Difference between revisions of "Naturharte Kupfer-Legierungen"

From Electrical Contacts
Jump to: navigation, search
(Kupfer-Nickel-Zink-Legierungen (Neusilber))
(temp edit)
(16 intermediate revisions by 2 users not shown)
Line 17: Line 17:
 
{| class="twocolortable" style="text-align: left; font-size: 12px"
 
{| class="twocolortable" style="text-align: left; font-size: 12px"
 
|-
 
|-
!Werkstoff<br />Bezeichnung<br />
+
!Werkstoff<br />Bezeichnung<br />EN UNS
 
!Zusammensetzung<br />[wt%]
 
!Zusammensetzung<br />[wt%]
 
!Dichte<br />[g/cm<sup>3</sup>]
 
!Dichte<br />[g/cm<sup>3</sup>]
Line 233: Line 233:
 
ausgeprägte Festigkeitszunahme.
 
ausgeprägte Festigkeitszunahme.
  
 +
<xr id="fig:Phase_diagram_of_copper_zinc_for_the_range_of_0_60_wt_zinc"/><!--Fig. 5.5:--> Zustandsdiagramm Kupfer-Zink für den Bereich 0 bis 60 Massen-% Zink
 +
 +
<xr id="fig:Mechanical_properties_of_brass_ depending_on_the_copper_content_after_cold_working_of_0_and_50"/><!--Fig. 5.6:--> Festigkeitseigenschaften von Messing in Abhängigkeit vom Kupfergehalt (Kaltumformung 0 und 50%)
 +
 +
<xr id="fig:Strain hardening of CuZn36 by cold forming"/><!--Fig. 5.7:--> Verfestigungsverhalten von CuZn36 durch Kaltumformung
 +
 +
<xr id="fig:Softening of CuZn36 after 3 hrs annealing after 25% cold working"/><!--Fig. 5.8:--> Erweichungsverhalten von CuZn36 nach 3h Glühdauer und einer Kaltumformung von 25%
  
 
<div class="multiple-images">
 
<div class="multiple-images">
Line 256: Line 263:
 
====<!--5.1.4.2-->Kupfer-Zinn-Legierungen (Zinnbronze)====
 
====<!--5.1.4.2-->Kupfer-Zinn-Legierungen (Zinnbronze)====
  
Die Kupfer-Zinn-Legierungen CuSn6 und CuSn8 gelten dank ihrer günstigen
+
Because of their good elastic spring properties and formability the copper-tin alloys CuSn6 and CuSn8 are standard materials for spring contact elements in electrome-chanical components such as connectors, switches, and relays <xr id="tab:Physical Properties of Copper-Tin Alloys"/><!--(Tab. 5.9)--> and <xr id="tab:Mechanical Properties of Copper-Tin Alloys"/><!--(Tab.5.10)-->. Besides these other alloys such as CuSn4 and CuSn5 and the multi-metal tin bronze CuSn3Zn9 have significant usage – mainly in North America. <!--5.10-->
Federeigenschaften und ihrer guten Verarbeitbarkeit als Standardwerkstoffe für
+
<xr id="fig:Phase diagram of the Cu-Sn system for the range of 0 – 30 wt% Sn"/> shows the copper rich side of the phase diagram for the CuSn system. The mechanical property values achieved by cold forming are superior to these of the brass alloys <xr id="fig:Mechanical properties of tin bronze depending on the tin content (cold working 0 and 50%)"/><!--(Fig. 5.11)-->. They increase significantly with increasing Sn content. The work hardening and softening behavior are shown for the example of CuSn8 in <xr id="fig:Strain hardening of CuSn8 by cold working"/><!--Figures 5.12--> and <xr id="fig:Softening of CuSn8 after 3 hrs annealing after 50% cold working"/><!--Fig. 5.13-->. The stress relaxation properties for CuSn alloys are good for up to 100°C, deteriorate however quickly for temperatures above 150°C.
federnde Kontaktteile in elektromechanischen Bauelementen, wie Steckverbindern,
 
Schaltern und Relais (<xr id="tab:Physical Properties of Copper-Tin Alloys"/><!--(Tab. 5.9)--> und <xr id="tab:Mechanical Properties of Copper-Tin Alloys"/><!--(Tab.5.10)-->).
 
Zum Einsatz kommen außerdem die Legierungen
 
CuSn4 und CuSn5 (vor allem in
 
den USA) sowie die Mehrstoffzinnbronze
 
CuSn3Zn9.
 
In (<!--5.10--><xr id="fig:Phase diagram of the Cu-Sn system for the range of 0 – 30 wt% Sn"/>) ist die kupferreiche Seite des
 
Zustandsdiagramms für das System
 
Kupfer-Zinn dargestellt. Die durch Kaltumformung
 
erzielbaren Festigkeitswerte sind
 
denen des Messings überlegen (<xr id="fig:Mechanical properties of tin bronze depending on the tin content (cold working 0 and 50%)"/>).  
 
Sie steigen mit wachsendem Zinngehalt
 
deutlich an. Am Beispiel von CuSn8
 
sind das Verformungs- und Erweichungsverhalten
 
aufgeführt (<xr id="fig:Strain hardening of CuSn8 by cold working"/><!--Figures 5.12--> und <xr id="fig:Softening of CuSn8 after 3 hrs annealing after 50% cold working"/><!--Fig. 5.13-->).
 
Das Relaxationsverhalten der Kupfer-Zinn-
 
Legierungen ist bis ca. 100°C günstig,
 
wird jedoch oberhalb 150°C deutlich
 
schlechter.
 
  
 
   
 
   
  
 
<figtable id="tab:Physical Properties of Copper-Tin Alloys">
 
<figtable id="tab:Physical Properties of Copper-Tin Alloys">
<caption>'''<!--Table 5.9:-->Physikalische Eigenschaften von Kupfer-Zinn-Legierungen'''</caption>  
+
<caption>'''<!--Table 5.9:-->Physical Properties of Copper-Tin Alloys'''</caption>  
  
 
{| class="twocolortable" style="text-align: left; font-size: 12px"
 
{| class="twocolortable" style="text-align: left; font-size: 12px"
 
|-
 
|-
!Werkstoff<br />Bezeichnung<br />
+
!Material<br />Designation<br />EN UNS
!Zusammensetzung<br />[wt%]
+
!Composition<br />[wt%]
!Dichte<br />[g/cm<sup>3</sup>]
+
!Density<br />[g/cm<sup>3</sup>]
!colspan="2" style="text-align:center"|Elektr. Leitfähigkeit
+
!colspan="2" style="text-align:center"|Electrical<br />Conductivity
!Elektr. Widerstand[μΩ·cm]
+
!Electrical<br />Resistivity<br />[μΩ·cm]
!Wärmeleitfähigkeit<br />[W/(m·K)]
+
!Thermal<br />Conductivity<br />[W/(m·K)]
!Lin. Ausdehnungskoeff.<br />[10<sup>-6</sup>/K]
+
!Coeff. of Linear<br />Thermal<br />Expansion<br />[10<sup>-6</sup>/K]
!E-Modul<br />[GPa]
+
!Modulus of<br />Elasticity<br />[GPa]
!Erweichungstemperatur<br />(ca. 10% Festigkeitsabfall)<br />[°C]
+
!Softening Temperature<br />(approx. 10% loss in<br />strength)<br />[°C]
!Schmelzbereich<br />[°C]
+
!Melting<br />Temp Range<br />[°C]
 
|-
 
|-
 
!
 
