2,316
edits
Changes
no edit summary
The platinum group metals include the elements Pt, Pd, Rh, Ru, Ir, and Os ''(Table <xr id="tab:Properties_Production_Processes_and_Application_Forms_for_Platinum_Metals"/><!--(Tab. 2.6)''-->). For electrical contacts , platinum and palladium have practical significance as base alloy materials and ruthenium and iridium are used as alloying components. Pt and Pd have similar corrosion resistance as gold but because for the reason of their catalytical properties , they tend to polymerize adsorbed organic vapors on contact surfaces. During frictional movement between contact surfaces , the polymerized compounds known as “brown powder” are formed , which can lead to significantly a significant increase in contact resistance. Therefore Pt and Pd are typically used as alloys and not in their pure form for electrical contact applications.
Alloys of Pt with Ru, Ir, Ni and W were widely used in electromechanical components in the telecommunication industry and in heavy duty automotive breaker points (<xr id="figtab:Properties_Production_Processes,_and_Application_Forms_for_Platinum Physical Properties of the Platinum Metals"an their Alloys/> Properties, Production Processes, and Application Forms for Platinum Metals ).
<xr figtable id="figtab:Physical_Properties_of_the_Platinum_Metals_and_their_AlloysPhysical Properties of the Platinum Metals an their Alloys"/> <caption>'''<!--Table 2.7:-->Physical Properties of the Platinum Metals and an their Alloys'''</caption>
Today these components have been replaced in many applications by solid state technology and the usage of these materials is greatly reduced. Pd alloys however have a more significant importance. PdCu15 is widely used, for example in automotive flasher relays. Because of their resistance to sulfide formation PdAg alloys are applied in various relay designs. With the ability to thermally precipitation harden some multi component alloys based on PdAgAuPt, they find special usage in wear resistant sliding contact applications. Pd44Ag38Cu15PtAuZn is a standard alloy in this group (<xr id="figtab:Influence_of_1Mechanical_Properties_of_the_Platinum_Metals_and_their_Alloys"/><!--(Tab 2.8)--20_atom%_of_different_additive_metals_on_the_electrical_resistivit_ p_of_platinum> and <xr id="tab:Contact_and_Switching_Properties_of_the_Platinum_Metals_and_their_Alloys"/>Fig<!--(Tab. 2.26: Influence of 19)--22 atom% of different additive metals on the electrical resistivity p of palladium>).
Platinum and palladium alloys are mainly used similar to the gold based materials in the form of welded wire and profile segments but rarely as contact rivets. Due to the high precious metal prices, joining technologies are used, that allow the most economic application of the contact alloy in the area where functionally needed. For reason of their resistance to material transfer they are used for DC applications and due to their higher arc erosion resistance, they are applied for medium electrical loads up to about 30W in relays and switches (<xr id="fig:Phase_diagram_of_platinum-iridiumApplication_Examples_and_Form_of_Supply_for_Platinum_Metals_and_their_Alloys"/>Fig<!--(Table 2. 210)-->).27: Phase diagram of platinumMulti-iridiumcomponent alloys based on Pd with higher hardness and wear resistance are mainly used as spring arms in sliding contact systems and DC miniature motors.
