Difference between revisions of "Herstellung von Einzelkontakten"

From Electrical Contacts
Jump to: navigation, search
(Plattierte Kontaktnietes)
(temp edit)
(46 intermediate revisions by 2 users not shown)
Line 14: Line 14:
 
Kontaktniete je nach Anwendung mit flacher, kuppiger, runder oder spitzer
 
Kontaktniete je nach Anwendung mit flacher, kuppiger, runder oder spitzer
 
Kopfform hergestellt werden.
 
Kopfform hergestellt werden.
 
*Typische Kontaktformen für massive Kontakte (<xr id="fig:Typical_Contact_Shapes_of_Solid_Contact_Rivets"/>)
 
 
<figure id="fig:Typical_Contact_Shapes_of_Solid_Contact_Rivets">
 
<figure id="fig:Typical_Contact_Shapes_of_Solid_Contact_Rivets">
[[File:Ty_pical_Contact_Shapes_of_Solid_Contact_Rivets.jpg|left|thumb|Figure 1: Typische Kontaktformen für massive Kontakte]]
+
[[File:Ty_pical_Contact_Shapes_of_Solid_Contact_Rivets.jpg|right|thumb|Typische Kontaktformen für massive Kontakte]]
 
</figure>
 
</figure>
<br style="clear:both;"/>
+
*Typische Kontaktformen für massive Kontakte <xr id="fig:Typical_Contact_Shapes_of_Solid_Contact_Rivets"/>
  
*Kontaktwerkstoffe <br /> Au-, AgPd-, PdCu-Alloys, Ag, AgNi 0,15, AgCu, AgCuNi, Ag/Ni, Ag/SnO<sub>2</sub>, Ag/ZnO, Ag/C 97/3*, Cu<br /> <span class="small"><sup>*</sup> in der Dimensionierung stark eingeschränkt</span>  
+
*Kontaktwerkstoffe <br /> Au-, AgPd-, PdCu-Alloys, Ag, AgNi 0,15 (ARGODUR-Spezial), AgCu, AgCuNi (ARGODUR 27), Ag/Ni (SINIDUR), Ag/CdO (DODURIT CdO), Ag/SnO<sub>2</sub> SISTADOX), Ag/ZnO (DODURIT ZnO),Ag/C 97/3*, Cu<br /> <span class="small"><sup>*</sup> in der Dimensionierung stark eingeschränkt</span>  
  
*Abmessungsbereiche (<xr id="fig:Dimensional_Ranges"/>) <br /> Die jeweiligen Merkmale können nicht unabhängig von einander gewählt werden. Sie hängen vor allem von der Verformbarkeit des gewünschten Kontaktwerkstoffes ab. Vor der Festlegung der Abmessungen empfiehlt sich daher die Rücksprache mit dem Hersteller. <br />
+
*Abmessungsbereiche <xr id="fig:Dimensional_Ranges"/> <br /> Die jeweiligen Merkmale können nicht unabhängig von einander gewählt
 +
werden. Sie hängen vor allem von der Verformbarkeit des gewünschten
 +
Kontaktwerkstoffes ab. Vor der Festlegung der Abmessungen empfiehlt sich
 +
daher die Rücksprache mit dem Hersteller. <br />
 
<figure id="fig:Dimensional_Ranges">
 
<figure id="fig:Dimensional_Ranges">
[[File:Dimensional Ranges.jpg|left|thumb|Figure 2: Abmessungsbereiche]]  
+
[[File:Dimensional Ranges.jpg|right|thumb|Abmessungsbereiche]]  
 
</figure>
 
</figure>
<br style="clear:both;"/>
+
*Qualitätsmerkmale und Toleranzen <xr id="fig:Qualitaetsmerkmale_und_Toleranzen"/>
*Qualitätsmerkmale und Toleranzen (<xr id="fig:Qualitaetsmerkmale_und_Toleranzen"/>)
 
 
<figure id="fig:Qualitaetsmerkmale_und_Toleranzen">
 
<figure id="fig:Qualitaetsmerkmale_und_Toleranzen">
[[File:Qualitaetsmerkmale und Toleranzen.jpg|left|thumb|Figure 3: Qualitaetsmerkmale und Toleranzen]]
+
[[File:Qualitaetsmerkmale und Toleranzen.jpg|left|Qualitaetsmerkmale und Toleranzen]]
 
