Difference between revisions of "Werkstoffe aus Platin-Metallen"

From Electrical Contacts
Jump to: navigation, search
(temp edit)
(11 intermediate revisions by 2 users not shown)
Line 61: Line 61:
 
teuren Gold. Zwischenzeitlich hatte der Palladiumpreis ein Niveau erreicht, das
 
teuren Gold. Zwischenzeitlich hatte der Palladiumpreis ein Niveau erreicht, das
 
über dem des Goldes lag, so dass der Einsatz von Pd für Kontaktzwecke stark
 
über dem des Goldes lag, so dass der Einsatz von Pd für Kontaktzwecke stark
rückläufig war. Heute (Dez. 2021) liegt der Palladiumpreis bei ca 2600 Euro/oz.
+
rückläufig war. Heute (2011) liegt der Palladiumpreis bei ca. 50% des Goldpreises.
  
 
Die Legierungen des Pt mit Ru, Ir, Ni und W wurden vor allem in elektromechanischen
 
Die Legierungen des Pt mit Ru, Ir, Ni und W wurden vor allem in elektromechanischen
 
Bauelementen der Fernmeldetechnik und in hochwertigen Zündunterbrechern
 
Bauelementen der Fernmeldetechnik und in hochwertigen Zündunterbrechern
verbreitet eingesetzt (<xr id="tab:Physikalische Eigenschaften von Platin-Metallen und deren Legierungen"/>).
+
verbreitet eingesetzt (<xr id="tab:Physical Properties of platinum metals"/><!--(Tab. 2.7)-->).
  
<figtable id="tab:Physikalische Eigenschaften von Platin-Metallen und deren Legierungen">
+
<figtable id="tab:Physical Properties of platinum metals">
<caption>'''<!--Table 2.7:-->Physikalische Eigenschaften von Platin-Metallen und deren Legierungen'''</caption> 
+
[[File:Physical Properties of platinum metals.jpg|right|thumb|Physikalische Eigenschaften von Platin-Metallen und deren Legierungen]]
 
 
{| class="twocolortable" style="text-align: left; font-size: 12px"
 
|-
 
!Material
 
!Platin/Palladium<br/>Content<br/>[gew.%]
 
!Dichte<br/>[g/cm<sup>3</sup>]
 
!Schmelzpunkt oder<br/>Schmelzbereich<br/>[°C]
 
!Elekrische<br/>Widerstandskraft<br/>[µΩ*cm]
 
!Elektrische<br/>Leitfähigkeit<br/>[MS/m]
 
!Thermische<br/>Leitfähigkeit<br/>[W/m*K]
 
!Temperaturkoeffizient des<br/>elektrischen Widerstands<br/>[10<sup>3</sup>/K]
 
!Elastizitätsmodul<br/>[Gpa]
 
|-
 
|Pt (99,95)
 
| >99,95
 
|21,5
 
|1772
 
|10,6
 
|9,5
 
|72
 
|3,9
 
|173
 
|-
 
|PtIr5
 
|95
 
|21,5
 
|1774 - 1776
 
|22,2
 
|4,5
 
|42
 
|
 
|190
 
|-
 
|PtIr10
 
|90
 
|21,6
 
|1780 - 1785
 
|17,9
 
|5,6
 
|29
 
|2,0
 
|220
 
|-
 
|PtRu10
 
|90
 
|20,6
 
|ca. 1800
 
|33,3
 
|3,0
 
|
 
|0,83
 
|235
 
|-
 
|PtNi6
 
|92
 
|19,2
 
|1670 - 1710
 
|30
 
|3,3
 
|
 
|1,5
 
|180
 
|-
 
|PtW5
 
|95
 
|21,3
 
|1830 - 1860
 
|43,4
 
|2,3
 
|
 
|0,7
 
|185
 
|-
 
|Pd (99,95)
 
