| 
				     | 
				
| (5 intermediate revisions by 2 users not shown) | 
| Line 1: | 
Line 1: | 
| − | ===<!--6.4.7-->Contact Spring Calculations===
  |   | 
| − | <figure id="fig:Oneside_fixed_contact_bending_spring">
  |   | 
| − | [[File:One side fixed contact bending spring.jpg|right|thumb|One side fixed contact bending spring]]
  |   | 
| − | </figure>
  |   | 
| − | The influence of the dimensions can be illustrated best by using the single side fixed beam model <xr id="fig:Oneside_fixed_contact_bending_spring"/><!--(Fig. 6.20)-->. For small deflections the following equation is valid:
  |   | 
| − | :$F = \frac{3 \cdot E \cdot J}{L^3} $
  |   | 
|   |  |   |  | 
| − | where J is the momentum of inertia of the rectangular cross section of the beam
  |   | 
| − | :$J = \frac{B \cdot D^3}{12}$
  |   | 
| − | 
  |   | 
| − | For springs with a circular cross-sectional area the momentum of inertia is
  |   | 
| − | :$J=\pi D^4/64$
  |   | 
| − | :$D= Durchmesser$
  |   | 
| − | 
  |   | 
| − | To avoid plastic deformation of the spring the max bending force σ<sub>max</sub> cannot be exceeded
  |   | 
| − | :$\sigma_{max} = \frac{3 \cdot E \cdot D}{2L^2}\cdot_{max}$
  |   | 
| − | 
  |   | 
| − | The stress limit is defined through the fatigue limit and the 0.2% elongation limit resp.
  |   | 
| − | :$\times_{max} = \frac{2 \cdot L^2}{3 \cdot D \cdot E}R_{p0,2}$
  |   | 
| − | 
  |   | 
| − | <br />and/or<br />
  |   | 
| − | :$F_{max} = \frac{B \cdot D^2}{6L}R_{p0,2}$
  |   | 
| − | 
  |   | 
| − | 
  |   | 
| − | <li>'''Special Spring Shapes'''</li>
  |   | 
| − | <ul>
  |   | 
| − | <li>'''Triangular spring'''</li>
  |   | 
| − | 
  |   | 
| − | Deflection
  |   | 
| − | :$ \times = \frac{F}{2 \cdot E \cdot J}L^3$ 
  |   | 
| − | 
  |   | 
| − | 
  |   | 
| − | :$= \frac{6 \cdot F}{E \cdot B}\cdot \frac{L^3}{D^3}$
  |   | 
| − | 
  |   | 
| − | 
  |   | 
| − | Max. bending force
  |   | 
| − | :$\sigma_{max}= \frac{18 \cdot F \cdot L}{B \cdot D^2}$ 
  |   | 
| − | 
  |   | 
| − | <li>'''Trapezoidal spring'''</li>
  |   | 
| − | 
  |   | 
| − | Deflection
  |   | 
| − | :$ \times = \frac{F}{(2 + B_{min} /B_{max})}\times \frac{L^3}{E \cdot J}$
  |   | 
| − | 
  |   | 
| − | 
  |   | 
| − | :$\times= \frac{12 \cdot F}{(2 + B_{min} /B_{max})}\cdot \frac{L^3}{E \cdot B \cdot D^3}$
  |   | 
| − | 
  |   | 
| − | 
  |   | 
| − | Max. bending force
  |   | 
| − | :$\sigma_{max}= \frac{18 \cdot F \cdot L}{(2 + B_{min} /B_{max}) \cdot B_{max} \cdot D^2 }$
  |   | 
| − | </ul>
  |   | 
| − | 
  |   | 
| − | 
  |   | 
| − | ==References==
  |   | 
| − | [[Application Tables and Guideline Data for Use of Electrical Contact Design#References|References]]
  |   | 
| − | 
  |   | 
| − | [[de:Berechnung_von_Kontaktfedern]]
  |   |