s12">Ag/C 96/4</p><p class="s12"></p><p class="s12">Ag/C 95/5</p><p class="s12"></p><p class="s12">Ag/C DF</p></td><td><p class="s12">Circuit breakers, paired with Cu, Motor-protective circuit breakers, paired with Ag/Ni,</p><p class="s12">Fault current circuit breakers, paired with Ag/Ni, Ag/W, Ag/WC, Ag/SnO<sub>2</sub><span class="s45">2</span>, Ag/ZnO,</p><p class="s12">(Main) Power switches, paired with Ag/Ni, Ag/W</p></td><td><p class="s12">Contact tips, brazed and welded contact</p><p class="s12">parts, some contact rivets with</p><p class="s12">Ag/C97/3</p></td/></tr></table>
</figtable>