| >99,95
 
|12,0
 
|1554
 
|10,8
 
|9,3
 
|72
 
|3,8
 
|124
 
|-
 
|PdCu15
 
|85
 
|11,3
 
|1370 - 1400
 
|38,5
 
|2,6
 
|17
 
|0,49
 
|175
 
|-
 
|PdCu40
 
|60
 
|10,5
 
|1200 - 1230
 
|33,3
 
|3,0
 
|38
 
|0,28
 
|175
 
|-
 
|PdNi5
 
|95
 
|11,8
 
|1455 - 1485
 
|16,9
 
|5,9
 
|
 
|2,47
 
|175
 
|-
 
|}
 
 
</figtable>
 
</figtable>
  
 +
Today these components have been replaced in many applications by solid state technology and the usage of these materials is greatly reduced. Pd alloys however have a more significant importance. PdCu15 is widely used for example in automotive flasher relays. Because of their resistance to sulfide formation PdAg alloys are applied in various relay designs. The ability to thermally precipitation harden some multi component alloys based on PdAgAuPt they find special usage in wear resistant sliding contact applications. Pd44Ag38Cu15PtAuZn is a standard alloy in this group <xr id="tab:Mechanical_Properties_of_the_Platinum_Metals_and_their_Alloys"/><!--(Tab 2.8)--> und <xr id="tab:Contact_and_Switching_Properties_of_the_Platinum_Metals_and_their_Alloys"/><!--(Tab. 2.9)-->
  
Heute werden diese Werkstoffe aus
+
Platinum and palladium alloys are mainly used similar to the gold based materials in the form of welded wire and profile segments but rarely as contact rivets. Because of the high precious metal prices joining technologies are used that allow the most economic application of the contact alloy in the area where functionally needed. Because of their resistance to material transfer they are used for DC applications and due to their higher arc erosion resistance they are applied for medium electrical loads up to about 30W in relays and switches <xr id="fig:Application_Examples_and_Form_of_Supply_for_Platinum_Metals_and_their_Alloys"/><!--(Table 2.10)-->. Multi-component alloys based on Pd with higher hardness and wear resistance are mainly used as spring arms in sliding contact systems and DC miniature motors.
Preisgründen nur noch selten verwendet. Pd-Legierungen haben dagegen
 
wesentlich größere Bedeutung. So ist z.B. PdCu15 für Blinkgeber im Kfz weit
 
verbreitet. PdAg-Legierungen werden aufgrund ihrer Beständigkeit gegenüber
 
Sulfidbildung in der Relaistechnik häufig eingesetzt. Thermisch aushärtbare
 
Mehrkomponentenlegierungen z.B. auf PdAgAuPt-Basis kommen aufgrund ihrer
 
herausragenden mechanischen Eigenschaften in Gleitkontaktsystemen zur Anwendung.
 
Pd44Ag38Cu15 PtAuZn gilt dabei als Standardlegierung dieser
 
Werkstoffgruppe (<xr id="tab:Mechanical_Properties_of_the_Platinum_Metals_and_their_Alloys"/><!--(Tab 2.8)--> und <xr id="tab:Contact_and_Switching_Properties_of_the_Platinum_Metals_and_their_Alloys"/><!--(Tab. 2.9)-->).
 
 
 
Platin- und Palladium-Legierungen kommen ähnlich wie Gold-Legierungen
 
üblicherweise als geschweißte Draht- und Profilabschnitte, seltener als
 
Kontaktniete zum Einsatz. Aufgrund der sehr hohen Edelmetallpreise werden
 
solche Verbindungsverfahren verwendet, bei denen ein sparsamer Edelmetalleinsatz
 
gewährleistet ist. Platin- und Palladium-Werkstoffe werden wegen ihrer
 
Beständigkeit gegenüber Materialwanderung in Gleichstromkreisen und ihrer
 
verglichen mit Gold-Legierungen höheren Abbrandfestigkeit in Relais und
 
Schaltern bei mittlerer elektrischer Belastung bis etwa 30 Watt eingesetzt (<xr id="fig:Application_Examples_and_Form_of_Supply_for_Platinum_Metals_and_their_Alloys"/><!--(Table 2.10)-->). Mehrkomponentenlegierungen auf Pd-Basis finden wegen ihrer hohen
 
mechanischen Verschleißfestigkeit verbreitet Anwendung als Schleiffedern in
 
Gleitkontaktsystemen und Gleichstrom-Kleinstmotoren.
 