!
Line 373: Line 361:
  
 
<figtable id="tab:Mechanical Properties of Copper-Tin Alloys">
 
<figtable id="tab:Mechanical Properties of Copper-Tin Alloys">
<caption>'''<!--Table 5.10:-->Mechanische Eigenschaften von Kupfer-Zinn-Legierungen'''</caption>   
+
<caption>'''<!--Table 5.10:-->Mechanical Properties of Copper-Tin Alloys'''</caption>   
  
 
{| class="twocolortable" style="text-align: left; font-size: 12px"
 
{| class="twocolortable" style="text-align: left; font-size: 12px"
 
|-
 
|-
!Werkstoff
+
!Material
!Zustand
+
!Hardness<br />Condition
!Zugfestigkeit R<sub>m</sub><br />[MPa]
+
!Tensile Strength R<sub>m</sub><br />[MPa]
!0,2% Dehngrenze<br />R<sub>p02</sub><br />[MPa]
+
!0,2% Yield Strength<br />R<sub>p02</sub><br />[MPa]
!Bruchdehnung<br />A<sub>50</sub><br />[%]
+
!Elongation<br />A<sub>50</sub><br />[%]
!Vickershärte<br />HV
+
!Vickers<br />Hardness<br />HV
!Biegeradius<sup>1)</sup><br />min senkrecht zur<br />Walzrichtung
+
!Bend Radius<sup>1)</sup><br />perpendicular to<br />rolling direction
!Biegeradius<sup>1)</sup><br />min parallel zur<br />Walzrichtung
+
!Bend Radius<sup>1)</sup><br />parallel to<br />rolling direction
!Federbiegegrenze σ<sub>FB</sub><br />[MPa]
+
!Spring Bending<br />Limit σ<sub>FB</sub><br />[MPa]
!Biegewechselfestigkeit σ<sub>BW</sub><br />[MPa]
+
!Spring Fatigue<br />Limit σ<sub>BW</sub><br />[MPa]
 
|-
 
|-
 
|CuSn4
 
|CuSn4
Line 444: Line 432:
 
|}
 
|}
 
</figtable>
 
</figtable>
<sup>1)</sup> t: Banddicke max 0,5 mm
+
<sup>1)</sup> t: Strip thickness max. 0.5 mm
 +
 
 +
<xr id="fig:Softening of CuZn36 50"/><!--Fig. 5.9:--> Softening of CuZn36 after 3 hrs annealing after 50% cold working)
 +
 
 +
<xr id="fig:Phase diagram of the Cu-Sn system for the range of 0 – 30 wt% Sn"/><!--Fig. 5.10:--> Phase diagram of the Cu-Sn system for the range of 0 – 30 wt% Sn)
 +
 
 +
<xr id="fig:Mechanical properties of tin bronze depending on the tin content (cold working 0 and 50%)"/><!--Fig. 5.11:--> Mechanical properties of tin bronze depending on the tin content (cold working 0 and 50%)
 +
 
 +
<xr id="fig:Strain hardening of CuSn8 by cold working"/><!--Fig. 5.12:--> Strain hardening of CuSn8 by cold working
  
 +
<xr id="fig:Softening of CuSn8 after 3 hrs annealing after 50% cold working"/><!--Fig. 5.13:--> Softening of CuSn8 after 3 hrs annealing after 50% cold working
  
 
<div class="multiple-images">
 
<div class="multiple-images">
  
 
<figure id="fig:Softening of CuZn36 50">
 
<figure id="fig:Softening of CuZn36 50">
[[File:Softening of CuZn36 50.jpg|left|thumb|<caption>Erweichungsverhalten von CuZn36 nach 3h Glühdauer und einer Kaltumformung von 50%</caption>]]
+
[[File:Softening of CuZn36 50.jpg|left|thumb|<caption>Softening of CuZn36 after 3 hrs annealing after 50% cold working</caption>]]
 
</figure>
 
</figure>
  
 
<figure id="fig:Phase diagram of the Cu-Sn system for the range of 0 – 30 wt% Sn">
 
<figure id="fig:Phase diagram of the Cu-Sn system for the range of 0 – 30 wt% Sn">
[[File:Phase diagram of the Cu Sn system.jpg|left|thumb|<caption>Zustandsdiagramm Kupfer-Zinn für den Bereich 0 bis 30 Massen-% Zinn</caption>]]
+
[[File:Phase diagram of the Cu Sn system.jpg|left|thumb|<caption>Phase diagram of the Cu-Sn system for the range of 0 30 wt% Sn</caption>]]
 
</figure>
 
</figure>
  
 
<figure id="fig:Mechanical properties of tin bronze depending on the tin content (cold working 0 and 50%)">
 
<figure id="fig:Mechanical properties of tin bronze depending on the tin content (cold working 0 and 50%)">
[[File:Mechanical properties of tin bronze depending on the tin content.jpg|left|thumb|<caption>Festigkeitseigenschaften von Zinnbronze in Abhängigkeit vom Zinngehalt
+
[[File:Mechanical properties of tin bronze depending on the tin content.jpg|left|thumb|<caption>Mechanical properties of tin bronze depending on the tin content (cold working 0 and 50%)</caption>]]
(Kaltumformung 0 und 50%)</caption>]]
 
 
</figure>
 
</figure>
  
 
<figure id="fig:Strain hardening of CuSn8 by cold working">
 
<figure id="fig:Strain hardening of CuSn8 by cold working">
[[File:Strain hardening of CuSn8 by cold working.jpg|left|thumb|<caption>Verfestigungsverhalten von CuSn8 durch Kaltumformung</caption>]]
+
[[File:Strain hardening of CuSn8 by cold working.jpg|left|thumb|<caption>Strain hardening of CuSn8 by cold working</caption>]]
 
</figure>
 
</figure>
  
 
<figure id="fig:Softening of CuSn8 after 3 hrs annealing after 50% cold working">
 
<figure id="fig:Softening of CuSn8 after 3 hrs annealing after 50% cold working">
[[File:Softening of CuSn8 50.jpg|left|thumb|<caption>Erweichungsverhalten von CuSn8 nach 3h Glühdauer und einer Kaltumformung von 50%</caption>]]
+
[[File:Softening of CuSn8 50.jpg|left|thumb|<caption>Softening of CuSn8 after 3 hrs annealing after 50% cold working</caption>]]
 
</figure>
 
</figure>
 
</div>
 
</div>
 
<div class="clear"></div>
 
<div class="clear"></div>
  
====<!--5.1.4.3-->Kupfer-Nickel-Zink-Legierungen (Neusilber)====
+
====<!--5.1.4.3-->Copper-Nickel-Zinc Alloys (German Silver)====
  