</figure>
 
</figure>
  
<table class="twocolortable" border="1" cellspacing="0" style="border-collapse:collapse"><tr><th><p class="s13">Merkmale</p></th><th><p class="s13">Form A                  Form B                Form C</p><p class="s13">Rundkopf     Trapezkopf bombiert           Trapezkopf, flach</p></th><th><p class="s13">Prüfmittelvorschlag</p></th></tr><tr><td><p class="s13">a) Kopfdurchmesser d<sub>1</sub> [mm]</p></td><td><p class="s13">d<span class="s14"><sub>1</sub></span><u>&lt;</u> 4  + 0,06        Bei optischer Messung ohne</p><p class="s13">d<span class="s14"><sub>1</sub></span>&gt; 4  - 0,06        Berücksichtigung Radius</p><p class="s13">Auflagekante R<span class="s14"><sub>3</sub></span></p></td><td><p class="s13">Projektor,</p><p class="s13">Messmikroskop</p></td></tr><tr><td><p class="s13">b) Kopfhöhe</p><p class="s13">k [mm]</p></td><td><p class="s13">d<span class="s14"><sub>1</sub></span><u>&lt;</u> 4  + 0,03</p><p class="s13">d<span class="s14"><sub>1</sub></span>&gt; 4  + 0,08</p></td><td><p class="s13">Mikrometer, Messuhr</p></td></tr><tr><td><p class="s13">c) Schaftdurchmesser d<span class="s14"><sub>2</sub></span> [mm]</p></td><td><p class="s13">d<span class="s14"><sub>2</sub></span><u>&lt;</u> 2  - 0,06</p><p class="s13">d<span class="s14"><sub>2</sub></span>&gt; 2  - 0,08</p></td><td><p class="s13">Mikrometer</p></td></tr><tr><td><p class="s13">d) Schaftlänge [mm]</p></td><td><p class="s13">+ 0,15</p></td><td><p class="s13">Mikrometer,</p><p class="s13">Messuhr, Projektor,</p></td></tr><tr><td><p class="s13">e) Radius Mitte</p><p class="s13">Kontaktfläche</p><p class="s13">R<span class="s14"><sub>1</sub></span> [mm]</p></td><td><p class="s13">Form A und B:      innerhalb der Kopfhöhentoleranz</p><p class="s13">Form C:                Zulässige Planheitsabweichung: konvex: innerhalb der Kopfhöhentoleranz</p><p class="s13">konkav: 0.005 d<span class="s14"><sub>1</sub></span></p></td><td><p class="s13">Projektor</p><p class="s13">Projektorschablone, Radiuslehre, Messuhr, Projektor</p></td></tr><tr><td><p class="s13">f) Radius Rand
+
<table class="twocolortable" border="1" cellspacing="0" style="border-collapse:collapse"><tr><th><p class="s13">Characteristics</p></th><th><p class="s13">Form A                  Form B                Form C</p><p class="s13">Rounded headf     Trapeziodal           Trapeziodal head, radiused    head,flat</p></th><th><p class="s13">Suggested test equipment</p></th></tr><tr><td><p class="s13">a) Head diameter d<sub>1</sub> [mm]</p></td><td><p class="s13">d<span class="s14"><sub>1</sub></span><u>&lt;</u> 4  + 0,06        During optical measurement</p><p class="s13">d<span class="s14"><sub>1</sub></span>&gt; 4  - 0,06        disregard corner</p><p class="s13">radius R<span class="s14"><sub>3</sub></span></p></td><td><p class="s13">Comparator,</p><p class="s13">Measuring microscope</p></td></tr><tr><td><p class="s13">b) Head thickness</p><p class="s13">k [mm]</p></td><td><p class="s13">d<span class="s14"><sub>1</sub></span><u>&lt;</u> 4  + 0,03</p><p class="s13">d<span class="s14"><sub>1</sub></span>&gt; 4  + 0,08</p></td><td><p class="s13">Micrometer, Dial indicator</p></td></tr><tr><td><p class="s13">c) Shank diameter d<span class="s14"><sub>2</sub></span> [mm]</p></td><td><p class="s13">d<span class="s14"><sub>2</sub></span><u>&lt;</u> 2  - 0,06</p><p class="s13">d<span class="s14"><sub>2</sub></span>&gt; 2  - 0,08</p></td><td><p class="s13">Micrometer</p></td></tr><tr><td><p class="s13">d) Shank length [mm]</p></td><td><p class="s13">+ 0,15</p></td><td><p class="s13">Micrometer, Dial</p><p class="s13">indicator, Comparator</p></td></tr><tr><td><p class="s13">e) Radius at center</p><p class="s13">of contact surface</p><p class="s13">R<span class="s14"><sub>1</sub></span> [mm]</p></td><td><p class="s13">Form A und B:      Within the head thickness</p><p class="s13">tolerance</p><p class="s13">Form C:                Allowable deviation from flatness: convex: within head thickness tolerance</p><p class="s13">concave: 0.005 d<span class="s14"><sub>1</sub></span></p></td><td><p class="s13">Comparator,</p><p class="s13">Comparator template, Radius gage</p></td></tr><tr><td><p class="s13">f) Radius at edge of contact surface R<span class="s14"><sub>2</sub></span> [mm]</p></td><td><p class="s13">Form A:                Smooth transition to R<span class="s14"><sub>1</sub></span></p><p class="s13">Form B:                1.5 R<span class="s14"><sub>2</sub></span> allowed</p><p class="s13">Form C:                <u>&lt;</u>0,1d<span class="s14"><sub>1</sub></span></p></td><td><p class="s13">Profile template,</p><p class="s13">Comparator, Radius gage</p></td></tr><tr><td><p class="s13">g) Radii</p><p class="s13">R<span class="s14"><sub>3 </sub></span>and R<span class="s14"><sub>5</sub></span> [mm]</p></td><td><p class="s13">Sligth rounding allowed</p></td><td><p class="s13">Comparator</p></td></tr><tr><td><p class="s13">h) Transition radius head underside to shank R<span class="s14"><sub>4</sub></span> [mm]</p></td><td><p class="s13">d<span class="s14"><sub>2</sub> </span><u>&lt;</u> 2  R<span class="s14"><sub>4</sub> </span><u>&lt;</u> 0,08 if covered  by DIN 46240 pg.1 d<span class="s14"><sub>2</sub> </span>&gt; 2 R<span class="s14"><sub>4</sub> </span><u>&lt;</u> 0,1</p><p class="s13">d<span class="s14"><sub>2</sub> </span>&gt; 3  R<span class="s14"><sub>4</sub> </span><u>&lt;</u> 0,2</p></td><td><p class="s13">Comparator if in doubt: microsection</p></td></tr><tr><td><p class="s13">i) Allowed deviation</p><p class="s13">from cylindrical shape</p></td><td><p class="s13">max. 7°  30’:        or d<span class="s14"><sub>2</sub> </span> <u>&lt;</u> l, l <u>&gt;</u> 0,7 mm and k <u>&lt;</u> 0,6 d<span class="s14"><sub>1</sub></span>.</p><p class="s13">max. 15°:            for all other rivets</p></td><td><p class="s13">Comparator</p></td></tr><tr><td><p class="s13">k) Concentricity between head and shank center line [mm]</p></td><td><p class="s13">d<span class="s14"><sub>1</sub> </span><u>&lt;</u> 4  0,15</p><p class="s13">d<span class="s14"><sub>1</sub> </span>&gt; 4  0,2</p><p class="s13">in general: approx. 70% of allowable deviation</p><p class="s13">per DIN 46240</p></td><td><p class="s13">Comparator, Special</p><p class="s13">turn fixture</p></td></tr></table>
Kontaktfläche R<span class="s14"><sub>2</sub></span> [mm]</p></td><td><p class="s13">Form A:                gleichmäßiger Übergang auf R<span class="s14"><sub>1</sub></span></p><p class="s13">Form B:                1.5 R<span class="s14"><sub>2</sub></span> zulässig</p><p class="s13">Form C:                <u>&lt;</u>0,1d<span class="s14"><sub>1</sub></span></p></td><td><p class="s13">Profilschablone, Projektor,</p><p class="s13">Radiuslehre</p></td></tr><tr><td><p class="s13">g) Radius</p><p class="s13">R<span class="s14"><sub>3 </sub></span>und R<span class="s14"><sub>5</sub></span> [mm]</p></td><td><p class="s13">leicht gerundet zulässig</p></td><td><p class="s13">Projektor</p></td></tr><tr><td><p class="s13">h) Übergangsradius Auflagefläche Schaft R<span class="s14"><sub>4</sub></span> [mm]</p></td><td><p class="s13">d<span class="s14"><sub>2</sub> </span><u>&lt;</u> 2  R<span class="s14"><sub>4</sub> </span><u>&lt;</u> 0,08 pg.1 d<span class="s14"><sub>2</sub> </span>&gt; 2 R<span class="s14"><sub>4</sub> </span><u>&lt;</u> 0,1</p><p class="s13">d<span class="s14"><sub>2</sub> </span>&gt; 3  R<span class="s14"><sub>4</sub> </span><u>&lt;</u> 0,2</p></td><td><p class="s13">Projektor im Zweifel: Schliff</p></td></tr><tr><td><p class="s13">i) Zul. Abweichung von</p><p class="s13">der Zylinderform</p></td><td><p class="s13">max. 7°  30’:        or d<span class="s14"><sub>2</sub> </span> <u>&lt;</u> l, l <u>&gt;</u> 0,7 mm und k <u>&lt;</u> 0,6 d<span class="s14"><sub>1</sub></span>.</p><p class="s13">max. 15°:            alle übrigen Niete</p></td><td><p class="s13">Projektor</p></td></tr><tr><td><p class="s13">k) Achsabweichung Kopf/Schaft [mm]</p></td><td><p class="s13">d<span class="s14"><sub>1</sub> </span><u>&lt;</u> 4  0,15</p><p class="s13">d<span class="s14"><sub>1</sub> </span>&gt; 4  0,2</p><p class="s13">allgem.: ca. 70% der zulässigen Abweichung nach</p><p class="s13">per DIN 46240</p></td><td><p class="s13">Projektor
 
Rundlaufprüfgerät</p></td></tr></table>
 
 
 
====Plattierte Kontaktnietes====
 
Plattierte Niete (Bimetall- oder Trimetallniete), bei denen nur ein Teil des Nietkopfes
 
(Bimetallniet) bzw. auch des Schaftes (Trimetallniet) aus Kontaktmaterial
 
besteht (Rest aus Kupfer), ersetzen aus wirtschaftlichen Gründen ab einem
 
bestimmten, von der jeweiligen Edelmetallnotierung abhängigen Volumen,
 
massive Kontakte. Bi- bzw. Trimetallniete werden ebenfalls vollautomatisch und
 
abfalllos aus Draht hergestellt, wobei zwischen zwei Verfahren unterschieden
 
wird.
 
  
Bei der Herstellung durch Kaltpressschweißen entsteht die Verbindung ohne
+
==== Composite Contact Rivets====
äußere Wärmezufuhr durch hohe plastische Verformung der stirnseitig gegeneinander
+
Clad rivets for which only a part of the head (composite or bimetal rivets) or also the shank end (tri-metal rivets) are composed of contact material – with the balance of the body mostly being copper – have replaced for many applications solid rivet versions because of economical considerations. The cost savings depend on the contact material and its required volume for a specific application. These composite rivets are also produced scrap-less from wire material on special machinery with two process variations utilized.
gepressten Drahtabschnitte aus dem duktilen Kontaktwerkstoff und dem Trägerwerkstoff Kupfer (<xr id="fig:Cold_bonding_of_bimetall_rivets"/><!--(Fig. 3.1)-->). <figure id="fig:Cold_bonding_of_bimetall_rivets">
 
[[File:Cold_bonding_of_bimetall_rivets.jpg|right|thumb|Figure 4: Kaltpressschweißen von Bimetallnieten (schematisch)]]
 
</figure>
 
Die Presskraft muss so hoch sein, dass
 
sich die Gitterbausteine der beiden Metalle auf Abstände von wenigen Atomradien
 
annähern und so die anziehenden Kräfte zwischen den Atomen wirksam
 
werden. Daher ist bei diesem Herstellungsverfahren auf die Einhaltung eines
 
Kopf-Schaftverhältnisses von 2:1 zu achten.
 