  
 
<figtable id="tab:Mechanical_Properties_of_the_Platinum_Metals_and_their_Alloys">
 
<figtable id="tab:Mechanical_Properties_of_the_Platinum_Metals_and_their_Alloys">
<caption>'''Festigkeitseigenschaften von Platin-Metallen und deren Legierungen'''</caption>
+
<caption>'''<!--Table 2.8:-->Mechanical Properties of the Platinum Metals and their Alloys'''</caption>
 
<table class="twocolortable">
 
<table class="twocolortable">
 
<tr>
 
<tr>
<th rowspan="2">Werkstoff</th><th colspan="2">Zugfestigkeit [MPa]</th><th colspan="2">Dehnung A [%]</th><th colspan="2">Vickershärte HV 1</th></tr>
+
<th rowspan="2">Material</th><th colspan="2">Tensile Strength [MPa]</th><th colspan="2">Elongation A [%]</th><th colspan="2">Vickers Hardness HV 1</th></tr>
<tr><th>weich</th><th>70% verformt</th><th>weich</th><th>70% verformt</th><th>weich</th><th>70% verformt</th></tr>
+
<tr><th>soft</th><th>70% cold worket</th><th>soft</th><th>70% cold worket</th><th>soft</th><th>70% cold worket</th></tr>
 
<tr><td>Pt (99,95)</td><td>150</td><td>360</td><td>40</td><td>3</td><td>40</td><td>120</td></tr>
 
<tr><td>Pt (99,95)</td><td>150</td><td>360</td><td>40</td><td>3</td><td>40</td><td>120</td></tr>
 
<tr><td>PtIr5</td><td>260</td><td>550</td><td>25</td><td>2</td><td>85</td><td>160</td></tr>
 
<tr><td>PtIr5</td><td>260</td><td>550</td><td>25</td><td>2</td><td>85</td><td>160</td></tr>
Line 229: Line 97:
 
</figtable>
 
</figtable>
  
*maximal erreichbare Härte
+
*maximum hardness
  
 
<figtable id="tab:Contact_and_Switching_Properties_of_the_Platinum_Metals_and_their_Alloys">
 
<figtable id="tab:Contact_and_Switching_Properties_of_the_Platinum_Metals_and_their_Alloys">
 