Die günstigen Federeigenschaften, die hohe Korrosionsbeständigkeit und die
+
Despite its lower electrical conductivity, the good spring properties, high corrosion resistance, and the good workability make copper-nickel-zinc alloys a frequently used spring contact carrier in switches and relays. As illustrated in the phase diagram the most commonly used materials are in the &alpha; -range which means that they are single-phase alloys <xr id="fig:Copper rich region of the ternary copper-nickel-zinc phase diagram with indication of the more commonly available german silver materials"/><!--(Fig. 5.14)-->. The formability and strength properties of german silver are comparable to those of the copper-tin alloys. The work hardening and softening behavior is illustrated on the example of CuNi12Zn24 in <xr id="fig:Strain hardening of CuNi12Zn24 by cold working"/><!--Figures 5.15--> and <xr id="fig:Softening of CuNi12Zn24 after 3 hrs annealing after 50% cold working"/><!--5.16-->.
gute Verarbeitbarkeit machen Kupfer-Nickel-Zink-Legierungen trotz der
 
niedrigen elektrischen Leitfähigkeit zu einem häufig eingesetzten Federwerkstoff
 
für Schalter und Relais. Wie dem Zustandsdiagramm zu entnehmen ist,
 
liegen die verwendeten Werkstoffe im "-Bereich, stellen demnach einphasige
 
Legierungen dar (<xr id="fig:Copper rich region of the ternary copper-nickel-zinc phase diagram with indication of the more commonly available german silver materials"/><!--(Fig. 5.14)-->). Die Umformbarkeit und die Festigkeitseigenschaften
 
von Neusilber sind mit denen von Kupfer-Zinn-Legierungen vergleichbar. Das Verfestigungs- und Erweichungsverhalten zeigen
 
die Bilder (<xr id="fig:Strain hardening of CuNi12Zn24 by cold working"/><!--Figures 5.15--> und <xr id="fig:Softening of CuNi12Zn24 after 3 hrs annealing after 50% cold working"/><!--5.16-->) am Beispiel von CuNi12Zn24 .
 
  
Hinsichtlich ihres Relaxationsverhaltens sind Kupfer-Nickel-Zink-Legierungen
+
The relaxation behavior of Cu-Ni-Zn alloys is superior to the one for the tin bronzes. Additional advantages are the very good weldability, brazing
der Zinnbronze überlegen. Hervorzuheben sind noch die sehr gute Schweißund
+
properties, and the high corrosion resistance of these copper-nickel-zinc alloys.
Lötbarkeit sowie die hohe Korrosionsbeständigkeit der Kupfer-Nickel-Zink-
 
Legierungen.
 
  
  
 
<figtable id="tab:tab5.11">
 
<figtable id="tab:tab5.11">
<caption>'''<!--Table 5.11:-->Physikalische Eigenschaften von Kupfer-Nickel-Zink-Legierungen'''</caption>  
+
<caption>'''<!--Table 5.11:-->Physical Properties of Copper-Nickel-Zinc Alloys'''</caption>  
  
 
{| class="twocolortable" style="text-align: left; font-size: 12px"
 
{| class="twocolortable" style="text-align: left; font-size: 12px"
 
|-
 
|-
!Werkstoff<br />Bezeichnung<br />  
+
!Material<br />Designation<br />EN UNS
!Zusammensetzung<br />[wt%]
+
!Composition<br />[wt%]
!Dichte<br />[g/cm<sup>3</sup>]
+
!Density<br />[g/cm<sup>3</sup>]
!colspan="2" style="text-align:center"|Elektr. Leitfähigkeit
+
!colspan="2" style="text-align:center"|Electrical<br />Conductivity
!Elektr. Widerstand[μΩ·cm]
+
!Electrical<br />Resistivity<br />[μΩ·cm]
!Wärmeleitfähigkeit<br />[W/(m·K)]
+
!Thermal<br />Conductivity<br />[W/(m·K)]
!Lin. Ausdehnungskoeff.<br />[10<sup>-6</sup>/K]
+
!Coeff. of Linear<br />Thermal<br />Expansion<br />[10<sup>-6</sup>/K]
!E-Modul<br />[GPa]
+
!Modulus of<br />Elasticity<br />[GPa]
!Erweichungstemperatur<br />(ca. 10% Festigkeitsabfall)<br />[°C]
+
!Softening Temperature<br />(approx. 10% loss in<br />strength)<br />[°C]
!Schmelzbereich<br />[°C]
+
!Melting<br />Temp Range<br />[°C]
 
|-
 
|-
 
!
 
!
Line 558: Line 545:
  
 
<figtable id="tab:tab5.12">
 
<figtable id="tab:tab5.12">
<caption>'''<!--Table 5.12:-->Mechanische Eigenschaften von Kupfer-Nickel-Zink-Legierungen'''</caption>   
+
<caption>'''<!--Table 5.12:-->Mechanical Properties of Copper-Nickel-Zinc Alloys'''</caption>   
  
 
{| class="twocolortable" style="text-align: left; font-size: 12px"
 
{| class="twocolortable" style="text-align: left; font-size: 12px"
 
|-
 
|-
!Werkstoff
+
!Material
!Zustand
+
!Hardness<br />Condition
!Zugfestigkeit R<sub>m</sub><br />[MPa]
+
!Tensile Strength R<sub>m</sub><br />[MPa]
!0,2% Dehngrenze<br />R<sub>p02</sub><br />[MPa]
+
!0,2% Yield Strength<br />R<sub>p02</sub><br />[MPa]
!Bruchdehnung<br />A<sub>50</sub><br />[%]
+
!Elongation<br />A<sub>50</sub><br />[%]
!Vickershärte<br />HV
+
!Vickers<br />Hardness<br />HV
!Biegeradius<sup>1)</sup><br />min senkrecht zur<br />Walzrichtung
+
!Bend Radius<sup>1)</sup><br />perpendicular to<br />rolling direction
!Biegeradius<sup>1)</sup><br />min parallel zur<br />Walzrichtung
+
!Bend Radius<sup>1)</sup><br />parallel to<br />rolling direction
!Federbiegegrenze σ<sub>FB</sub><br />[MPa]
+
!Spring Bending<br />Limit σ<sub>FB</sub><br />[MPa]
!Biegewechselfestigkeit σ<sub>BW</sub><br />[MPa]
+
!Spring Fatigue<br />Limit σ<sub>BW</sub><br />[MPa]
 
|-
 
|-
 
|CuNi12Zn24
 
|CuNi12Zn24
Line 607: Line 594:
 
|}
 
|}
 
</figtable>
 
</figtable>
<sup>1)</sup> t: Banddicke max 0,5 mm
+
<sup>1)</sup> t: Strip thickness max. 0.5 mm
 +
 
 +
<xr id="fig:Copper rich region of the ternary copper-nickel-zinc phase diagram with indication of the more commonly available german silver materials"/><!--Fig. 5.14:--> Copper rich region of the ternary copper-nickel-zinc phase diagram with indication of the more commonly available german silver materials
 +
 
 +
<xr id="fig:Strain hardening of CuNi12Zn24 by cold working"/><!--Fig. 5.15:--> Strain hardening of CuNi12Zn24 by cold working
 +
 
 +
<xr id="fig:Softening of CuNi12Zn24 after 3 hrs annealing after 50% cold working"/><!--Fig. 5.16:--> Softening of CuNi12Zn24 after 3 hrs annealing after 50% cold working
  
 
<div class="multiple-images">
 
<div class="multiple-images">
  
 
<figure id="fig:Copper rich region of the ternary copper-nickel-zinc phase diagram with indication of the more commonly available german silver materials">
 