  
Beim Warmpressschweißen wird die erforderliche Wärme durch kurzzeitigen Stromfluss erzeugt (<xr id="fig:Hot_bonding_of_bimetal_rivets"/><!--(Fig. 3.2)-->). <figure id="fig:Hot_bonding_of_bimetal_rivets">
+
During ''cold bonding'' and heading the bond between the contact material and the copper is achieved without external heat energy by high plastic deformation at the face surfaces of the two wire segments <xr id="fig:Cold_bonding_of_bimetall_rivets"/><!--(Fig. 3.1)-->. <figure id="fig:Cold_bonding_of_bimetall_rivets">
[[File:Hot_bonding_of_bimetal_rivets.jpg|right|thumb|Figure 5: Warmpressschweißen von Bimetallnieten (schematisch)]]
+
[[File:Cold_bonding_of_bimetall_rivets.jpg|right|thumb|Cold bonding of bimetall rivets (schematic)]]
</figure>  
+
</figure> The bonding pressure must be high enough to move the lattice components of the two metals within a few atom radii so that the adhesion forces between atoms become effective.
In der Stromenge zwischen Kontaktwerkstoff und
+
Therefore the head to shank diameter ratio of 2:1 must be closely met for a strong bond between the two metals.
Trägerwerkstoff entsteht dabei im Falle der Kombination Ag mit Cu eine
 
schmelzflüssige eutektische Silber-Kupfer-Legierung. Bei Verwendung metalloxidhaltiger
 
Kontaktwerkstoffe haben die in der Schmelze unlöslichen Oxidpartikel
 
die Neigung flächenhaft zu koagulieren, wodurch die mechanische
 
Festigkeit der Verbindung stark herabgesetzt wird. Daher erfolgt für diese
 
Werkstoffgruppe die Herstellung der Niete durch Kaltpressschweißen. Die beim Kaltpressschweißen erforderliche hohe Oberflächenvergrößerung
 
kann beim Warmpressschweißen verringert werden bzw. entfallen, so dass das
 
Kopf-/Schaft-Verhältnis von 2:1 unterschritten werden kann.
 
  
Bimetallniete mit Kontaktauflagen aus AgPd sowie Legierungen auf Au-, Pd- und
+
During ''hot bonding'' the required heat energy is applied by a short term electrical current pulse <xr id="fig:Hot_bonding_of_bimetal_rivets"/> <!--(Fig. 3.2)-->. <figure id="fig:Hot_bonding_of_bimetal_rivets">
Pt-Basis können aufgrund ihres gegenüber dem Sockelwerkstoff Kupfer
+
[[File:Hot_bonding_of_bimetal_rivets.jpg|right|thumb|Hot bonding of bimetall rivets (schematic)]]
stark unterschiedlichen Verfestigungsverhaltens und den meist kleinen
+
</figure> In the case of Ag and Cu a molten eutectic alloy of silver and copper is formed in the constriction area between the two wire ends. When using metal oxide containing contact materials the non-soluble oxide particles tend to coagulate and the bonding strength between the component materials is greatly reduced. Therefore the cold bonding technology is preferred for these contact materials. The during cold bonding required high surface deformation ratio can be reduced for the hot bonding process which allows the head to shank diameter ratio to be reduced below 2:1.
Abmessungen nicht von Draht ausgehend hergestellt werden.
 
Ausgangsmaterial für die Herstellung solcher Kontaktniete ist Kontaktbimetallband,
 
aus dem die Niete in mehreren Stufen geformt und schließlich ausgestanzt
 
werden. Ähnliche Fertigungsabläufe werden auch bei Kontaktnieten mit
 
Kopfdurchmesser > 8 mm und silberhaltigen Kontaktauflagen angewandt.  
 
  
*Typische Kontaktformen für Bimetallniete (<xr id="fig:Typical_contact_shapes_for_composite_rivets"/>)
+
For composite rivets with AgPd alloys as well as alloys on the basis of Au, Pd, and Pt the above methods cannot be used because of the very different work hardening of these materials compared to the base material copper. The starting material for such composite rivets is clad strip material from which the contact rivets are formed in multiple steps of press-forming and stamping. Similar processes are used for larger contact rivets with head diameters > 8 mm and Ag-based contact materials.
 
 
*Kontaktwerkstoffe <br /> Ag, AgNi 0,15, AgCu, AgCuNi, Ag/Ni, Ag/CdO, Ag/SnO<sub>2</sub>, Ag/ZnO<br />
 
 
 
*Trägerwerkstoffe <br /> Cu <br />
 
 
 
*Abmessungsbereiche (<xr id="fig:Dimensional_ranges"/>) <br />Die jeweiligen Merkmale können nicht unabhängig von einander gewählt werden.
 
Sie hängen vor allem von der Verformbarkeit des gewünschten
 
Kontaktwerkstoffes ab. Vor der Festlegung der Abmessungen empfiehlt sich
 
daher die Rücksprache mit dem Hersteller. <br />
 
 
 
*Qualitätsmerkmale und Toleranzen (<xr id="fig:Quality_criteria_and_tolerances"/>)
 
 
 
<div class="multiple-images">
 
  
 +
*Typical contact shapes for composite rivets <xr id="fig:Typical_contact_shapes_for_composite_rivets"/>
 
<figure id="fig:Typical_contact_shapes_for_composite_rivets">
 
<figure id="fig:Typical_contact_shapes_for_composite_rivets">
[[File:Typical_contact_shapes_for_composite_rivets.jpg|left|thumb|Figure 6: Typische Kontaktformen für Bimetallniete]]
+
[[File:Typical_contact_shapes_for_composite_rivets.jpg|right|thumb|Typical contact shapes for composite rivets]]
 
</figure>
 
</figure>
 +
*Contact materials <br /> Ag, AgNi 0,15 (ARGODUR), AgCu, AgCuNi (ARGODUR 27), Ag/Ni (SINIDUR), Ag/CdO (DODURIT CDO), Ag/SnO<sub>2</sub> (SISTADOX), Ag/ZnO (DODURIT ZNO)<br />
  
 +
*Base materials <br /> Cu <br />
 +
 +
*Dimensional ranges <xr id="fig:Dimensional_ranges"/> <br />These parameters cannot be chosen independently of each other. They depend mainly on the mechanical properties of the contact material. Before specifying the final dimensions we recommend to consult with the contact manufacturer. <br />
 
<figure id="fig:Dimensional_ranges">
 
<figure id="fig:Dimensional_ranges">
[[File:Dimensional_ranges.jpg|left|thumb|Figure 7: Abmessungsbereiche]]
+
[[File:Dimensional_ranges.jpg|right|thumb|Dimensional ranges]]
 
</figure>
 
</figure>
 +
*Quality criteria and tolerances <xr id="fig:Quality_criteria_and_tolerances"/>
  
 
<figure id="fig:Quality_criteria_and_tolerances">
 
<figure id="fig:Quality_criteria_and_tolerances">
[[File:Quality_criteria_and_tolerances.jpg|left|thumb|Figure 8: Qualitätsmerkmale und Toleranzen]]
+
[[File:Quality_criteria_and_tolerances.jpg|left|Quality criteria and tolerances]]
 
</figure>
 
</figure>
</div>
 
<div class="clear"></div>
 
 
  