<xr figtable id="figtab:Phase_diagram_of_platinum-nickelMechanical_Properties_of_the_Platinum_Metals_and_their_Alloys"/>Fig. <caption>'''<!--Table 2.288: Phase diagram -->Mechanical Properties of platinum-nickelthe Platinum Metals and their Alloys'''</caption><table class="twocolortable"><tr><th rowspan="2">Material</th><th colspan="2">Tensile Strength [MPa]</th><th colspan="2">Elongation A [%]</th><th colspan="2">Vickers Hardness HV 1</th></tr><tr><th>soft</th><th>70% cold worket</th><th>soft</th><th>70% cold worket</th><th>soft</th><th>70% cold worket</th></tr><tr><td>Pt (99,95)</td><td>150</td><td>360</td><td>40</td><td>3</td><td>40</td><td>120</td></tr><tr><td>PtIr5</td><td>260</td><td>550</td><td>25</td><td>2</td><td>85</td><td>160</td></tr><tr><td>PtIr10</td><td>340</td><td>570</td><td>24</td><td>2</td><td>105</td><td>210</td></tr><tr><td>PtRu10</td><td>650</td><td>1000</td><td>24</td><td>2</td><td>195</td><td>320</td></tr><tr><td>PtNi8</td><td>640</td><td>950</td><td>22</td><td>2</td><td>200</td><td>320</td></tr><tr><td>PtW5</td><td>530</td><td>860</td><td>21</td><td>2</td><td>150</td><td>270</td></tr><tr><td>Pd (99,95)</td><td>200</td><td>420</td><td>42</td><td>2</td><td>40</td><td>90</td></tr><tr><td>PdCu15</td><td>400</td><td>780</td><td>38</td><td>2</td><td>90</td><td>220</td></tr><tr><td>PdCu40</td><td>550</td><td>950</td><td>35</td><td>2</td><td>120</td><td>260</td></tr><tr><td>PdNi5</td><td>340</td><td>700</td><td>25</td><td>2</td><td>95</td><td>200</td></tr><tr><td>Pd35AuAgPt</td><td></td><td></td><td></td><td></td><td></td><td>420*</td></tr><tr><td>Pd44Ag38Cu15 PtAuZn</td><td/><td/><td/><td/><td/><td>405*</td></tr><tr><td>Pd40Co40W20</td><td/><td/><td/><td/><td/><td>680*</td></tr></table></figtable>
<xr figtable id="figtab:Phase_diagram_of_platinum-copperContact_and_Switching_Properties_of_the_Platinum_Metals_and_their_Alloys"><table class="twocolortable"/>Fig. <caption> '''<!--Table 2.309: Phase diagram -->Contact and Switching Properties of palladiumthe Platinum Metals and their Alloys'''</caption><tr><th><p class="s11">Material</p></th><th><p class="s12">Properties<th colspan="2"></p></th></tr><tr><td><p class="s11">Pt</p></td><td><p class="s12">Very high corrosion resistance</p></td><td/></tr><tr><td><p class="s11">PtIr5 -copper10</p></td><td><p class="s12">Very high corrosion resistance, low contact resistance</p></td><td><p class="s12">High arc erosion resistance, high hardness</p></td></tr><tr><td><p class="s11">PtRu10</p></td><td><p class="s12">Very high corrosion resistance, low welding tendency</p></td><td><p class="s12">Low contact resistance, very</p><p class="s12">high hardness</p></td></tr><tr><td><p class="s11">PtNi8</p></td><td><p class="s12">Low material transfer tendency</p></td><td><p class="s12">Very high hardness</p></td></tr><tr><td><p class="s11">PtW5</p></td><td><p class="s12">Low material transfer tendency</p></td><td><p class="s12">High hardness</p></td></tr><tr><td><p class="s11">Pd</p></td><td><p class="s12">Strong tendency to “Brown Powder” formation</p></td><td><p class="s12">Less arc erosion resistant than Pt</p></td></tr><tr><td><p class="s11">PdCu15</p><p class="s11">PdCu40</p></td><td><p class="s12">Tendency to “Brown Powder” formation</p></td><td><p class="s12">Mostly resistant to material</p><p class="s12">transfer, high hardness</p></td></tr><tr><td><p class="s11">PdNi5</p></td><td><p class="s12">Strong tendency to “Brown Powder” formation</p></td><td><p class="s12">Low welding tendency</p></td></tr><tr><td><p class="s11">Pd44Ag38Cu15</p><p class="s11">PtAuZn</p></td><td><p class="s12">High mechanical wear resistance</p></td><td><p class="s12">Standard material for sliding</p><p class="s12">contact brushes</p></td></tr></table></figtable>
