Werkstoffe aus Platin-Metallen

From Electrical Contacts
Revision as of 17:13, 22 September 2014 by Teitscheid (talk | contribs) (temp edit)

(diff) ← Older revision | Approved revision (diff) | Latest revision (diff) | Newer revision → (diff)
Jump to: navigation, search

Zur Platingruppe zählen die Elemente Pt, Pd, Rh, Ru, Ir und Os (Table 1). Für Anwendungen in der Kontakttechnik haben Platin und Palladium als Legierungsgrundmetalle sowie Ruthenium und Iridium als Legierungsbestandteile praktische Bedeutung. Pt und Pd sind zwar ähnlich korrosionsbeständig wie Au, neigen aber aufgrund ihrer katalytischen Eigenschaften dazu, an der Kontaktoberfläche adsorbierte organische Dämpfe zu polymerisieren. Bei Reibbeanspruchung der Kontaktpartner entsteht dabei als Polymerisationsprodukt das sog. brown powder, das zu einer starken Erhöhung des Kontaktwiderstandes führen kann. Daher werden Pt und Pd nicht rein, sondern ausschließlich in Legierungsform für Kontaktzwecke eingesetzt.

Table 1: Eigenschaften, Verarbeitung und Anwendungsformen der Platin-Metalle
Elemente Eigenschaften Verarbeitung Anwendungsformen
Ru
Ruthenium
Mattgrau bis silberweiß, sehr hart und spröde, gegen Säuren bei Anwesenheit von
Sauerstoff beständig, oxidiert bei Erhitzen an Luft
Aufdampfen, Sputtern, pulvermetallurgisch,
Warmverformen nur bei 1200-1500°C möglich
Pulver, in Blechen und Beschichtungen,
in Drähten meist nur als Legierungsbestandteil
Rh
Rhodium
Nahezu silberweiß, sehr hart und spröde, in Säuren unlöslich, oxidiert an Luft
bei Rotglut
Galvanisch, Aufdampfen, Sputtern, nach Warmverformung
bei 800-1000°C, Kaltverformen möglich
Beschichtungen (galvanische Überzüge), Legierungsbestandteil,
in geringem Umfang als Bleche und Drähte
Pd
Palladium
Mattweiß, duktil, gegen die meisten Säuren beständig, oxidiert bei Rotglut Galvanisch, Aufdampfen, Sputtern,
Kaltverformen
Bleche, Bänder, Rohre, Drähte, Niete
und Beschichtungen
Os
Osmium
Bläulichweiß, härtestes Platinmetall, sehr spröde, gegen nichtoxidierende Säuren
beständig, an Luft leicht oxidierbar
Pulvermetallurgisch Pulver, Legierungsbestandteil
Ir
Iridium
Nahezu silberweiß, sehr hart und spröde,
säurebeständig, oxidiert bei Rotglut
Aufdampfen, Sputtern, pulvermetallurgisch,
bei 1200-1500°C Warmverformen möglich
Pulver, Legierungsbestandteil, in geringem,
Umfang als Blech
Pt
Platin
Grauweiß, duktil, säurebeständig außer gegen Königswasser, HBr und HJ,
oxidationsbeständig bei Rotglut
Galvanisch, Aufdampfen,
Sputtern, Kaltverformen
Bleche, Bänder, Rohre, Drähte, Niete und Beschichtungen


Rhodium kommt als massiver Kontaktwerkstoff nicht zum Einsatz, wird jedoch als galvanisch aufgebrachte Schicht z.B. in Gleitkontaktsystemen verwendet. Ruthenium dient hauptsächlich als Legierungskomponente in PdRu15. Die Metalle Osmium und Iridium finden keine praktische Anwendung in der Kontakttechnik.

Da Pd lange Zeit sehr preisstabil war, galt es als geeignete Alternative zu dem teuren Gold. Zwischenzeitlich hatte der Palladiumpreis ein Niveau erreicht, das über dem des Goldes lag, so dass der Einsatz von Pd für Kontaktzwecke stark rückläufig war. Heute (2011) liegt der Palladiumpreis bei ca. 50% des Goldpreises.

Die Legierungen des Pt mit Ru, Ir, Ni und W wurden vor allem in elektromechanischen Bauelementen der Fernmeldetechnik und in hochwertigen Zündunterbrechern verbreitet eingesetzt (Table 2).

Physikalische Eigenschaften von Platin-Metallen und deren Legierungen

Today these components have been replaced in many applications by solid state technology and the usage of these materials is greatly reduced. Pd alloys however have a more significant importance. PdCu15 is widely used for example in automotive flasher relays. Because of their resistance to sulfide formation PdAg alloys are applied in various relay designs. The ability to thermally precipitation harden some multi component alloys based on PdAgAuPt they find special usage in wear resistant sliding contact applications. Pd44Ag38Cu15PtAuZn is a standard alloy in this group Table 3 und Table 4

Platinum and palladium alloys are mainly used similar to the gold based materials in the form of welded wire and profile segments but rarely as contact rivets. Because of the high precious metal prices joining technologies are used that allow the most economic application of the contact alloy in the area where functionally needed. Because of their resistance to material transfer they are used for DC applications and due to their higher arc erosion resistance they are applied for medium electrical loads up to about 30W in relays and switches Table 5. Multi-component alloys based on Pd with higher hardness and wear resistance are mainly used as spring arms in sliding contact systems and DC miniature motors.