 
<table class="twocolortable">
 
<table class="twocolortable">
<tr><th><p class="s13">Merkmale</p></th><th><p class="s13">Form B                          Form C</p><p class="s13">Rundkopf Trapezkopf bombiert Trapezkopf, flach </p></th><th><p class="s13">Prüfmittelvorschlag</p><p class="s13"></p></th></tr><tr><td><p class="s13">a)  Kopfdurchmesser</p><p class="s13">d<span class="s14"><sub>1 </sub> </span>[mm]</p></td><td><p class="s13">Bei optischer Messung ohne Berücksichtigung des Eckenradius R<span class="s14"><sub>3</sub> </span><u>+</u> 0.1</p></td><td><p class="s13">Projektor,</p><p class="s13">Messmikroskop</p></td></tr><tr><td><p class="s13">b) Kopfhöhe</p><p class="s13">k [mm]</p></td><td><p class="s13">+ 0.1</p></td><td><p class="s13">Mikrometer,</p><p class="s13">Messuhr</p></td></tr><tr><td><p class="s13">c) Schaftdurchmesser</p><p class="s13">d<span class="s14"><sub>2</sub> </span>[mm]</p></td><td><p class="s13">Abweichung von Rundheit und konischer Form des Schaftes</p><p class="s13">nur innerhalb der zulässigen Durchmessertoleranz d<span class="s14"><sub>2</sub> </span> <u>&lt;</u> 1.5  - 0.08</p><p class="s13">d<span class="s14"><sub>2</sub> </span>&gt; 1.5  - 0.1</p></td><td><p class="s13">Mikrometer</p></td></tr><tr><td><p class="s13">d) Schaftlänge </p><p class="s13">[mm]</p></td><td><p class="s13">+ 0.15</p></td><td><p class="s13">Mikrometer, Messuhr, Projektor</p></td></tr><tr><td><p class="s13">e)  Radius Mitte</p><p class="s13">Kontaktfläche</p><p class="s13">R<span class="s14"><sub>1</sub> </span>[mm]</p></td><td><p class="s13">Form B:<u>+</u> 10%, aber nicht unter +<span class="s13"> 0.5 mm</span></p><p class="s13">Form C: Zulässige Planheitsabweichung:</p><p class="s13"> konvex: innerhalb der Kopfhöhentoleranz</p><p class="s13"> konkav: 0.005 d<span class="s14">1</span></p></td><td><p class="s13">Projektor </p><p class="s13">Projektorschablone, Radiuslehre, Messuhr, Projektor</p></td></tr><tr><td><p class="s13">f) Radius Rand Kontaktfläche </p><p class="s13">R<span class="s14"><sub>2</sub> </span>[mm]</p></td><td><p class="s13">Per DIN 46240: Form B und C max. 0,5 ohne DIN:max. 1</p></td><td><p class="s13">Profilschablone, Projektor,</p><p class="s13">Radiuslehre</p></td></tr><tr><td><p class="s13">g)  Radius</p><p class="s13">R<span class="s14"><sub>3</sub> </span>and R<span class="s14"><sub>5</sub> </span>[mm]</p></td><td><p class="s13">leicht gerundet zulässig</p></td><td><p class="s13">Projektor</p></td></tr><tr><td><p class="s13">h) Übergangsradius Aflagefläche</p><p class="s13">Schaft R<span class="s14"><sub>4</sub> </span>[mm]</p></td><td><p class="s13">d<span class="s14"><sub>2</sub> </span><u>&lt;</u> 2  R<span class="s14"><sub>4</sub> </span><u>&lt;</u> 0.08 d<span class="s14"><sub>2</sub> </span>&gt; 2  R<span class="s14"><sub>4</sub> </span><u>&lt;</u> 0.1 d<span class="s14"><sub>2</sub> </span>&gt; 3  R<span class="s14"><sub>4</sub> </span><u>&lt;</u> 0.2</p></td><td><p class="s13">Projektor, im Zweifel: Schliff</p></td></tr><tr><td><p class="s13">i) Zulässige Abweichung von Zylinderform</p></td><td><p class="s13">d<span class="s14"><sub>1</sub> </span> <u>&lt;</u> 4  bis zu 7°30’ + 2°30’</p><p class="s13">d<span class="s14"><sub>1</sub> </span>&gt; 4  bis zu 10°    + 5°</p></td><td><p class="s13">Projektor, Messmikroskop, im Zweifel: Schliff</p></td></tr><tr><td><p class="s13">k)  Zul. Abweichung von</p><p class="s13">Zylinderform [mm]</p></td><td><p class="s13">5% of d<span class="s14"><sub>1</sub></span></p></td><td><p class="s13">Projektor,</p><p class="s13">Messmikroskop </p></td></tr><tr><td><p class="s13">l) Kontaktschichtdicke [mm]</p></td><td><p class="s13">Im mittleren Bereich von 0.5 d<span class="s14"><sub>1</sub> </span>s<u>&gt;</u> Nenndicke</p><p class="s13">Der restliche Kopfbereich muss abgedeckt werden</p></td><td><p class="s13">Messmikroskop, Schliff</p></td></tr></table>
+
<tr><th><p class="s13">Criteria</p></th><th><p class="s13">Form B                          Form C</p><p class="s13">Trapezoidal head,         Trapezoidal head radiused                        flat</p></th><th><p class="s13">Suggested test</p><p class="s13">equipment</p></th></tr><tr><td><p class="s13">a)  Head diameter</p><p class="s13">d<span class="s14"><sub>1 </sub> </span>[mm]</p></td><td><p class="s13">During optical measurement disregard corner radius R<span class="s14"><sub>3</sub> </span><u>+</u> 0.1</p></td><td><p class="s13">Comparator, measu-</p><p class="s13">ring microscpope</p></td></tr><tr><td><p class="s13">b)   Head thickness</p><p class="s13">k [mm]</p></td><td><p class="s13">+ 0.1</p></td><td><p class="s13">Micrometer,</p><p class="s13">Dial indicator</p></td></tr><tr><td><p class="s13">c)   Shank diameter</p><p class="s13">d<span class="s14"><sub>2</sub> </span>[mm]</p></td><td><p class="s13">Deviation from roundness and conical shape of</p><p class="s13">shank only within allowed diameter tolerance d<span class="s14"><sub>2</sub> </span> <u>&lt;</u> 1.5  - 0.08</p><p class="s13">d<span class="s14"><sub>2</sub> </span>&gt; 1.5  - 0.1</p></td><td><p class="s13">Micrometer</p></td></tr><tr><td><p class="s13">d)   Shank length l</p><p class="s13">[mm]</p></td><td><p class="s13">+ 0.15</p></td><td><p class="s13">Micrometer, Dial indicator, Comparator</p></td></tr><tr><td><p class="s13">e)  Radius at center</p><p class="s13">of contact surface</p><p class="s13">R<span class="s14"><sub>1</sub> </span>[mm]</p></td><td><p class="s13">Form B:           <u>+</u> 10%, but not below</p><p class="s15">+<span class="s13"> 0.5 mm</span></p><p class="s13">Form C:           Allowable deviation from flatness: convex: within head thickness tolerance concave: 0.005 d<span class="s14">1</span></p></td><td><p class="s13">Comparator, Comparator template, Radius gage, Profile template</p></td></tr><tr><td><p class="s13">f)    Radius at edge</p><p class="s13">of contact surface</p><p class="s13">R<span class="s14"><sub>2</sub> </span>[mm]</p></td><td><p class="s13">per DIN 46240: Form B and C max. 0.5 without DIN:max. 1</p></td><td><p class="s13">Profile template,</p><p class="s13">Comparator, Radius gage</p></td></tr><tr><td><p class="s13">g)  Radii</p><p class="s13">R<span class="s14"><sub>3</sub> </span>and R<span class="s14"><sub>5</sub> </span>[mm]</p></td><td><p class="s13">Sligth rounding allowed</p></td><td><p class="s13">Comparator</p></td></tr><tr><td><p class="s13">h)   Transition radius</p><p class="s13">head underside to shank R<span class="s14"><sub>4</sub> </span>[mm]</p></td><td><p class="s13">d<span class="s14"><sub>2</sub> </span><u>&lt;</u> 2  R<span class="s14"><sub>4</sub> </span><u>&lt;</u> 0.08 d<span class="s14"><sub>2</sub> </span>&gt; 2  R<span class="s14"><sub>4</sub> </span><u>&lt;</u> 0.1 d<span class="s14"><sub>2</sub> </span>&gt; 3  R<span class="s14"><sub>4</sub> </span><u>&lt;</u> 0.2</p></td><td><p class="s13">Comparator, if in doubt: micro-section</p></td></tr><tr><td><p class="s13">i)     Allowed deviation from cylindrical shape</p></td><td><p class="s13">d<span class="s14"><sub>1</sub> </span> <u>&lt;</u> 4  up to 7°30’ + 2°30’</p><p class="s13">d<span class="s14"><sub>1</sub> </span>&gt; 4  up to 10°    + 5°</p></td><td><p class="s13">Comparator, Measu- ring microscope, if in doubt: microsection</p></td></tr><tr><td><p class="s13">k)  Concentricity bet-</p><p class="s13">ween head and shank center line [mm]</p></td><td><p class="s13">5% of d<span class="s14"><sub>1</sub></span></p></td><td><p class="s13">Comparator,</p><p class="s13">Measuring microscope, Special turn fixture</p></td></tr><tr><td><p class="s13">l)     Contact  layer</p><p class="s13">thickness [mm]</p></td><td><p class="s13">In center area of 0.5 d<span class="s14"><sub>1</sub> </span>s<u>&gt;</u> nominal thickness</p><p class="s13">Remaining head area must be covered</p></td><td><p class="s13">Measuring micros- cope, Microsection</p></td></tr></table>
  