<figure id="fig:Copper rich region of the ternary copper-nickel-zinc phase diagram with indication of the more commonly available german silver materials">
[[File:Copper rich region of the termary copper nickel zinc phase diagram.jpg|right|thumb|Figure 10: Kupferecke des ternären Zustandsdiagramms Kupfer-Nickel-Zink mit Existenzbereich der handelsüblichen Neusilber-Legierungen]]
+
[[File:Copper rich region of the termary copper nickel zinc phase diagram.jpg|right|thumb|Copper rich region of the ternary copper-nickel-zinc phase diagram with indication of the more commonly available german silver materials]]
 
</figure>
 
</figure>
  
 
<figure id="fig:Strain hardening of CuNi12Zn24 by cold working">
 
<figure id="fig:Strain hardening of CuNi12Zn24 by cold working">
[[File:Strain hardening of CuNi 12Zn24 by cold working.jpg|left|thumb|<caption>Verfestigungsverhalten von CuNi12Zn24 durch Kaltumformung</caption>]]
+
[[File:Strain hardening of CuNi 12Zn24 by cold working.jpg|left|thumb|<caption>Strain hardening of CuNi12Zn24 by cold working</caption>]]
 
</figure>
 
</figure>
  
 
<figure id="fig:Softening of CuNi12Zn24 after 3 hrs annealing after 50% cold working">
 
<figure id="fig:Softening of CuNi12Zn24 after 3 hrs annealing after 50% cold working">
[[File:Softening of CuNi12Zn24 50.jpg|left|thumb|<caption>Erweichungsverhalten von CuNi12Zn24 nach 3h Glühdauer und einer Kaltumformung von 50%</caption>]]
+
[[File:Softening of CuNi12Zn24 50.jpg|left|thumb|<caption>Softening of CuNi12Zn24 after 3 hrs annealing after 50% cold working</caption>]]
 
</figure>
 
</figure>
 
</div>
 
</div>
 
<div class="clear"></div>
 
<div class="clear"></div>
  
====<!--5.1.4.4-->Kupfer-Silber-(Cadmium)-Legierungen (Silberbronze)====
+
====<!--5.1.4.4-->Copper-Silver-(Cadmium) Alloys (Silver Bronze)====
  
Neben dem niedriglegierten CuAg0,1 werden auch Kupfer-Werkstoffe mit
+
Besides the low-allowed CuAg0.1 other copper materials with higher silver contents (2-6 wt%) are also used as contacts carrier materials. Some of them contain additionally 1.5 wt% Cd. The phase diagram <xr id="fig:Phase diagram of copper-silver for the range of 0 – 40 wt% silver"/><!--(Fig. 5.17)--> shows that in principle the CuAg alloys can be precipitation hardened, but the possible increase in mechanical strength is rather small.
höherem Silberanteil (2 bis 6 Massen-% ) als Kontaktträgerwerkstoffe eingesetzt.
 
Sie enthalten teilweise noch 1,5 Massen-% Cd. Wie aus dem Zustandsdiagramm
 
zu erkennen ist, sind Kupfer-Silber-Legierungen prinzipiell aushärtbar,
 
jedoch ist die dadurch erreichbare Festigkeitssteigerung gering (<xr id="fig:Phase diagram of copper-silver for the range of 0 – 40 wt% silver"/><!--(Fig. 5.17)-->).
 
  
Kupfer-Silber-Legierungen weisen günstige Federeigenschaften und im Vergleich
+
Copper-silver alloys have good spring properties and compared to other spring materials have a high electrical conductivity <xr id="tab:tab5.13"/> <!--(Tab. 5.13)--> and <xr id="tab:tab5.14"/><!--(Tab. 5.14)-->. The mechanical strength values in the strongly worked condition are comparable to those of the copper-tin alloys. Work hardening and softening behavior are shown for the example of CuAg2 [[#figures5|(Figs. 13 – 15)]]<!--(Figs. 5.18 – 5.20)-->. For the relaxation behavior the silver bronzes are superior to German silver and tin bronze.
zu anderen Federwerkstoffen eine besonders hohe elektrische Leitfähigkeit
 
auf (<xr id="tab:tab5.13"/> <!--(Tab. 5.13)--> und <xr id="tab:tab5.14"/><!--(Tab. 5.14)-->). Die Festigkeitswerte im stark verformten Zustand
 
kommen denen der Kupfer-Zinn-Legierungen nahe. Verfestigungs- und Erweichungsverhalten
 
sind am Beispiel von CuAg2 dargestellt [[#figures5|(Figs. 13 – 15)]]<!--(Figs. 5.18 – 5.20)-->. Im Relaxationsverhalten ist die Silberbronze dem Neusilber und der
 
Zinnbronze überlegen.
 
  
Wegen der günstigen Federeigenschaften in Verbindung mit der sehr hohen
+
Because of their good spring properties combined with high electrical conductivity silver bronzes are suitable for the use contact springs in relays
elektrischen Leitfähigkeit eignen sich Silberbronzen z.B. für Kontaktfedern in
+
under higher current loads. Taking advantage of their high temperature stability they are also used as current carrying contacts in high voltage switchgear and as electrode material for resistance welding.
Relais bei hoher Strombelastung. Daneben werden sie wegen ihrer hohen
 
Warmfestigkeit als Trägerwerkstoffe für stromführende Dauerkontakte in Schaltgeräten
 
der Hochspannungstechnik sowie als Elektrodenwerkstoffe für das
 
Widerstandsschweißen eingesetzt.
 
  
  
  
 
<figtable id="tab:tab5.13">
 
<figtable id="tab:tab5.13">
<caption>'''<!--Table 5.13:-->Physikalische Eigenschaften einiger Kupfer-Silber-(Cadmium)-Legierungen'''</caption>  
+
<caption>'''<!--Table 5.13:-->Physical Properties of Selected Copper-Silver-(Cadmium) Alloys'''</caption>  
  
 
{| class="twocolortable" style="text-align: left; font-size: 12px"
 
{| class="twocolortable" style="text-align: left; font-size: 12px"
 
|-
 
|-
!Werkstoff<br />Bezeichnung<br />
+
!Material<br />Designation<br />EN UNS
!Zusammensetzung<br />[wt%]
+
!Composition<br />[wt%]
!Dichte<br />[g/cm<sup>3</sup>]
+
!Density<br />[g/cm<sup>3</sup>]
!colspan="2" style="text-align:center"|Elektr. Leitfähigkeit
+
!colspan="2" style="text-align:center"|Electrical<br />Conductivity
!Elektr. Widerstand[μΩ·cm]
+
!Electrical<br />Resistivity<br />[μΩ·cm]
!Wärmeleitfähigkeit<br />[W/(m·K)]
+
!Thermal<br />Conductivity<br />[W/(m·K)]
!Lin. Ausdehnungskoeff.<br />[10<sup>-6</sup>/K]
+
!Coeff. of Linear<br />Thermal<br />Expansion<br />[10<sup>-6</sup>/K]
!E-Modul<br />[GPa]
+
!Modulus of<br />Elasticity<br />[GPa]
!Erweichungstemperatur<br />(ca. 10% Festigkeitsabfall)<br />[°C]
+
!Softening Temperature<br />(approx. 10% loss in<br />strength)<br />[°C]
!Schmelzbereich<br />[°C]
+
!Melting<br />Temp Range<br />[°C]
 
|-
 
|-
 
!  
 