<xr figtable id="fig:Strain_hardening_of_PtIr5_by_cold_workingApplication_Examples_and_Form_of_Supply_for_Platinum_Metals_and_their_Alloys"/>Fig. 2.33: Strain hardening of PtIr5 by cold working <xr idtable class="fig:Softening_of_PtIr5_after_annealing_for_1_hr_after_different degrees_of_cold_workingtwocolortable"/>Fig. <caption>'''<!--Table 2.3410: Softening -->Application Examples and Form of PtIr5 after annealing Supply for 1 hr after different degrees of cold workingPlatinum Metals and their Alloys'''</caption><xr idtr><th><p class="fig:Strain_hardening_of_PtNi8_by_cold_workings11">Material</p></th><th>Fig. 2.35: Strain hardening of PtNi8 by cold working <xr idp class="fig:Softening_of_PtNi8_after_annealing_for_1_hr_after_80%_cold_workings12">Application Examples</p></th><th><p class="s12">Fig. 2.36: Softening Forms of PtNi8 after annealing for 1 hr after 80% cold working Supply</p></th></tr><tr><td><xr idp class="fig:Strain_hardening_of_PtW5_by_cold_workings11">Pt (99,95)</p></td><td>Fig. 2.37: Strain hardening of PtW5 by cold working <xr idp class="fig:Softening_of_PtW5_after_annealing_for_1_hr_after_80%_cold_workings12">Relays</p></td><td>Fig. 2.38: Softening of PtW5 after annealing for 1hr after 80% cold working <xr idp class="fig:Strain_hardening_of_Pd_99.99_by_cold_workings12">Contact rivets, welded contact parts</p></td></tr><tr><td>Fig. 2.39: Strain hardening of Pd 99.99 by cold working <xr idp class="fig:Strain_hardening_of_PdCu15_by_cold_workings11">PtIr5</p>Fig. 2.40: Strain hardening of PdCu15 by cold working <xr idp class="fig:Softening_of_PdCu15_after_annealing_for_0.5_hrss11">PtIr10</p>Fig. 2.41: Softening of PdCu15 after annealing for 0.5 hrs <xr idp class="fig:Strain_hardening_of_PdCu40_by_cold_workings11">PtRu10</p>Fig. 2.42: Strain hardening of PdCu40 by cold working <xr idp class="fig:Softening_of_PdCu40_after_annealing_for_0.5_hrs_after_80%_cold_workings11">PtNi8</p>Fig. 2.43: Softening of PdCu40 after annealing for 0.5 hrs after 80% cold working <xr idp class="fig:Electrical_resistivity_p_of_PdCu_alloyss11">PtW5</p>Fig. 2.44: Electrical resistivity </td><td><p class="s12">Relays, sliding contact systems,</p of PdCu alloys with and without an annealing step for forming an ordered phase ><xr idp class="fig:Contact_and_Switching_Properties_of_the_Platinum_Metals_and_their_Alloyss12">automotive ignition breaker points</p></td><td><p class="s12">'''Table 2.9: Semi-finished Contact and Switching Properties of the Platinum Metals and their AlloysMaterials''' :</p><xr idp class="fig:Application_Examples_and_Form_of_Supply_for_Platinum_Metals_and_their_Alloyss12">Wire, seam-welded contact profiles</p><p class="s12">'''Table 2.10Contact Parts: Application Examples and Form of Supply for Platinum Metals and their Alloys''' </p><p class="s12">Tips, wire-formed parts, solid and composite contact rivets, welded contact parts</p></td></tr><tr><td><p class="s11">Pd (99,95)</p><p class="s11">PdNi5</p></td><td><p class="s12">Relays</p></td><td><p class="s12">Micro-profiles (weld tapes), contact rivets, welded contact parts</p></td></tr><tr><td><p class="s11">PdCu15</p><p class="s11">PdCu40</p></td><td><p class="s12">Automotive flasher relays</p></td><td><p class=END"s12">Micro-profiles, composite contact rivets</p></td></tr><tr><td><p class="s11">Pd35AuAgPt</p><p class="s11">Pd44Ag38Cu15</p><p class="s11">PtAuZn</p><p class="s11">Pd40Co40W20</p></td><td><p class=Table 2.6: Properties"s12">Potentiometers, Production Processesslip rings, and Application Forms for Platinum Metalsminiature</p><figtable idp class="fig:Properties_Production_Processes,_and_Application_Forms_for_Platinum Metalss12">[[File:Properties production platinum metals.jpg|left|thumb|DC motors</p></td><td><captionp class="s12">PropertiesWire-formed parts, Production Processes and Application Forms for Platinum Metalswelded wire segments, multi-arm sliding contact brushes</p></td></tr></captiontable>]]
</figtable>
<figure id="fig:Influence_of_1-20_atom%_of_different_additive_metals_on_the_electrical_resistivit_ p_of_platinum_(Degussa)">
<figure id="fig:Influence_of_1-20_atom%_of_different_additive_metals_on_the_electrical_resistivit_ p_of_platinum">
[[File:Influence of palladium.jpg|rightleft|thumb|<caption>Influence of 1-22 atom% of different additive metals on the electrical resistivity p of palladium</caption>]]