*Typische Kontaktformen für Trimetallniete (<xr id="fig:Typical_contact_shapes_of_tri-metal_rivets"/>)
+
*Typical contact shapes of tri-metal rivets <xr id="fig:Typical_contact_shapes_of_tri-metal_rivets"/>
 
<figure id="fig:Typical_contact_shapes_of_tri-metal_rivets">
 
<figure id="fig:Typical_contact_shapes_of_tri-metal_rivets">
[[File:Typical_contact_shapes_of_tri-metal_rivets.jpg|right|thumb|Figure 9: Typische Kontaktformen für Trimetallniete]]
+
[[File:Typical_contact_shapes_of_tri-metal_rivets.jpg|right|thumb|Typical contact shapes of tri-metal rivets]]
 
</figure>
 
</figure>
*Kontaktwerkstoffe <br /> Ag, AgNi 0,15, AgCu, AgCuNi, Ag/Ni, Ag/CdO, Ag/SnO<sub>2</sub>, Ag/ZnO<br />  
+
*Contact materials <br /> Ag, AgNi 0,15 (ARGODUR), AgCu, AgCuNi (ARGODUR 27), Ag/Ni (SINIDUR), Ag/CdO (DODURIT CDO), Ag/SnO (SISTADOX), Ag/ZnO (DODURIT ZNO)<br />  
  
*Trägerwerkstoffe <br /> Cu <br />
+
*Base materials <br /> Cu <br />
  
*Abmessungsbereiche (<xr id="fig:Dimensional_ranges2"/>)
+
*Dimensional ranges <xr id="fig:Dimensional_ranges2"/>
 
<figure id="fig:Dimensional_ranges2">
 
<figure id="fig:Dimensional_ranges2">
[[File:Dimensional_ranges2.jpg|right|thumb|Figure 10: Abmessungsbereiche]]
+
[[File:Dimensional_ranges2.jpg|right|thumb|Dimensional ranges]]
 
</figure>
 
</figure>
*Standardwerte für Nietabmessungen
+
*Standard values for rivet dimension
  
 
<table class="twocolortable" style="width:75%">
 
<table class="twocolortable" style="width:75%">
 
<tr><th>d<sub>1</sub></th><th><p class="s13">k</p></th><th><p class="s13">1</p></th><th><p class="s13">d<sub>2</sub></p></th><th><p class="s13">&alpha;</p></th><th><p class="s13">r<sub>1</sub></p></th><th><p class="s13">s<sub>1</sub></p></th><th><p class="s13">s<sub>2</sub></p></th></tr><tr><td><p class="s13">3.0</p></td><td><p class="s13">0.8</p></td><td><p class="s13">2.0</p></td><td><p class="s13">1.5</p></td><td><p class="s13">7.5°</p></td><td><p class="s13">4.0</p></td><td><p class="s13">0.4</p></td><td><p class="s13">1.0</p></td></tr><tr><td><p class="s13">4.0</p></td><td><p class="s13">1.0</p></td><td><p class="s13">2.5</p></td><td><p class="s13">2.0</p></td><td><p class="s13">7.5°</p></td><td><p class="s13">8.0</p></td><td><p class="s13">0.5</p></td><td><p class="s13">1.2</p></td></tr><tr><td><p class="s13">5.0</p></td><td><p class="s13">1.2</p></td><td><p class="s13">3.0</p></td><td><p class="s13">2.5</p></td><td><p class="s13">10°</p></td><td><p class="s13">12.0</p></td><td><p class="s13">0.6</p></td><td><p class="s13">1.4</p></td></tr></table>
 
<tr><th>d<sub>1</sub></th><th><p class="s13">k</p></th><th><p class="s13">1</p></th><th><p class="s13">d<sub>2</sub></p></th><th><p class="s13">&alpha;</p></th><th><p class="s13">r<sub>1</sub></p></th><th><p class="s13">s<sub>1</sub></p></th><th><p class="s13">s<sub>2</sub></p></th></tr><tr><td><p class="s13">3.0</p></td><td><p class="s13">0.8</p></td><td><p class="s13">2.0</p></td><td><p class="s13">1.5</p></td><td><p class="s13">7.5°</p></td><td><p class="s13">4.0</p></td><td><p class="s13">0.4</p></td><td><p class="s13">1.0</p></td></tr><tr><td><p class="s13">4.0</p></td><td><p class="s13">1.0</p></td><td><p class="s13">2.5</p></td><td><p class="s13">2.0</p></td><td><p class="s13">7.5°</p></td><td><p class="s13">8.0</p></td><td><p class="s13">0.5</p></td><td><p class="s13">1.2</p></td></tr><tr><td><p class="s13">5.0</p></td><td><p class="s13">1.2</p></td><td><p class="s13">3.0</p></td><td><p class="s13">2.5</p></td><td><p class="s13">10°</p></td><td><p class="s13">12.0</p></td><td><p class="s13">0.6</p></td><td><p class="s13">1.4</p></td></tr></table>
  
====Lotplattierte Kontaktniete====
+
==== Braze Alloy Clad Contact Rivets====
In Sonderfällen, bei hohen Umgebungstemperaturen und starker thermischer
+
For special cases, especially high surrounding temperatures with high thermal and mechanical stresses during switching operations, a full metallurgical bond between the contact rivet and the contact carrier may be required to prevent a loosening of the connection and early failures of the device. To accomplish this superior bond a thin layer of brazing alloy is added to the underside of the head and the rivet shank. During assembly a thermal treatment is added after the mechanical staking.
und mechanischer Beanspruchung im Schaltbetrieb, ist eine stoffschlüssige
 
Verbindung zwischen Kontaktniet und Trägerwerkstoff erforderlich, um eine
 
Lockerung der Verbindung und dadurch einen frühzeitigen Ausfall des Schaltgerätes
 
zu vermeiden. Dabei werden die Unterseite des Nietkopfes und der
 
Nietschaft mit einer dünnen Lotschicht plattiert. In den Fertigungsablauf wird
 
dann nach dem Einnieten noch eine Wärmebehandlung integriert.
 
  
====Kontaktniete mit gelöteter Kontaktauflage====
+
====Contact Rivets with Brazed Contact Material Layers====
Für bestimmte Anwendungen werden Kontaktniete mit Kontaktauflagen vor
+
For certain applications contact rivets with non-ductile or brittle materials such as tungsten, silver–tungsten, or silver–graphite are required. Rivets with these contact materials can only be fabricated by brazing. Small round tips are brazed to pre-fabricated copper or steel bases using special brazing alloys in a reducing atmosphere.
allem aus Wolfram, aber auch Silber-Wolfram sowie Silber-Grafit und ähnlichen
 
spröden, nicht ausreichend verformbaren Werkstoffen benötigt. Solche
 
Kontaktniete sind nur in gelöteter Ausführung herstellbar. Dabei werden die
 
Kontaktauflagen in Rondenform mit speziellem Hartlot unter Schutzgas auf
 
vorgefertigte Sockel aus Kupfer oder Eisen aufgelötet.
 
  
===Kontaktplättchen und -formteile===
+
=== Contact Tips===
In Schaltgeräten der Energietechnik werden häufig Kontaktplättchen oder
+
Flat or formed contact tips, welded or brazed to contact carriers, are frequently used in switching devices for higher power technology. Depending on the contact material and specified shapes these tips are produced by various manufacturing processes. The most frequently used ones are:
-formteile eingesetzt, die meist durch Löten oder Schweißen auf Kontaktträger
 
aufgebracht werden. Die Plättchen und Formteile werden je nach Kontaktwerkstoff
 
nach unterschiedlichen Verfahren hergestellt. Die am häufigsten
 
verwendeten Fertigungsverfahren sind:
 
  
*Stanzen aus Bändern, Streifen und Profilen
+
*Stamping from strips and profiles
*Trennen aus stranggepressten Stangen
+
*Cutting from extruded rods
*Pressen, Sintern und Tränken
+
*Pressing, Sintering, and Infiltrating
*Pressen, Sintern und Nachpressen
+
*Pressing, Sintering, and Re-Pressing
*Pressen und Sintern
+
*Pressing and Sintering
  