!  
Line 677: Line 657:
 
!
 
!
 
|-
 
|-
|CuAg2<br />nicht genormt<br />
+
|CuAg2<br />not standardized<br />
 
|Ag 2<br />Cu Rest<br />
 
|Ag 2<br />Cu Rest<br />
 
|9.0
 
|9.0
Line 689: Line 669:
 
|1050 - 1075
 
|1050 - 1075
 
|-
 
|-
|CuAg2Cd1,5<br />nicht genormt<br />
+
|CuAg2Cd1,5<br />not standardized<br />
 
|Ag 2<br />Cd1,5<br />Cu Rest
 
|Ag 2<br />Cd1,5<br />Cu Rest
 
|9.0
 
|9.0
Line 701: Line 681:
 
|970 - 1055
 
|970 - 1055
 
|-
 
|-
|CuAg6<br />nicht genormt<br />
+
|CuAg6<br />not standardized<br />
 
|Ag 6<br />Cu Rest
 
|Ag 6<br />Cu Rest
 
|9.2
 
|9.2
Line 718: Line 698:
  
 
<figtable id="tab:tab5.14">
 
<figtable id="tab:tab5.14">
<caption>'''<!--Table 5.14:-->Mechanische Eigenschaften einiger Kupfer-Silber-(Cadmium)-Legierungen'''</caption>  
+
<caption>'''<!--Table 5.14:-->Mechanical Properties of Selected Copper-Silver-(Cadmium) Alloys'''</caption>  
  
 
{| class="twocolortable" style="text-align: left; font-size: 12px"
 
{| class="twocolortable" style="text-align: left; font-size: 12px"
 
|-
 
|-
!Werkstoff
+
!Material
!Zustand
+
!Hardness<br />Condition
!Zugfestigkeit R<sub>m</sub><br />[MPa]
+
!Tensile Strength R<sub>m</sub><br />[MPa]
!0,2% Dehngrenze<br />R<sub>p02</sub><br />[MPa]
+
!0,2% Yield Strength<br />R<sub>p02</sub><br />[MPa]
!Bruchdehnung<br />A<sub>50</sub><br />[%]
+
!Elongation<br />A<sub>50</sub><br />[%]
!Vickershärte<br />HV
+
!Vickers<br />Hardness<br />HV
!Biegeradius<sup>1)</sup><br />min senkrecht zur<br />Walzrichtung
+
!Bend Radius<sup>1)</sup><br />perpendicular to<br />rolling direction
!Biegeradius<sup>1)</sup><br />min parallel zur<br />Walzrichtung
+
!Bend Radius<sup>1)</sup><br />parallel to<br />rolling direction
!Federbiegegrenze σ<sub>FB</sub><br />[MPa]
+
!Spring Bending<br />Limit σ<sub>FB</sub><br />[MPa]
!Biegewechselfestigkeit σ<sub>BW</sub><br />[MPa]
+
!Spring Fatigue<br />Limit σ<sub>BW</sub><br />[MPa]
 
|-
 
|-
 
|CuAg2
 
|CuAg2
Line 767: Line 747:
 
|}
 
|}
 
</figtable>
 
</figtable>
<sup>1)</sup> t: Banddicke max 0,5 mm
+
<sup>1)</sup> t: Strip thickness max. 0.5 mm
 +
 
 +
<div id="figures5">
 +
 
 +
<xr id="fig:Phase diagram of copper-silver for the range of 0 – 40 wt% silver"/><!--Fig. 5.17:--> Phase diagram of copper-silver for the range of 0 – 40 wt% silver
 +
 
 +
<xr id="fig:Strain hardening of CuAg2 by cold working"/><!--Fig. 5.18:--> Strain hardening of CuAg2 by cold working
 +
 
 +
<xr id="fig:Softening of CuAg2 after 1 hr annealing after 40% cold working"/><!--Fig. 5.19:--> Softening of CuAg2 after 1 hr annealing after 40% cold working
  
 +
<xr id="fig:Softening of CuAg2 after 1 hr annealing after 80% cold working"/><!--Fig. 5.20:--> Softening of CuAg2 after 1 hr annealing after 80% cold working
 +
</div>
  
 
<div class="multiple-images">
 
<div class="multiple-images">
  
 
<figure id="fig:Phase diagram of copper-silver for the range of 0 – 40 wt% silver">
 
<figure id="fig:Phase diagram of copper-silver for the range of 0 – 40 wt% silver">
[[File:Phase diagram of copper silver.jpg|left|thumb|<caption>Zustandsdiag ramm Kupfer-Silber für den Bereich 0 bis 40 Massen-% Silber</caption>]]
+
[[File:Phase diagram of copper silver.jpg|left|thumb|<caption>Phase diagram of copper-silver for the range of 0 40 wt% silver</caption>]]
 
</figure>
 
</figure>
  
 
<figure id="fig:Strain hardening of CuAg2 by cold working">
 
<figure id="fig:Strain hardening of CuAg2 by cold working">
[[File:Strain hardening of CuAg2 by cold working.jpg|left|thumb|<caption>Verfestigungsverhalten von CuAg2 durch Kaltumformung</caption>]]
+
[[File:Strain hardening of CuAg2 by cold working.jpg|left|thumb|<caption>Strain hardening of CuAg2 by cold working</caption>]]
 
</figure>
 
</figure>
  
 
<figure id="fig:Softening of CuAg2 after 1 hr annealing after 40% cold working">
 
<figure id="fig:Softening of CuAg2 after 1 hr annealing after 40% cold working">
[[File:Softening of CuAg2 40.jpg|left|thumb|<caption>Erweichungsverhalten von CuAg2 nach 1h Glühdauer und einer Kaltumformung von 40%</caption>]]
+
[[File:Softening of CuAg2 40.jpg|left|thumb|<caption>Softening of CuAg2 after 1 hr annealing after 40% cold working</caption>]]
 
</figure>
 
</figure>
  
 
<figure id="fig:Softening of CuAg2 after 1 hr annealing after 80% cold working">
 
<figure id="fig:Softening of CuAg2 after 1 hr annealing after 80% cold working">
[[File:Softening of CuAg2 80.jpg|left|thumb|<caption>Erweichungsverhalten von CuAg2 nach 1h Glühdauer und einer Kaltumformung von 80%</caption>]]
+
[[File:Softening of CuAg2 80.jpg|left|thumb|<caption>Softening of CuAg2 after 1 hr annealing after 80% cold working</caption>]]
 
</figure>
 
</figure>
 
</div>
 
</div>

Revision as of 00:48, 23 September 2014

Legierungen wie Messinge (CuZn), Zinnbronzen (CuSn) und Neusilber (CuNiZn), bei denen die gewünschte Festigkeit durch Kaltumformung erzeugt wird, werden als naturharte Legierungen bezeichnet. Zu dieser Gruppe sind auch die Silberbronzen mit Silbergehalten von 2 bis 6 Massen-% zu zählen.