</figure>
<figure id="fig:Phase_diagram_of_platinum-iridium">
[[File:Phase diagram of platinum iridium.jpg|rightleft|thumb|<caption>Fig. 2.27:Phase diagram of platinum-iridium</caption>]]
</figure>
<figure id="fig:Phase_diagram_of_platinum-nickel">
[[File:Phase diagram of platinum nickel.jpg|rightleft|thumb|<caption>Fig. 2.28:Phase diagram of platinum-nickel</caption>]]
</figure>
<figure id="fig:Phase_diagram_of_platinum-tungsten">
[[File:Phase diagram of palladium copper.jpg|rightleft|thumb|<caption>Fig. 2.29:Phase diagram of platinum-tungsten</caption>]]
</figure>
<figure id="fig:Phase_diagram_of_platinum-copper">
[[File:Phase diagram of palladium copper2.jpg|rightleft|thumb|<caption>Fig. 2.30: Phase diagram of palladium-copper</caption>]]
</figure>
<figure id="fig:Strain_hardening_of_Pt_by_cold_working">
[[File:Strain hardening of Pt by cold working.jpg|rightleft|thumb|<caption>Fig. 2.31: Strain hardening of Pt by cold working</caption>]]
</figure>
<figure id="fig:Softening_of_Pt_after_annealing_for_0.5_hrs_after_80%_cold_working">
[[File:Softening of Pt after annealing.jpg|rightleft|thumb|<caption>Fig. 2.32: Softening of Pt after annealing for 0.5 hrs after 80% cold working</caption>]]
</figure>
<figure id="fig:Strain_hardening_of_PtIr5_by_cold_working">
[[File:Strain hardening of PtIr5 by cold working.jpg|rightleft|thumb|<caption>Fig. 2.33: Strain hardening of PtIr5 by cold working</caption>]]
</figure>
<figure id="fig:Softening_of_PtIr5_after_annealing_for_1_hr_after_different degrees_of_cold_working">
[[File:Softening of PtIr5 after annealing.jpg|rightleft|thumb|<caption>Fig. 2.34: Softening of PtIr5 after annealing for 1 hr after different degrees of cold working</caption>]]
</figure>
<figure id="fig:Strain_hardening_of_PtNi8_by_cold_working">
[[File:Strain hardening of PtNi8 by cold working.jpg|rightleft|thumb|<caption>Fig. 2.35: Strain hardening of PtNi8 by cold working</caption>]]
</figure>
<figure id="fig:Softening_of_PtNi8_after_annealing_for_1_hr_after_80%_cold_working">
[[File:Softening of PtNi8 after annealing.jpg|rightleft|thumb|<caption>Fig. 2.36: Softening of PtNi8 after annealing for 1 hr after 80% cold working</caption>]]
</figure>
<figure id="fig:Strain_hardening_of_PtW5_by_cold_working">
[[File:Strain hardening of PtW5 by cold working.jpg|rightleft|thumb|<caption>Fig. 2.37: Strain hardening of PtW5 by cold working</caption>]]
</figure>
<figure id="fig:Softening_of_PtW5_after_annealing_for_1_hr_after_80%_cold_working">
[[File:Softening of PtW5 after annealing.jpg|rightleft|thumb|<caption>Fig. 2.38: Softening of PtW5 after annealing for 1 hr after 80% cold working</caption>]]
</figure>
<figure id="fig:Strain_hardening_of_Pd_99.99_by_cold_working">
</figure>
<figure id="fig:Strain_hardening_of_PdCu15_by_cold_working">
[[File:Strain hardening of PdCu15 by cold working.jpg|rightleft|thumb|<caption>Fig. 2.40: Strain hardening of PdCu15 by cold working</caption>]]
</figure>
<figure id="fig:Softening_of_PdCu15_after_annealing_for_0.5_hrs">
[[File:Softening of PdCu15 after annealing.jpg|rightleft|thumb|vSoftening <caption>Softening of PdCu15 after annealing for 0.5 hrs</caption>]]
</figure>
<figure id="fig:Strain_hardening_of_PdCu40_by_cold_working">
[[File:Strain hardening of PdCu40 by cold working.jpg|rightleft|thumb|<caption>Strain hardening of PdCu40 by cold working</caption>]]
</figure>
<figure id="fig:Softening_of_PdCu40_after_annealing_for_0.5_hrs_after_80%_cold_working">
[[File:Softening of PdCu40 after annealing.jpg|rightleft|thumb|<caption>Softening of PdCu40 after annealing for 0.5 hrs after 80% cold working</caption>]]
</figure>
<figure id="fig:Electrical_resistivity_p_of_PdCu_alloys">
[[File:Electrical resistivity p of PdCu alloys.jpg|rightleft|thumb|<caption>Electrical resistivity p of PdCu alloys with and without an annealing step for forming an ordered phase</caption>]]
</figure>
==References==
[[Contact Materials for Electrical Engineering#References|References]]
[[de:Werkstoffe_aus_Platin-Metallen]]