Das Stanzen von Kontaktplättchen setzt ausreichend duktiles Kontakthalbzeug
+
For stamping sufficiently ductile semi-finished materials are needed. These are mainly silver, silver–alloys, silver–nickel, silver–metal oxide, and silver–graphite (with graphite particle orientation parallel to the switching surface). Silver–metal oxides and silver–graphite need an additional well brazable or weldable silver layer on the underside which can be bonded to the bulk of the contact material by various processes. To further facilitate the final attachment process strips and profiles are often coated on the brazing underside with an additional thin layer of brazing alloy such as L-Ag 15P (CP 102 or BCuP-5).
voraus, z.B. Silber, Silber-Legierungen, Silber-Nickel, Silber-Metalloxid und
+
For Ag/C with the graphite orientation perpendicular to the switching surface the brazable underside is produced by cutting tips from extruded rods and burning out graphite in a defined thickness.
Silber-Grafit (mit Grafit-Fasern parallel zur Schaltfläche). Plättchen aus Silber-
 
Metalloxid und Silber-Grafit benötigen für das Aufbringen auf Trägerteile
 
zusätzlich eine gut löt-und schweißbare Silber-Unterschicht, die bei der
 
Halbzeugfertigung nach unterschiedlichen Verfahren erzeugt wird. Um den
 
Fügevorgang möglichst rationell zu gestalten, werden Bänder und Profile auf der
 
Rückseite häufig mit einer geeigneten Lotschicht, z.B. L-Ag15P beschichtet.
 
Bei Silber-Grafit mit Grafit-Fasern senkrecht zur Schaltfläche werden die
 
Plättchen aus stranggepressten Stangen scheibenförmig getrennt und durch
 
einen nachfolgenden Entkohlungsvorgang die löt- und schweißbare Ag-
 
Unterseite erzeugt.
 
  
Das Press-Sinter-Tränkverfahren wird bei der Herstellung von Formteilen z.B.
+
The press-sinter-infiltrate process (PSI) is used mainly for Ag/W and Cu/W material tips with tungsten contents of > 50 wt%. A silver or copper surplus on the underside of the tip later facilitates the brazing or welding during final assembly.
aus Silber-Wolfram und Kupfer-Wolfram angewandt, wenn der Wolframanteil
 
> 50 Massen-% beträgt. Der Silber- bzw. Kupferüberschuss auf der Unterseite
 
der Formteile erleichtert das nachfolgende Löten oder Schweißen.
 
  
Die Press-Sinter-Nachpresstechnik ermöglicht die Herstellung von Formteilen
+
The press–sinter–re-press method (PSR) allows the economic manufacturing of shaped contact parts with silver or copper contents > 70 wt%. This process also alloys parts pressed in two layers, with the upper being the contact material and the bottom side consisting of pure Ag or Cu to support easy attachment.
mit Silber- oder Kupferanteilen > 70 Massen-%. Nach diesem Verfahren können
 
auch Teile aus zwei Schichten hergestellt werden, wobei die obere Schicht zur
 
Kontaktgabe dient und die untere Schicht den Fügevorgang unterstützt.
 
  
Die Press-Sintertechnik ist auf die Herstellung von Silber-Wolfram-Teilen mit
+
Press–sinter processes are limited to smaller Ag/W contact tips with a Ag content of approximately 65 wt%.
kleinen Abmessungen und einem Ag-Anteil von ca. 65 Massen-% begrenzt.
 
  
*Kontaktwerkstoffe <br /> Ag, AgNi 0,15, AgCu, AgCuNi, Ag/Ni, Ag/CdO, Ag/SnO<sub>2</sub>, Ag/ZnO, Ag/C, Ag/W, Ag/WC, Ag/WC/C, Ag/Mo, Cu/W<br />
+
*Contact materials <br /> Ag, AgNi 0,15 (ARGODUR Spezial), AgCu, AgCuNi (ARGODUR 27), Ag/Ni (SINIDUR), Ag/CdO (DODURIT CdO), Ag/SnO<sub>2</sub> (SISTADOX), Ag/ZnO (DODURIT ZnO), Ag/C (GRAPHOR), Ag/W (SIWODUR), Ag/WC (SIWODUR C), Ag/WC/C (SIWODUR C/C), Ag/Mo (SILMODUR), Cu/W (CUWODUR)<br />
  
*Typische Kontaktformen für Plättchen und Formteile (<xr id="fig:Typical_contact_shapes_of_tips_and_formed_contact_parts"/>)
+
*Typical contact shapes of tips and formed contact parts <xr id="fig:Typical_contact_shapes_of_tips_and_formed_contact_parts"/>
 
<figure id="fig:Typical_contact_shapes_of_tips_and_formed_contact_parts">
 
<figure id="fig:Typical_contact_shapes_of_tips_and_formed_contact_parts">
[[File:Typical_contact_shapes_of_tips_and_formed_contact_parts.jpg|left|thumb|Figure 11: Typische Kontaktformen für Plättchen und Formteile]]
+
[[File:Typical_contact_shapes_of_tips_and_formed_contact_parts.jpg|right|thumb|Typical contact shapes of tips and formed contact parts]]
 
</figure>
 
</figure>
<br style="clear:both;"/>
+
*Dimensional ranges<br />Attachment Method: Welding <br />Bonding Area: approx. 5 – 25 mm<sup>2</sup><br />Attachment Method: Brazing <br />Bonding Area: > 25 mm<sup>2</sup> <br />
*Abmessungsbereiche<br />Fügeverfahren: Schweißen <br />Verbindungsfläche: ca. 5 – 25 mm<sup>2</sup><br />Fügeverfahren: Löten <br />Verbindungsfläche: > 25 mm<sup>2</sup> <br />
 
 
 
Aufgrund der großen Vielfalt von Ausführungsformen von Kontaktplättchen und
 
Formteilen, werden hinsichtlich der Qualitätsmerkmale und Maßtoleranzen meist
 
gesonderte Vereinbarungen zwischen Hersteller und Anwender getroffen.
 
 
 
===Aufschweißkontakte===
 
 
 
Bei Kontaktstellen, die erhöhten Umgebungstemperaturen ausgesetzt sind, z.B.
 
in Reglern für Kochplatten, ist die Verwendung von Kontaktnieten oder das
 
direkte Aufschweißen von silberhaltigem Kontaktmaterial auf Träger aus Eisen
 
oder Thermobimetall aus verbindungstechnischen Gründen nicht möglich. Für
 
derartige Anwendungsfälle eignen sich Aufschweißkontakte.
 
 
 
Aufschweißkontakte sind runde oder viereckige Plättchen aus Kontaktbimetall
 
oder für spezielle Anwendungsfälle aus -trimetall, wobei die Oberseite aus dem
 
gewünschten edelmetallhaltigen Kontaktwerkstoff, die Unterseite aus einem gut
 
schweißbaren Werkstoff mit hohem spezifischem elektrischen Widerstand, z.B.
 
Eisen, Nickel, Kupfer-Nickel-Legierungen u.a. besteht. Zur Verbesserung des
 
Schweißvorgangs sind auf der Unterseite der Aufschweißkontakte üblicherweise
 
eine oder mehrere Schweißwarzen angeprägt.
 
  
Die Herstellung der Aufschweißkontakte aus Kontaktbimetall setzt einen ausreichend
+
Because of the wide variety of shapes of contact tips and formed contact parts the user and manufacturer usually develop special parts specific agreements on quality and tolerances.
duktilen Kontaktwerkstoff voraus. Aufschweißkontakte mit Wolfram-
 
Auflage werden daher durch Löten der Wolfram-Plättchen auf die schweißbare
 
Unterseite hergestellt.
 
  
*Typische Kontaktformen für Aufschweißkontakte (<xr id="fig:Typical_contact_forms_of_weld_buttons"/>)
+
===Weld Buttons===
  
*Kontaktwerkstoffe <br /> Ag, AgNi 0,15, AgCu, AgCuNi, Ag/Ni, Ag/CdO, Ag/SnO<sub>2</sub>, Ag/ZnO<br />
+
For contacts used at higher temperatures, such as for example in controls for stove tops, the use of contact rivets or the direct welding of silver based contact materials on steel or thermo-bimetal carriers is usually not feasible. For such applications weld buttons are suitable contact components.
  
*Basiswerkstoffe<br />Ni, Fe, CuNi, CuNiZn u.a<br />
+
Weld buttons are round or rectangular tips manufactured from clad contact bimetal or in some cases tri-metal semi-finished materials. The surface layer is produced from the specified contact material, the bottom weldable layer from a material with higher electrical resistivity such as steel, nickel, or for example a copper-nickel alloy. For precious metal savings a third high conductive layer of copper may be inserted between the contact material and weld backing. To improve the welding process the underside often has an embossed pattern with one or more weld projections.
  