Kupfer-Zink-Legierungen (Messing)

Kupfer-Zink-Legierungen finden wegen ihrer ausreichend hohen elektrischen Leitfähigkeit, der gegenüber Kupfer höheren Festigkeit bei noch guter Verarbeitbarkeit und des günstigen Preises breite Anwendung als Kontaktträgerwerkstoffe in Schaltgeräten der Energietechnik (Table 1 und Table 2). Besonders geeignet sind die sehr gut kaltbildsamen Messinge bis 37 Massen-% Zn, die nach dem Zustandsdiagramm ausschließlich aus der α-Phase aufgebaut sind (Figure 1). Beachtenswert ist die starke Abhängigkeit der Dichte, der elektrischen Leitfähigkeit und der Festigkeitseigenschaften vom Zinkgehalt (Figure 2).

Table 1: Physikalische Eigenschaften einiger Kupfer-Zink-Legierungen
Werkstoff
Bezeichnung
EN UNS
Zusammensetzung
[wt%]
Dichte
[g/cm3]
Elektr. Leitfähigkeit Elektr. Widerstand[μΩ·cm] Wärmeleitfähigkeit
[W/(m·K)]
Lin. Ausdehnungskoeff.
[10-6/K]
E-Modul
[GPa]
Erweichungstemperatur
(ca. 10% Festigkeitsabfall)
[°C]
Schmelzbereich
[°C]
[MS/m] [% IACS]
CuZn5
CW500L
C21000
Cu 94 - 96
Zn Rest
8.87 33 57 3.8 243 18.0 127 1055 - 1065
CuZn10
CW501L
C22000
Cu 89 - 91
Zn Rest
8.79 25 43 4.0 184 18.2 125 1030 - 1045
CuZn15
CW502L
C23000
Cu 84 - 86
Zn Rest
8.75 21 36 4.8 159 18.5 122 ca. 250 1005 - 1025
CuZn20
CW503L
C24000
Cu 79 - 81
Zn Rest
8.67 19 33 5.3 142 18.8 120 ca. 240 980 - 1000
CuZn30
CW505L
C26000
Cu 69 - 71
Zn Rest
8.53 16 28 6.3 124 19.8 114 ca. 230 910 - 940
CuZn37
CW508L
C27200
Cu 62 - 64
Zn Rest
8.45 15.5 27 6.5 121 20.2 110 ca. 220 900 - 920
CuZn23Al3Co
CW703R
C68800
Cu 73.5
Al 3.4
Co 0.4
Zn Rest
8.23 9.8 17 10.2 78 18.2 116 ca. 280 950 - 1000


Table 2: Mechanische Eigenschaften einiger Kupfer-Zink-Legierungen
Werkstoff Zustand Zugfestigkeit Rm
[MPa]
0,2% Dehngrenze
Rp02
[MPa]
Bruchdehnung
A50
[%]
Vickershärte
HV
Biegeradius1)
min senkrecht zur
Walzrichtung
Biegeradius1)
min parallel zur
Walzrichtung
Federbiegegrenze σFB
[MPa]
Biegewechselfestigkeit σBW
[MPa]
CuZn5 R 230
R 270
R 340
230 - 280
270 -350
340 - 440
≤ 130
≥ 200
≥ 280
36
12
4
45 - 90
70 - 120
110 - 160
0 x t
0 x t
0 x t
0 x t
250 130
CuZn10 R 240
R 280
R 350
240 - 290
280 - 360
350 - 450
≤ 140
≥ 200
≥ 290
36
13
4
50 - 100
80 - 130
110 - 160
0 x t
0 x t
0 x t
0 x t
260 140
CuZn15 R 300
R 350
R 410
R 480
R 550
300 - 370
350 - 420
410 - 490
480 - 560
≥ 550
≤ 150
≥ 270
≥ 360
≥ 420
≥ 480
16
8
3
1
85 - 120
100 - 150
125 - 155
150 - 180
≥ 170
0 x t
0 x t
0 x t
1 x t
0 x t
0 x t
1 x t
3 x t
300 160
CuZn20 R 270
R 320
R 400
R 480
270 - 320
320 - 400
400 - 480
480 - 570
≤ 150
≥ 200
≥ 320
≥ 440
38
20
5
3
55 - 105
95 - 155
120 - 180
≥ 150
0 x t
0 x t
0 x t
0 x t
0 x t
0 x t
320 180
CuZn30 R 270
R 350
R 410
R 480
270 - 350
350 - 430
410 - 490
480 - 580
≤ 160
≥ 200
≥ 430
≥ 430
40
21
9
4
95 - 125
120 - 155
150 - 180
170 - 200
0 x t
0 x t
0 x t
1 x t
0 x t
1 x t
2 x t
3 x t
330 180
CuZn37 R 300
R 350
R 410
R 480
R 550
300 - 370
350 - 440
410 - 490
480 - 560
550 - 640
≤ 180
≥ 200
≥ 260
≥ 430
≥ 500
38
19
8
3
55 - 105
95 - 155
120 - 190
≥ 150
≥ 170
0 x t
0 x t
0 x t
0.5 x t
1 x t
0 x t
0 x t
0 x t
1 x t
3 x t
350 190
CuZn23Al3Co R 660
R 740
R 820
660 - 750
740 - 830
≥ 820
≥ 580
≥ 660
≥ 780
10
3
2
190 - 220
210 - 240
≥ 235
0 x t
1 x t
0 x t
2 x t
≥ 400 230

1) t: Banddicke max 0,5 mm

Nachteile der Kupfer-Zink-Legierungen sind die mit steigendem Zinkgehalt zunehmende Neigung zur Spannungsrisskorrosion und das im Vergleich zu anderen Kupferlegierungen schlechte Spannungsrelaxationsverhalten.

Von den Sondermessingen kommt vor allem CuZn23Al3Co als Kontaktträgerwerkstoff zum Einsatz. Dieser Werkstoff erreicht wesentlich höhere Festigkeitswerte als die Standard-Messinge. Obwohl CuZn23Al3Co zu den naturharten Legierungen gerechnet wird, erreicht er bei geeigneter Anlassbehandlung eine ausgeprägte Festigkeitszunahme.

Figure 1 Zustandsdiagramm Kupfer-Zink für den Bereich 0 bis 60 Massen-% Zink

Figure 2 Festigkeitseigenschaften von Messing in Abhängigkeit vom Kupfergehalt (Kaltumformung 0 und 50%)

Figure 3 Verfestigungsverhalten von CuZn36 durch Kaltumformung

Figure 4 Erweichungsverhalten von CuZn36 nach 3h Glühdauer und einer Kaltumformung von 25%

Figure 1: Zustandsdiagramm Kupfer-Zink für den Bereich 0 bis 60 Massen-% Zink
Figure 2: Festigkeitseigenschaften von Messing in Abhängigkeit vom Kupfergehalt (Kaltumformung 0 und 50%)
Figure 3: Verfestigungsverhalten von CuZn36 durch Kaltumformung
Figure 4: Erweichungsverhalten von CuZn36 nach 3h Glühdauer und einer Kaltumformung von 25%

Kupfer-Zinn-Legierungen (Zinnbronze)

Because of their good elastic spring properties and formability the copper-tin alloys CuSn6 and CuSn8 are standard materials for spring contact elements in electrome-chanical components such as connectors, switches, and relays Table 3 and Table 4. Besides these other alloys such as CuSn4 and CuSn5 and the multi-metal tin bronze CuSn3Zn9 have significant usage – mainly in North America. Figure 6 shows the copper rich side of the phase diagram for the CuSn system. The mechanical property values achieved by cold forming are superior to these of the brass alloys Figure 7. They increase significantly with increasing Sn content. The work hardening and softening behavior are shown for the example of CuSn8 in Figure 8 and Figure 9. The stress relaxation properties for CuSn alloys are good for up to 100°C, deteriorate however quickly for temperatures above 150°C.