Table 3: Mechanical Properties of the Platinum Metals and their Alloys
MaterialTensile Strength [MPa]Elongation A [%]Vickers Hardness HV 1
soft70% cold worketsoft70% cold worketsoft70% cold worket
Pt (99,95)15036040340120
PtIr526055025285160
PtIr10340570242105210
PtRu106501000242195320
PtNi8640950222200320
PtW5530860212150270
Pd (99,95)2004204224090
PdCu1540078038290220
PdCu40550950352120260
PdNi534070025295200
Pd35AuAgPt420*
Pd44Ag38Cu15 PtAuZn405*
Pd40Co40W20680*
  • maximum hardness

Table 4: Contact and Switching Properties of the Platinum Metals and their Alloys

Material

Properties

Pt

Very high corrosion resistance

PtIr5 - 10

Very high corrosion resistance, low contact resistance

High arc erosion resistance, high hardness

PtRu10

Very high corrosion resistance, low welding tendency

Low contact resistance, very

high hardness

PtNi8

Low material transfer tendency

Very high hardness

PtW5

Low material transfer tendency

High hardness

Pd

Strong tendency to “Brown Powder” formation

Less arc erosion resistant than Pt

PdCu15

PdCu40

Tendency to “Brown Powder” formation

Mostly resistant to material

transfer, high hardness

PdNi5

Strong tendency to “Brown Powder” formation

Low welding tendency

Pd44Ag38Cu15

PtAuZn

High mechanical wear resistance

Standard material for sliding

contact brushes


Table 5: Application Examples and Form of Supply for Platinum Metals and their Alloys

Material

Application Examples

Forms of Supply

Pt (99,95)

Relays

Contact rivets, welded contact parts

PtIr5

PtIr10

PtRu10

PtNi8

PtW5

Relays, sliding contact systems,

automotive ignition breaker points

Semi-finished Contact Materials:

Wire, seam-welded contact profiles

Contact Parts:

Tips, wire-formed parts, solid and composite contact rivets, welded contact parts

Pd (99,95)

PdNi5

Relays

Micro-profiles (weld tapes), contact rivets, welded contact parts

PdCu15

PdCu40

Automotive flasher relays

Micro-profiles, composite contact rivets

Pd35AuAgPt

Pd44Ag38Cu15

PtAuZn

Pd40Co40W20

Potentiometers, slip rings, miniature

DC motors

Wire-formed parts, welded wire segments, multi-arm sliding contact brushes


Figure 1Influence of 1-20 atom% of different additive metals on the electrical resistivity p of platinum (Degussa)

Figure 2 Influence of 1-22 atom% of different additive metals on the electrical resistivity p of palladium

Figure 3Fig. 2.27: Phase diagram of platinum-iridium

Figure 4 Fig. 2.28: Phase diagram of platinum-nickel

Figure 5 Fig. 2.29: Phase diagram of platinum-tungsten

Figure 6 Fig. 2.30: Phase diagram of palladium-copper

Figure 7 Fig. 2.31: Strain hardening of Pt by cold working

Figure 8 Fig. 2.32: Softening of Pt after annealing for 0.5 hrs after 80% cold working

Figure 9 Fig. 2.33: Strain hardening of PtIr5 by cold working

Figure 10 Fig. 2.34: Softening of PtIr5 after annealing for 1 hr after different degrees of cold working

Figure 11Fig. 2.35: Strain hardening of PtNi8 by cold working

Figure 12 Fig. 2.36: Softening of PtNi8 after annealing for 1 hr after 80% cold working

Figure 13Fig. 2.37: Strain hardening of PtW5 by cold working

Figure 14Fig. 2.38: Softening of PtW5 after annealing for 1hr after 80% cold working

Figure 15Fig. 2.39: Strain hardening of Pd 99.99 by cold working

Figure 16Fig. 2.40: Strain hardening of PdCu15 by cold working

Figure 17Fig. 2.41: Softening of PdCu15 after annealing for 0.5 hrs

Figure 18Fig. 2.42: Strain hardening of PdCu40 by cold working

Figure 19Fig. 2.43: Softening of PdCu40 after annealing for 0.5 hrs after 80% cold working

Figure 20Fig. 2.44: Electrical resistivity p of PdCu alloys with and without an annealing step for forming an ordered phase



Figure 1: Influence of 1- 20 atom% of different additive metals on the electrical resistivity p of platinum (Degussa)
Figure 2: Influence of 1-22 atom% of different additive metals on the electrical resistivity p of palladium
Figure 3: Fig. 2.27:Phase diagram of platinum-iridium
Figure 4: Fig. 2.28:Phase diagram of platinum-nickel
Figure 5: Fig. 2.29:Phase diagram of platinum-tungsten
Figure 6: Fig. 2.30: Phase diagram of palladium-copper
Figure 7: Fig. 2.31: Strain hardening of Pt by cold working
Figure 8: Fig. 2.32: Softening of Pt after annealing for 0.5 hrs after 80% cold working
Figure 9: Fig. 2.33: Strain hardening of PtIr5 by cold working
Figure 10: Fig. 2.34: Softening of PtIr5 after annealing for 1 hr after different degrees of cold working
Figure 11: Fig. 2.35: Strain hardening of PtNi8 by cold working
Figure 12: Fig. 2.36: Softening of PtNi8 after annealing for 1 hr after 80% cold working
Figure 13: Fig. 2.37: Strain hardening of PtW5 by cold working
Figure 14: Fig. 2.38: Softening of PtW5 after annealing for 1 hr after 80% cold working
Figure 15: Fig. 2.39: Strain hardening of Pd 99.99 by cold working
Figure 16: Fig. 2.40: Strain hardening of PdCu15 by cold working
Figure 17: Softening of PdCu15 after annealing for 0.5 hrs
Figure 18: Strain hardening of PdCu40 by cold working
Figure 19: Softening of PdCu40 after annealing for 0.5 hrs after 80% cold working
Figure 20: Electrical resistivity p of PdCu alloys with and without an annealing step for forming an ordered phase

Referenzen

Referenzen