*Abmessungsbereiche (<xr id="fig:13neuDimensional -Ranges"/>)
+
The manufacturing of weld buttons from bi– or tri–metal strip requires a ductile contact material. Weld buttons with tungsten contact layers are therefore produced by brazing of tungsten discs to a weldable pre-formed base.
 
 
*Qualitätsmerkmale für Aufschweißkontakte in Standardausführung (<xr id="fig:16Quality_criteria_-of_standard_weld_-buttonsneu"/>)
 
 
 
<div class="multiple-images">
 
  
 +
*Typical contact forms of weld buttons <xr id="fig:Typical_contact_forms_of_weld_buttons"/>
 
<figure id="fig:Typical_contact_forms_of_weld_buttons">
 
<figure id="fig:Typical_contact_forms_of_weld_buttons">
[[File:Typical_contact_forms_of_weld_buttons.jpg|right|thumb|Figure 12: Typische Kontaktformen für Aufschweißkontakte]]
+
[[File:Typical_contact_forms_of_weld_buttons.jpg|right|thumb|Typical contact forms of weld buttons]]
 
</figure>
 
</figure>
 +
*Contact materials <br /> Ag, AgNi 0,15 (ARGODUR-Spezial), AgCu, AgCuNi (ARGODUR 27), Ag/Ni (SINIDUR), Ag/CdO (DODURIT CdO), Ag/SnO<sub>2</sub> (SISTADOX), Ag/ZnO (DODURIT ZnO) <br />
  
 +
*Carrier materials <br />Ni, Fe, CuNi, CuNiZn et.al.<br />
 +
 +
*Dimensional Ranges <xr id="fig:13neuDimensional -Ranges"/>
 
<figure id="fig:13neuDimensional -Ranges">
 
<figure id="fig:13neuDimensional -Ranges">
[[File:13neuDimensional -Ranges.jpg|right|thumb|Figure 13: Abmessungsbereiche]]
+
[[File:13neuDimensional -Ranges.jpg|right|thumb|Dimensional Ranges]]
 
</figure>
 
</figure>
 
+
*Quality criteria of standard weld buttons <xr id="fig:16Quality_criteria_-of_standard_weld_-buttonsneu"/>
 
<figure id="fig:16Quality_criteria_-of_standard_weld_-buttonsneu">
 
<figure id="fig:16Quality_criteria_-of_standard_weld_-buttonsneu">
[[File:16Quality_criteria_-of_standard_weld_-buttonsneu.jpg|right|thumb|Figure 14: Qualitätsmerkmale für Aufschweißkontakte in Standardausführung]]
+
[[File:16Quality_criteria_-of_standard_weld_-buttonsneu.jpg|right|thumb|Quality criteria of standard weld buttons]]
 
</figure>
 
</figure>
</div>
 
<div class="clear"></div>
 
  
 
==Referenzen==
 
==Referenzen==

Revision as of 12:13, 24 September 2014

Zu den Einzelkontakten sind vor allem Kontaktniete, -plättchen bzw. -formteile sowie Aufschweißkontakte zu zählen. Kontaktkugeln haben aus wirtschaftlichen Gründen heute kaum noch Bedeutung.

Kontaktniete

Massive Kontaktniete

Massive Kontaktniete stellen die ältesten und gebräuchlichsten Kontaktteile dar. Ihre Herstellung setzt einen ausreichend verformbaren Kontaktwerkstoff voraus und erfolgt überwiegend auf Spezialmaschinen abfallfrei und vollautomatisch. Der Draht aus Kontaktmaterial wird dabei in Abschnitte getrennt und daraus durch Pressen und Hämmern der Nietkopf geformt. Auf diese Weise können Kontaktniete je nach Anwendung mit flacher, kuppiger, runder oder spitzer Kopfform hergestellt werden.

Typische Kontaktformen für massive Kontakte
  • Typische Kontaktformen für massive Kontakte Figure 1
  • Kontaktwerkstoffe
    Au-, AgPd-, PdCu-Alloys, Ag, AgNi 0,15 (ARGODUR-Spezial), AgCu, AgCuNi (ARGODUR 27), Ag/Ni (SINIDUR), Ag/CdO (DODURIT CdO), Ag/SnO2 SISTADOX), Ag/ZnO (DODURIT ZnO),Ag/C 97/3*, Cu
    * in der Dimensionierung stark eingeschränkt
  • Abmessungsbereiche Figure 2
    Die jeweiligen Merkmale können nicht unabhängig von einander gewählt

werden. Sie hängen vor allem von der Verformbarkeit des gewünschten Kontaktwerkstoffes ab. Vor der Festlegung der Abmessungen empfiehlt sich daher die Rücksprache mit dem Hersteller.

Abmessungsbereiche
  • Qualitätsmerkmale und Toleranzen Figure 3
Qualitaetsmerkmale und Toleranzen

Characteristics

Form A Form B Form C

Rounded headf Trapeziodal Trapeziodal head, radiused head,flat

Suggested test equipment

a) Head diameter d1 [mm]

d1< 4 + 0,06 During optical measurement

d1> 4 - 0,06 disregard corner

radius R3

Comparator,

Measuring microscope

b) Head thickness

k [mm]

d1< 4 + 0,03

d1> 4 + 0,08

Micrometer, Dial indicator

c) Shank diameter d2 [mm]

d2< 2 - 0,06

d2> 2 - 0,08

Micrometer

d) Shank length [mm]

+ 0,15

Micrometer, Dial

indicator, Comparator

e) Radius at center

of contact surface

R1 [mm]

Form A und B: Within the head thickness

tolerance

Form C: Allowable deviation from flatness: convex: within head thickness tolerance

concave: 0.005 d1

Comparator,

Comparator template, Radius gage

f) Radius at edge of contact surface R2 [mm]

Form A: Smooth transition to R1

Form B: 1.5 R2 allowed

Form C: <0,1d1

Profile template,

Comparator, Radius gage

g) Radii

R3 and R5 [mm]

Sligth rounding allowed

Comparator

h) Transition radius head underside to shank R4 [mm]

d2 < 2 R4 < 0,08 if covered by DIN 46240 pg.1 d2 > 2 R4 < 0,1

d2 > 3 R4 < 0,2

Comparator if in doubt: microsection

i) Allowed deviation

from cylindrical shape

max. 7° 30’: or d2 < l, l > 0,7 mm and k < 0,6 d1.

max. 15°: for all other rivets

Comparator

k) Concentricity between head and shank center line [mm]

d1 < 4 0,15

d1 > 4 0,2

in general: approx. 70% of allowable deviation

per DIN 46240

Comparator, Special

turn fixture

Composite Contact Rivets

Clad rivets for which only a part of the head (composite or bimetal rivets) or also the shank end (tri-metal rivets) are composed of contact material – with the balance of the body mostly being copper – have replaced for many applications solid rivet versions because of economical considerations. The cost savings depend on the contact material and its required volume for a specific application. These composite rivets are also produced scrap-less from wire material on special machinery with two process variations utilized.

During cold bonding and heading the bond between the contact material and the copper is achieved without external heat energy by high plastic deformation at the face surfaces of the two wire segments Figure 4.

Cold bonding of bimetall rivets (schematic)

The bonding pressure must be high enough to move the lattice components of the two metals within a few atom radii so that the adhesion forces between atoms become effective.

Therefore the head to shank diameter ratio of 2:1 must be closely met for a strong bond between the two metals.

During hot bonding the required heat energy is applied by a short term electrical current pulse Figure 5 .

Hot bonding of bimetall rivets (schematic)

In the case of Ag and Cu a molten eutectic alloy of silver and copper is formed in the constriction area between the two wire ends. When using metal oxide containing contact materials the non-soluble oxide particles tend to coagulate and the bonding strength between the component materials is greatly reduced. Therefore the cold bonding technology is preferred for these contact materials. The during cold bonding required high surface deformation ratio can be reduced for the hot bonding process which allows the head to shank diameter ratio to be reduced below 2:1.

For composite rivets with AgPd alloys as well as alloys on the basis of Au, Pd, and Pt the above methods cannot be used because of the very different work hardening of these materials compared to the base material copper. The starting material for such composite rivets is clad strip material from which the contact rivets are formed in multiple steps of press-forming and stamping. Similar processes are used for larger contact rivets with head diameters > 8 mm and Ag-based contact materials.