<table class="twocolortable">
 
<table class="twocolortable">
<caption> '''<!--Table 2.9:-->Kontakt- und Schalteigenschaften von Platin-Metallen und deren Legierungen'''</caption>
+
<caption> '''<!--Table 2.9:-->Contact and Switching Properties of the Platinum Metals and their Alloys'''</caption>
<tr><th><p class="s11">Werkstoff</p></th><th><p class="s12">Eigenschaften<th colspan="2"></p></th></tr><tr><td><p class="s11">Pt</p></td><td><p class="s12">Sehr hohe Korrosionsbeständigkeit</p></td><td/></tr><tr><td><p class="s11">PtIr5 - 10</p></td><td><p class="s12">Sehr hohe Korrosionsbeständigkeit, niedriger Kontaktwiderstand</p></td><td><p class="s12">hohe Abbrandfestigkeit, niedriger Kontaktwiderstand hohe Härte</p></td></tr><tr><td><p class="s11">PtRu10</p></td><td><p class="s12">Sehr hohe Korrosionsbeständigkeit, geringe Schweißneigung</p></td><td><p class="s12">niedriger Kontaktwiderstand,</p><p class="s12">sehr hohe Härte</p></td></tr><tr><td><p class="s11">PtNi8</p></td><td><p class="s12">Geringe Neigung zu Materialwanderung</p></td><td><p class="s12">sehr hohe Härte</p></td></tr><tr><td><p class="s11">PtW5</p></td><td><p class="s12">Geringe Neigung zu Materialwanderung</p></td><td><p class="s12">hohe Härte</p></td></tr><tr><td><p class="s11">Pd</p></td><td><p class="s12">Starke Neigung zu „brown powder“- Bildung</p></td><td><p class="s12">weniger abbrandfest als Pt</p></td></tr><tr><td><p class="s11">PdCu15</p><p class="s11">PdCu40</p></td><td><p class="s12">Neigung zu „brown powder“- Bildung</p></td><td><p class="s12">weitgehend beständig gegenüber Materialwanderung,</p><p class="s12">hohe Härte</p></td></tr><tr><td><p class="s11">PdNi5</p></td><td><p class="s12">Starke Neigung zu „brown powder“- Bildung</p></td><td><p class="s12">geringe Schweißneigung</p></td></tr><tr><td><p class="s11">Pd44Ag38Cu15</p><p class="s11">PtAuZn</p></td><td><p class="s12">Hohe mechanische Verschleißfestigkeit</p></td><td><p class="s12">Standardwerkstoff für</p><p class="s12">Schleifkontakte</p></td></tr></table>
+
<tr><th><p class="s11">Material</p></th><th><p class="s12">Properties<th colspan="2"></p></th></tr><tr><td><p class="s11">Pt</p></td><td><p class="s12">Very high corrosion resistance</p></td><td/></tr><tr><td><p class="s11">PtIr5 - 10</p></td><td><p class="s12">Very high corrosion resistance, low contact resistance</p></td><td><p class="s12">High arc erosion resistance, high hardness</p></td></tr><tr><td><p class="s11">PtRu10</p></td><td><p class="s12">Very high corrosion resistance, low welding tendency</p></td><td><p class="s12">Low contact resistance, very</p><p class="s12">high hardness</p></td></tr><tr><td><p class="s11">PtNi8</p></td><td><p class="s12">Low material transfer tendency</p></td><td><p class="s12">Very high hardness</p></td></tr><tr><td><p class="s11">PtW5</p></td><td><p class="s12">Low material transfer tendency</p></td><td><p class="s12">High hardness</p></td></tr><tr><td><p class="s11">Pd</p></td><td><p class="s12">Strong tendency to “Brown Powder” formation</p></td><td><p class="s12">Less arc erosion resistant than Pt</p></td></tr><tr><td><p class="s11">PdCu15</p><p class="s11">PdCu40</p></td><td><p class="s12">Tendency to “Brown Powder” formation</p></td><td><p class="s12">Mostly resistant to material</p><p class="s12">transfer, high hardness</p></td></tr><tr><td><p class="s11">PdNi5</p></td><td><p class="s12">Strong tendency to “Brown Powder” formation</p></td><td><p class="s12">Low welding tendency</p></td></tr><tr><td><p class="s11">Pd44Ag38Cu15</p><p class="s11">PtAuZn</p></td><td><p class="s12">High mechanical wear resistance</p></td><td><p class="s12">Standard material for sliding</p><p class="s12">contact brushes</p></td></tr></table>
 
</figtable>
 
</figtable>
  
Line 241: Line 109:
 
<figtable id="fig:Application_Examples_and_Form_of_Supply_for_Platinum_Metals_and_their_Alloys">
 
<figtable id="fig:Application_Examples_and_Form_of_Supply_for_Platinum_Metals_and_their_Alloys">
 
