Difference between revisions of "Physical Effects in Sliding and Connector Contacts"

From Electrical Contacts
Jump to: navigation, search
(6.4.5 Physical Effects in Sliding and Connector Contacts)
(6.4.5 Physical Effects in Sliding and Connector Contacts)
Line 3: Line 3:
 
*'''Mechanical wear of sliding contacts'''
 
*'''Mechanical wear of sliding contacts'''
  
{| class="twocolortable" style="text-align: left; font-size: 12px;width:40%"
+
<table class="twocolortable" style="text-align: left; font-size:12px;width:40%">
|-
+
<tr>
|dV/dx = k x F<sub>K</sub> /3 H<sub>W</sub>
+
<td>dV/dx = k x F<sub>K</sub> /3 H<sub>W</sub></td>
|-
+
</tr><tr>   
|dV/dx    Wear volume in mm<sup>3</sup> per slide path length in mm
+
<td>dV/dx    Wear volume in mm<sup>3</sup> per slide path length in mm</td>
|-
+
</tr><tr>
|k        Coefficient of frictional wear
+
<td>k        Coefficient of frictional wear</td>
|-
+
</tr><tr>
|H<sub>W</sub>        Hardness of the softer material <br />(Brinell or Vickers units)
+
<td>H<sub>W</sub>        Hardness of the softer material <br />(Brinell or Vickers units)</td>
|-
+
</tr><tr>
|F<sub>K</sub>        Contact force in cN
+
<td>F<sub>K</sub>        Contact force in cN</td>
|-
+
</tr><tr>
|'''Wear coefficient k during material transfer'''
+
<td>'''Wear coefficient k during material transfer'''</td>
|-
+
</tr><tr>
|Silver – Silver 120 x 10<sup>-4</sup>
+
<td>Silver – Silver 120 x 10<sup>-4</sup></td>
|-
+
</tr><tr>
|Platinum – Platinum 400 x 10<sup>-4</sup>
+
<td>Platinum – Platinum 400 x 10<sup>-4</sup></td>
|-
+
</tr><tr>
|Silver – Platinum 1.3 x 10<sup>-4</sup>
+
<td>Silver – Platinum 1.3 x 10<sup>-4</sup></td>
|-
+
</tr><tr>
|'''Coefficient of fractional wear k during wear loss'''
+
<td>'''Coefficient of fractional wear k during wear loss'''</td>
|-
+
</tr><tr>
|Silver – silver 8 x 10<sup>-4</sup>
+
<td>Silver – silver 8 x 10<sup>-4</sup></td>
|-
+
</tr><tr>
|Gold – gold 9 x 10<sup>-4</sup>
+
<td>Gold – gold 9 x 10<sup>-4</sup></td>
|-
+
</tr><tr>
|Platinum – platinum 40 x 10<sup>-4</sup>
+
<td>Platinum – platinum 40 x 10<sup>-4</sup></td>
|-
+
</tr><tr>
|Silver – gold 9 x 10<sup>-4</sup>
+
<td>Silver – gold 9 x 10<sup>-4</sup></td>
|-
+
</tr><tr>
|Silver – platinum 5 x 10<sup>-4</sup>
+
<td>Silver – platinum 5 x 10<sup>-4</sup></td>
|}
+
</tr>
 
+
</table>
 
 
  
 
[[File:Coefficient of frictional wear for the wear loss of sliding contacts Silver Silver.jpg|right|thumb|Coefficient of frictional wear for the wear loss of sliding contacts Silver/Silver and hard gold/hard gold as a function of the contact force]]
 
[[File:Coefficient of frictional wear for the wear loss of sliding contacts Silver Silver.jpg|right|thumb|Coefficient of frictional wear for the wear loss of sliding contacts Silver/Silver and hard gold/hard gold as a function of the contact force]]

Revision as of 12:45, 16 April 2014

6.4.5 Physical Effects in Sliding and Connector Contacts

  • Mechanical wear of sliding contacts
dV/dx = k x FK /3 HW
dV/dx Wear volume in mm3 per slide path length in mm
k Coefficient of frictional wear
HW Hardness of the softer material
(Brinell or Vickers units)
FK Contact force in cN
Wear coefficient k during material transfer
Silver – Silver 120 x 10-4
Platinum – Platinum 400 x 10-4
Silver – Platinum 1.3 x 10-4
Coefficient of fractional wear k during wear loss
Silver – silver 8 x 10-4
Gold – gold 9 x 10-4
Platinum – platinum 40 x 10-4
Silver – gold 9 x 10-4
Silver – platinum 5 x 10-4
Coefficient of frictional wear for the wear loss of sliding contacts Silver/Silver and hard gold/hard gold as a function of the contact force

Fig. 6.15: Coefficient of frictional wear for the wear loss of sliding contacts Silver/Silver and hard gold/hard gold as a function of the contact force

  • Contact behavior of connectors

Figure 1 Fig. 6.16: Contact resistance Rk as a function of the contact force Fk for different surface coating materials. Measured against a spherical gold probe; I = 10 mA, U < 20 mV

Figure 2 Fig. 6.17: Contact resistance Rk as a function of the fretting wear cycles for different surface coating materials

Contact resistance Rk as a function of the contact force Fk for different surface coating materials. Measured against a spherical gold probe; I = 10 mA, U < 20 mV
Contact resistance Rk as a function of the fretting wear cycles for different surface coating materials


Tab.6.4: Surface Coating Materials for Connectors

Manufacturing method Coating materials Intermediate layer Hardness HV Frictional factor
Electroplating Tin
Nickel
Nickel-phosphorus (NiP 6 - 15)
Silver
Hard gold (< 0.3 wt% Ni or Co)
Palladium with Au- flash (<0,2μm)
Palladium-nickel with Au-flash (<0.2μm)
For brass: Copper or Nickel



Nickel, Nickel-phosphorus
Nickel
Nickel
50 - 90
300 - 600
500 - 1100
70 - 100
100 - 200
250 - 300
300 - 400
0.5 - 1


0.5 - 0.8
0.2 - 0.5
0.2 - 0.5
0.2 - 0.5
Cladding Gold-nickel (AuNi 5 -10)
Silber-palladium (AgPd 10 - 30)
Nickel
Nickel
160 - 200
120 - 170
0.2 - 0.5
0.2 - 0.5
Hot-dipped tinning Tin Inter-metallic compound(1) Tin–copper 400 - 500
(1) is formed during hot tinning process

References

References