  • Typical contact shapes for composite rivets Figure 6
Typical contact shapes for composite rivets
  • Contact materials
    Ag, AgNi 0,15 (ARGODUR), AgCu, AgCuNi (ARGODUR 27), Ag/Ni (SINIDUR), Ag/CdO (DODURIT CDO), Ag/SnO2 (SISTADOX), Ag/ZnO (DODURIT ZNO)
  • Base materials
    Cu
  • Dimensional ranges Figure 7
    These parameters cannot be chosen independently of each other. They depend mainly on the mechanical properties of the contact material. Before specifying the final dimensions we recommend to consult with the contact manufacturer.
Dimensional ranges
  • Quality criteria and tolerances Figure 8
Quality criteria and tolerances

Criteria

Form B Form C

Trapezoidal head, Trapezoidal head radiused flat

Suggested test

equipment

a) Head diameter

d1 [mm]

During optical measurement disregard corner radius R3 + 0.1

Comparator, measu-

ring microscpope

b) Head thickness

k [mm]

+ 0.1

Micrometer,

Dial indicator

c) Shank diameter

d2 [mm]

Deviation from roundness and conical shape of

shank only within allowed diameter tolerance d2 < 1.5 - 0.08

d2 > 1.5 - 0.1

Micrometer

d) Shank length l

[mm]

+ 0.15

Micrometer, Dial indicator, Comparator

e) Radius at center

of contact surface

R1 [mm]

Form B: + 10%, but not below

+ 0.5 mm

Form C: Allowable deviation from flatness: convex: within head thickness tolerance concave: 0.005 d1

Comparator, Comparator template, Radius gage, Profile template

f) Radius at edge

of contact surface

R2 [mm]

per DIN 46240: Form B and C max. 0.5 without DIN:max. 1

Profile template,

Comparator, Radius gage

g) Radii

R3 and R5 [mm]

Sligth rounding allowed

Comparator

h) Transition radius

head underside to shank R4 [mm]

d2 < 2 R4 < 0.08 d2 > 2 R4 < 0.1 d2 > 3 R4 < 0.2

Comparator, if in doubt: micro-section

i) Allowed deviation from cylindrical shape

d1 < 4 up to 7°30’ + 2°30’

d1 > 4 up to 10° + 5°

Comparator, Measu- ring microscope, if in doubt: microsection

k) Concentricity bet-

ween head and shank center line [mm]

5% of d1

Comparator,

Measuring microscope, Special turn fixture

l) Contact layer

thickness [mm]

In center area of 0.5 d1 s> nominal thickness

Remaining head area must be covered

Measuring micros- cope, Microsection

  • Typical contact shapes of tri-metal rivets Figure 9
Typical contact shapes of tri-metal rivets
  • Contact materials
    Ag, AgNi 0,15 (ARGODUR), AgCu, AgCuNi (ARGODUR 27), Ag/Ni (SINIDUR), Ag/CdO (DODURIT CDO), Ag/SnO (SISTADOX), Ag/ZnO (DODURIT ZNO)
  • Base materials
    Cu
  • Dimensional ranges Figure 10
Dimensional ranges
  • Standard values for rivet dimension
d1

k

1

d2

α

r1

s1

s2

3.0

0.8

2.0

1.5

7.5°

4.0

0.4

1.0

4.0

1.0

2.5

2.0

7.5°

8.0

0.5

1.2

5.0

1.2

3.0

2.5

10°

12.0

0.6

1.4

Braze Alloy Clad Contact Rivets

For special cases, especially high surrounding temperatures with high thermal and mechanical stresses during switching operations, a full metallurgical bond between the contact rivet and the contact carrier may be required to prevent a loosening of the connection and early failures of the device. To accomplish this superior bond a thin layer of brazing alloy is added to the underside of the head and the rivet shank. During assembly a thermal treatment is added after the mechanical staking.

Contact Rivets with Brazed Contact Material Layers

For certain applications contact rivets with non-ductile or brittle materials such as tungsten, silver–tungsten, or silver–graphite are required. Rivets with these contact materials can only be fabricated by brazing. Small round tips are brazed to pre-fabricated copper or steel bases using special brazing alloys in a reducing atmosphere.

Contact Tips

Flat or formed contact tips, welded or brazed to contact carriers, are frequently used in switching devices for higher power technology. Depending on the contact material and specified shapes these tips are produced by various manufacturing processes. The most frequently used ones are:

  • Stamping from strips and profiles
  • Cutting from extruded rods
  • Pressing, Sintering, and Infiltrating
  • Pressing, Sintering, and Re-Pressing
  • Pressing and Sintering

For stamping sufficiently ductile semi-finished materials are needed. These are mainly silver, silver–alloys, silver–nickel, silver–metal oxide, and silver–graphite (with graphite particle orientation parallel to the switching surface). Silver–metal oxides and silver–graphite need an additional well brazable or weldable silver layer on the underside which can be bonded to the bulk of the contact material by various processes. To further facilitate the final attachment process strips and profiles are often coated on the brazing underside with an additional thin layer of brazing alloy such as L-Ag 15P (CP 102 or BCuP-5). For Ag/C with the graphite orientation perpendicular to the switching surface the brazable underside is produced by cutting tips from extruded rods and burning out graphite in a defined thickness.

The press-sinter-infiltrate process (PSI) is used mainly for Ag/W and Cu/W material tips with tungsten contents of > 50 wt%. A silver or copper surplus on the underside of the tip later facilitates the brazing or welding during final assembly.

The press–sinter–re-press method (PSR) allows the economic manufacturing of shaped contact parts with silver or copper contents > 70 wt%. This process also alloys parts pressed in two layers, with the upper being the contact material and the bottom side consisting of pure Ag or Cu to support easy attachment.

Press–sinter processes are limited to smaller Ag/W contact tips with a Ag content of approximately 65 wt%.

  • Contact materials
    Ag, AgNi 0,15 (ARGODUR Spezial), AgCu, AgCuNi (ARGODUR 27), Ag/Ni (SINIDUR), Ag/CdO (DODURIT CdO), Ag/SnO2 (SISTADOX), Ag/ZnO (DODURIT ZnO), Ag/C (GRAPHOR), Ag/W (SIWODUR), Ag/WC (SIWODUR C), Ag/WC/C (SIWODUR C/C), Ag/Mo (SILMODUR), Cu/W (CUWODUR)
  • Typical contact shapes of tips and formed contact parts Figure 11
Typical contact shapes of tips and formed contact parts
  • Dimensional ranges
    Attachment Method: Welding
    Bonding Area: approx. 5 – 25 mm2
    Attachment Method: Brazing
    Bonding Area: > 25 mm2

Because of the wide variety of shapes of contact tips and formed contact parts the user and manufacturer usually develop special parts specific agreements on quality and tolerances.

Weld Buttons

For contacts used at higher temperatures, such as for example in controls for stove tops, the use of contact rivets or the direct welding of silver based contact materials on steel or thermo-bimetal carriers is usually not feasible. For such applications weld buttons are suitable contact components.

Weld buttons are round or rectangular tips manufactured from clad contact bimetal or in some cases tri-metal semi-finished materials. The surface layer is produced from the specified contact material, the bottom weldable layer from a material with higher electrical resistivity such as steel, nickel, or for example a copper-nickel alloy. For precious metal savings a third high conductive layer of copper may be inserted between the contact material and weld backing. To improve the welding process the underside often has an embossed pattern with one or more weld projections.

The manufacturing of weld buttons from bi– or tri–metal strip requires a ductile contact material. Weld buttons with tungsten contact layers are therefore produced by brazing of tungsten discs to a weldable pre-formed base.

  • Typical contact forms of weld buttons Figure 12
Typical contact forms of weld buttons
  • Contact materials
    Ag, AgNi 0,15 (ARGODUR-Spezial), AgCu, AgCuNi (ARGODUR 27), Ag/Ni (SINIDUR), Ag/CdO (DODURIT CdO), Ag/SnO2 (SISTADOX), Ag/ZnO (DODURIT ZnO)
  • Carrier materials
    Ni, Fe, CuNi, CuNiZn et.al.
  • Dimensional Ranges Figure 13
Dimensional Ranges
  • Quality criteria of standard weld buttons Figure 14
Quality criteria of standard weld buttons

Referenzen

Referenzen