Table 3: Physical Properties of Copper-Tin Alloys
Material
Designation
EN UNS
Composition
[wt%]
Density
[g/cm3]
Electrical
Conductivity
Electrical
Resistivity
[μΩ·cm]
Thermal
Conductivity
[W/(m·K)]
Coeff. of Linear
Thermal
Expansion
[10-6/K]
Modulus of
Elasticity
[GPa]
Softening Temperature
(approx. 10% loss in
strength)
[°C]
Melting
Temp Range
[°C]
[MS/m] [% IACS]
CuSn4
CW450K
C51100
Sn 3.5 - 4.5
P 0.01 - 0.4
Cu Rest
8.85 12.0 20 8.3 118 18.0 120 ca. 260 960 - 1060
CuSn5
CW451K
C51000
Sn 4.5 - 5.5
P 0.01 - 0.4
Cu Rest
8.85 10.0 17 10.0 96 18.0 120 ca. 260 940 - 1050
CuSn6
CW452K
C51900
Sn 5.5 - 7.0
P 0.01 - 0.4
Cu Rest
8.80 9.0 15 11.1 75 18.5 118 ca. 280 910 - 1040
CuSn8
CW453K
C52100
Sn 7.5 - 8.5
P 0.01 - 0.4
Cu Rest
8.80 7.5 13 13.3 67 18.5 115 ca. 320 875 - 1025
CuSn3Zn9
CW454K
C42500
Zn 7.5 - 10
Sn 1.5 - 3.5
P 0.2
Ni 0.2
Cu Rest
8.75 12 28 6.2 120 18.4 126 ca. 250 900 - 1015


Table 4: Mechanical Properties of Copper-Tin Alloys
Material Hardness
Condition
Tensile Strength Rm
[MPa]
0,2% Yield Strength
Rp02
[MPa]
Elongation
A50
[%]
Vickers
Hardness
HV
Bend Radius1)
perpendicular to
rolling direction
Bend Radius1)
parallel to
rolling direction
Spring Bending
Limit σFB
[MPa]
Spring Fatigue
Limit σBW
[MPa]
CuSn4 R 290
R 390
R 480
R 540
R 610
290 - 390
390 - 490
480 - 570
540 - 630
≥ 610
≤ 190
≥ 210
≥ 420
≥ 490
≥ 540
40
13
5
4
2
70 - 100
115 - 155
150 - 180
170 - 200
≥ 190
0 x t
0 x t
0 x t
0 x t
0 x t
0 x t
0 x t
1 x t
420 200
CuSn5 R 310
R 400
R 490
R 550
R 630
R 690
310 - 390
400 - 500
490 - 580
550 - 640
630 - 720
≥ 690
≤ 250
≥ 240
≥ 430
≥ 510
≥ 600
≥ 670
45
17
10
6
3
75 - 105
120 - 160
160 - 190
180 - 210
200 - 230
≥ 220
0 x t
0 x t
0 x t
0 x t
1 x t
0 x t
0 x t
0 x t
1 x t
2 x t
460 220
CuSn6 R 350
R 420
R 500
R 560
R 640
R 720
350 - 420
420 - 520
500 - 590
560 - 650
640 - 730
≥ 720
≤ 300
≥ 260
≥ 450
≥ 500
≥ 600
≥ 690
45
20
10
7
4
80 - 110
125 - 165
160 - 190
180 - 210
200 - 230
≥ 220
0 x t
0 x t
0 x t
0 x t
1 x t
0 x t
0 x t
0 x t
1 x t
2 x t
480 230
CuSn8 R 370
R 450
R 540
R 600
R 660
R 740
370 - 450
450 - 550
540 - 630
600 - 690
660 - 750
≥ 740
≤ 300
≥ 280
≥ 460
≥ 530
≥ 620
≥ 700
50
23
15
7
4
90 - 120
135 - 175
170 - 200
190 - 220
210 - 240
≥ 230
0 x t
0 x t
0 x t
1 x t
2 x t
0 x t
0 x t
0 x t
1 x t
2 x t
520 240
CuSn3Zn9 R 320
R 380
R 430
R 510
R 580
R 660
320 - 380
380 - 430
430 - 520
510 - 600
580 - 690
≥ 660
≤ 230
≥ 200
≥ 330
≥ 430
≥ 520
≥ 610
25
18
6
3
4
80 - 110
110 - 140
140 - 170
160 - 190
180 - 210
≥ 200
0 x t
0 x t
0 x t
0 x t
1 x t
0 x t
0 x t
0 x t
1 x t
2 x t
500 210

1) t: Strip thickness max. 0.5 mm

Figure 5 Softening of CuZn36 after 3 hrs annealing after 50% cold working)

Figure 6 Phase diagram of the Cu-Sn system for the range of 0 – 30 wt% Sn)

Figure 7 Mechanical properties of tin bronze depending on the tin content (cold working 0 and 50%)

Figure 8 Strain hardening of CuSn8 by cold working

Figure 9 Softening of CuSn8 after 3 hrs annealing after 50% cold working

Figure 5: Softening of CuZn36 after 3 hrs annealing after 50% cold working
Figure 6: Phase diagram of the Cu-Sn system for the range of 0 – 30 wt% Sn
Figure 7: Mechanical properties of tin bronze depending on the tin content (cold working 0 and 50%)
Figure 8: Strain hardening of CuSn8 by cold working
Figure 9: Softening of CuSn8 after 3 hrs annealing after 50% cold working

Copper-Nickel-Zinc Alloys (German Silver)

Despite its lower electrical conductivity, the good spring properties, high corrosion resistance, and the good workability make copper-nickel-zinc alloys a frequently used spring contact carrier in switches and relays. As illustrated in the phase diagram the most commonly used materials are in the α -range which means that they are single-phase alloys Figure 10. The formability and strength properties of german silver are comparable to those of the copper-tin alloys. The work hardening and softening behavior is illustrated on the example of CuNi12Zn24 in Figure 11 and Figure 12.

The relaxation behavior of Cu-Ni-Zn alloys is superior to the one for the tin bronzes. Additional advantages are the very good weldability, brazing properties, and the high corrosion resistance of these copper-nickel-zinc alloys.