<table class="twocolortable">
 
<table class="twocolortable">
<caption>'''<!--Table 2.10:-->Anwendungsbeispiele und Lieferformen von Platin-Metallen und deren Legierungen'''</caption>
+
<caption>'''<!--Table 2.10:-->Application Examples and Form of Supply for Platinum Metals and their Alloys'''</caption>
<tr><th><p class="s11">Werkstoff</p></th><th><p class="s12">Anwendungsbeispiele</p></th><th><p class="s12">Lieferformen</p></th></tr><tr><td><p class="s11">Pt (99,95)</p></td><td><p class="s12">Relais</p></td><td><p class="s12">Kontaktniete, geschweißte Kontaktteile</p></td></tr><tr><td><p class="s11">PtIr5</p><p class="s11">PtIr10</p><p class="s11">PtRu10</p><p class="s11">PtNi8</p><p class="s11">PtW5</p></td><td><p class="s12">Relais, Gleitkontaktsysteme,</p><p class="s12">Zündunterbrecher für Kfz</p></td><td><p class="s12">'''Kontakthalbzeuge:'''</p><p class="s12">Drähte, rollennahtgeschweißte Profile</p><p class="s12">'''Kontaktteile:'''</p><p class="s12">Plättchen, Drahtformteile, massive Kontaktniete, Bimetallniete, geschweißte Kontaktteile</p></td></tr><tr><td><p class="s11">Pd (99,95)</p><p class="s11">PdNi5</p></td><td><p class="s12">Relais</p></td><td><p class="s12">Miniprofile, Kontaktniete, geschweißte Kontaktteile</p></td></tr><tr><td><p class="s11">PdCu15</p><p class="s11">PdCu40</p></td><td><p class="s12">Blinkrelais für Kfz</p></td><td><p class="s12">Miniprofile, Bimetallniete</p></td></tr><tr><td><p class="s11">Pd35AuAgPt</p><p class="s11">Pd44Ag38Cu15</p><p class="s11">PtAuZn</p><p class="s11">Pd40Co40W20</p></td><td><p class="s12">Potentiometer, Schleifringübertrager,</p><p class="s12">DC-Kleinstmotoren</p></td><td><p class="s12">Drahtformteile, geschweißte Drahtabschnitte, Vieldrahtschleifer</p></td></tr></table>
+
<tr><th><p class="s11">Material</p></th><th><p class="s12">Application Examples</p></th><th><p class="s12">Forms of Supply</p></th></tr><tr><td><p class="s11">Pt (99,95)</p></td><td><p class="s12">Relays</p></td><td><p class="s12">Contact rivets, welded contact parts</p></td></tr><tr><td><p class="s11">PtIr5</p><p class="s11">PtIr10</p><p class="s11">PtRu10</p><p class="s11">PtNi8</p><p class="s11">PtW5</p></td><td><p class="s12">Relays, sliding contact systems,</p><p class="s12">automotive ignition breaker points</p></td><td><p class="s12">'''Semi-finished Contact Materials''':</p><p class="s12">Wire, seam-welded contact profiles</p><p class="s12">'''Contact Parts:'''</p><p class="s12">Tips, wire-formed parts, solid and composite contact rivets, welded contact parts</p></td></tr><tr><td><p class="s11">Pd (99,95)</p><p class="s11">PdNi5</p></td><td><p class="s12">Relays</p></td><td><p class="s12">Micro-profiles (weld tapes), contact rivets, welded contact parts</p></td></tr><tr><td><p class="s11">PdCu15</p><p class="s11">PdCu40</p></td><td><p class="s12">Automotive flasher relays</p></td><td><p class="s12">Micro-profiles, composite contact rivets</p></td></tr><tr><td><p class="s11">Pd35AuAgPt</p><p class="s11">Pd44Ag38Cu15</p><p class="s11">PtAuZn</p><p class="s11">Pd40Co40W20</p></td><td><p class="s12">Potentiometers, slip rings, miniature</p><p class="s12">DC motors</p></td><td><p class="s12">Wire-formed parts, welded wire segments, multi-arm sliding contact brushes</p></td></tr></table>
 