Table 5: Physical Properties of Copper-Nickel-Zinc Alloys
Material
Designation
EN UNS
Composition
[wt%]
Density
[g/cm3]
Electrical
Conductivity
Electrical
Resistivity
[μΩ·cm]
Thermal
Conductivity
[W/(m·K)]
Coeff. of Linear
Thermal
Expansion
[10-6/K]
Modulus of
Elasticity
[GPa]
Softening Temperature
(approx. 10% loss in
strength)
[°C]
Melting
Temp Range
[°C]
[MS/m] [% IACS]
CuNi12Zn24
CW403J
C75700
Cu 63- 66
Ni 11 - 13
Mn 0.5
Fe 0.3
Zn Rest
8.67 4.4 7 30 42 18 125 ca. 400 1020 - 1065
CuNi18Zn20
CW409J
C76400
Cu 60 - 63
Ni 17 - 19
Mn 0.5
Fe 0.3
Zn Rest
8.73 3.3 5 23 33 17.7 135 ca. 440 1055 - 1105
CuNi18Zn27
CW410J
C77000
Cu 53 - 56
Ni 17 - 19
Mn 0.5
Fe 0.3
Zn Rest
8.70 3.3 5 23 32 17.7 135 ca. 440 1050 - 1100


Table 6: Mechanical Properties of Copper-Nickel-Zinc Alloys
Material Hardness
Condition
Tensile Strength Rm
[MPa]
0,2% Yield Strength
Rp02
[MPa]
Elongation
A50
[%]
Vickers
Hardness
HV
Bend Radius1)
perpendicular to
rolling direction
Bend Radius1)
parallel to
rolling direction
Spring Bending
Limit σFB
[MPa]
Spring Fatigue
Limit σBW
[MPa]
CuNi12Zn24 R 360
R 430
R 490
R 550
R ≥ 610
360 - 430
430 - 510
490 - 580
550 - 640
≥ 580
≤ 230
≥ 230
≥ 400
≥ 480
≥ 580
35
8
6
3
2
80 - 110
110 - 150
150 - 180
170 - 200
≥ 190
0 x t
0 x t
0 x t
0 x t
0 x t
0 x t
0 x t
0 x t
480 210
CuNi18Zn20 R 380
R 450
R 500
R 580
R ≥ 640
380 - 450
450 - 520
500 - 590
580 - 670
≥ 640
≤ 250
≥ 250
≥ 410
≥ 510
≥ 600
27
9
5
2
85 - 115
115 - 160
160 - 190
180 - 210
≥ 220
0 x t
0 x t
0 x t
0 x t
0 x t
0 x t
0 x t
0 x t
520 220
CuNi18Zn27 R 390
R 470
R 540
R 600
R ≥ 700
390 - 470
470 - 540
540 - 630
600 - 700
≥ 700
≤ 280
≥ 280
≥ 450
≥ 550
≥ 680
30
11
5
2
90 - 120
120 - 170
170 - 200
190 - 220
≥ 220
0 x t
0 x t
0 x t
0 x t
0 x t
0 x t
0 x t
1 x t
550 250

1) t: Strip thickness max. 0.5 mm

Figure 10 Copper rich region of the ternary copper-nickel-zinc phase diagram with indication of the more commonly available german silver materials

Figure 11 Strain hardening of CuNi12Zn24 by cold working

Figure 12 Softening of CuNi12Zn24 after 3 hrs annealing after 50% cold working

Copper rich region of the ternary copper-nickel-zinc phase diagram with indication of the more commonly available german silver materials
Figure 11: Strain hardening of CuNi12Zn24 by cold working
Figure 12: Softening of CuNi12Zn24 after 3 hrs annealing after 50% cold working

Copper-Silver-(Cadmium) Alloys (Silver Bronze)

Besides the low-allowed CuAg0.1 other copper materials with higher silver contents (2-6 wt%) are also used as contacts carrier materials. Some of them contain additionally 1.5 wt% Cd. The phase diagram Figure 13 shows that in principle the CuAg alloys can be precipitation hardened, but the possible increase in mechanical strength is rather small.

Copper-silver alloys have good spring properties and compared to other spring materials have a high electrical conductivity Table 7 and Table 8. The mechanical strength values in the strongly worked condition are comparable to those of the copper-tin alloys. Work hardening and softening behavior are shown for the example of CuAg2 (Figs. 13 – 15). For the relaxation behavior the silver bronzes are superior to German silver and tin bronze.

Because of their good spring properties combined with high electrical conductivity silver bronzes are suitable for the use contact springs in relays under higher current loads. Taking advantage of their high temperature stability they are also used as current carrying contacts in high voltage switchgear and as electrode material for resistance welding.


Table 7: Physical Properties of Selected Copper-Silver-(Cadmium) Alloys
Material
Designation
EN UNS
Composition
[wt%]
Density
[g/cm3]
Electrical
Conductivity
Electrical
Resistivity
[μΩ·cm]
Thermal
Conductivity
[W/(m·K)]
Coeff. of Linear
Thermal
Expansion
[10-6/K]
Modulus of
Elasticity
[GPa]
Softening Temperature
(approx. 10% loss in
strength)
[°C]
Melting
Temp Range
[°C]
[MS/m] [% IACS]
CuAg2
not standardized
Ag 2
Cu Rest
9.0 49 85 2.0 330 17.5 123 ca. 330 1050 - 1075
CuAg2Cd1,5
not standardized
Ag 2
Cd1,5
Cu Rest
9.0 43 74 2.3 260 17.8 121 ca. 350 970 - 1055
CuAg6
not standardized
Ag 6
Cu Rest
9.2 38 66 2.4 270 17.5 120 960 - 1050


Table 8: Mechanical Properties of Selected Copper-Silver-(Cadmium) Alloys
Material Hardness
Condition
Tensile Strength Rm
[MPa]
0,2% Yield Strength
Rp02
[MPa]
Elongation
A50
[%]
Vickers
Hardness
HV
Bend Radius1)
perpendicular to
rolling direction
Bend Radius1)
parallel to
rolling direction
Spring Bending
Limit σFB
[MPa]
Spring Fatigue
Limit σBW
[MPa]
CuAg2 R 280
R 380
R 450
R 550
280 - 380
380 - 460
450 - 570
≥ 550
≤ 180
≥ 300
≥ 420
≥ 500
30
6
3
1
50 - 110
100 - 140
130 - 165
≥ 160
0 x t
0 x t
1 x t
0 x t
0 x t
1 x t
400 190
CuAg2Cd1,5 R 300
R 380
R 480
R 600
300 - 380
380 - 490
480 - 620
≥ 600
≤ 190
≥ 310
≥ 440
≥ 550
30
8
3
1
55 - 110
100 - 145
130 - 170
≥ 160
0 x t
0 x t
1 x t
0 x t
0 x t
1 x t
440 220
CuAg6 R 320
R 400
R 500
R 650
320 - 400
400 - 510
500 - 660
≥ 650
≤ 210
≥ 330
≥ 460
≥ 610
30
6
3
1
70 - 120
110 - 150
145 - 175
≥ 175
0 x t
0 x t
1 x t
0 x t
0 x t
1 x t
460 230

1) t: Strip thickness max. 0.5 mm

Figure 13 Phase diagram of copper-silver for the range of 0 – 40 wt% silver

Figure 14 Strain hardening of CuAg2 by cold working

Figure 15 Softening of CuAg2 after 1 hr annealing after 40% cold working

Figure 16 Softening of CuAg2 after 1 hr annealing after 80% cold working

Figure 13: Phase diagram of copper-silver for the range of 0 – 40 wt% silver
Figure 14: Strain hardening of CuAg2 by cold working
Figure 15: Softening of CuAg2 after 1 hr annealing after 40% cold working
Figure 16: Softening of CuAg2 after 1 hr annealing after 80% cold working

Referenzen

Referenzen