</figtable>
 
</figtable>
 +
 +
 +
<xr id="fig:Influence_of_1-20_atom%_of_different_additive_metals_on_the_electrical_resistivit_ p_of_platinum_(Degussa)"/>Influence of 1-20 atom% of different additive metals on the electrical resistivity p of platinum (Degussa)
 +
 +
<xr id="fig:Influence_of_1-20_atom%_of_different_additive_metals_on_the_electrical_resistivit_ p_of_platinum"/>
 +
Influence of 1-22 atom% of different additive metals on the electrical resistivity p of palladium
 +
 +
<xr id="fig:Phase_diagram_of_platinum-iridium"/>Fig. 2.27: Phase diagram of platinum-iridium
 +
 +
<xr id="fig:Phase_diagram_of_platinum-nickel"/>
 +
Fig. 2.28: Phase diagram of platinum-nickel
 +
 +
<xr id="fig:Phase_diagram_of_platinum-tungsten"/>
 +
Fig. 2.29: Phase diagram of platinum-tungsten
 +
 +
<xr id="fig:Phase_diagram_of_platinum-copper"/>
 +
Fig. 2.30: Phase diagram of palladium-copper
 +
 +
<xr id="fig:Strain_hardening_of_Pt_by_cold_working"/>
 +
Fig. 2.31: Strain hardening of Pt by cold working
 +
 +
<xr id="fig:Softening_of_Pt_after_annealing_for_0.5_hrs_after_80%_cold_working"/>
 +
Fig. 2.32: Softening of Pt after annealing for 0.5 hrs after 80% cold working
 +
 +
<xr id="fig:Strain_hardening_of_PtIr5_by_cold_working"/>
 +
Fig. 2.33: Strain hardening of PtIr5 by cold working
 +
 +
<xr id="fig:Softening_of_PtIr5_after_annealing_for_1_hr_after_different degrees_of_cold_working"/>
 +
Fig. 2.34: Softening of PtIr5 after annealing for 1 hr after different degrees of cold working
 +
 +
<xr id="fig:Strain_hardening_of_PtNi8_by_cold_working"/>Fig. 2.35: Strain hardening of PtNi8 by cold working
 +
 +
<xr id="fig:Softening_of_PtNi8_after_annealing_for_1_hr_after_80%_cold_working"/>
 +
Fig. 2.36: Softening of PtNi8 after annealing for 1 hr after 80% cold working
 +
 +
<xr id="fig:Strain_hardening_of_PtW5_by_cold_working"/>Fig. 2.37: Strain hardening of PtW5 by cold working
 +
 +
<xr id="fig:Softening_of_PtW5_after_annealing_for_1_hr_after_80%_cold_working"/>Fig. 2.38: Softening of PtW5 after annealing for 1hr after 80% cold working
 +
 +
<xr id="fig:Strain_hardening_of_Pd_99.99_by_cold_working"/>Fig. 2.39: Strain hardening of Pd 99.99 by cold working
 +
 +
<xr id="fig:Strain_hardening_of_PdCu15_by_cold_working"/>Fig. 2.40: Strain hardening of PdCu15 by cold working
 +
 +
<xr id="fig:Softening_of_PdCu15_after_annealing_for_0.5_hrs"/>Fig. 2.41: Softening of PdCu15 after annealing for 0.5 hrs
 +
 +
<xr id="fig:Strain_hardening_of_PdCu40_by_cold_working"/>Fig. 2.42: Strain hardening of PdCu40 by cold working
 +
 +
<xr id="fig:Softening_of_PdCu40_after_annealing_for_0.5_hrs_after_80%_cold_working"/>Fig. 2.43: Softening of PdCu40 after annealing for 0.5 hrs after 80% cold working
 +
 +
<xr id="fig:Electrical_resistivity_p_of_PdCu_alloys"/>Fig. 2.44: Electrical resistivity p of PdCu alloys with and without an annealing step for forming an ordered phase
 +
  
  
Line 250: Line 169:
  
 
<figure id="fig:Influence_of_1-20_atom%_of_different_additive_metals_on_the_electrical_resistivit_ p_of_platinum_(Degussa)">
 
<figure id="fig:Influence_of_1-20_atom%_of_different_additive_metals_on_the_electrical_resistivit_ p_of_platinum_(Degussa)">
[[File:Influence of platinum degussa.jpg|left|thumb|<caption>Einfluss von 1-20 Atom-% verschiedener Zusatzmetalle auf den spez. elektrischen Widerstand p von Platin (Degussa)</caption>]]
+
[[File:Influence of platinum degussa.jpg|left|thumb|<caption>Influence of 1- 20 atom% of different additive metals on the electrical resistivity p of platinum (Degussa)</caption>]]
 
</figure>
 
</figure>
  
 
<figure id="fig:Influence_of_1-20_atom%_of_different_additive_metals_on_the_electrical_resistivit_ p_of_platinum">
 
<figure id="fig:Influence_of_1-20_atom%_of_different_additive_metals_on_the_electrical_resistivit_ p_of_platinum">
[[File:Influence of palladium.jpg|left|thumb|<caption>Einfluss von 1-22 Atom-% verschiedener Zusatzmetalle auf den spezifischen elektrischen Widerstand p von Palladium (Degussa)</caption>]]
+
[[File:Influence of palladium.jpg|left|thumb|<caption>Influence of 1-22 atom% of different additive metals on the electrical resistivity p of palladium</caption>]]
 
</figure>
 
</figure>
  
 
<figure id="fig:Phase_diagram_of_platinum-iridium">
 
<figure id="fig:Phase_diagram_of_platinum-iridium">
[[File:Phase diagram of platinum iridium.jpg|left|thumb|<caption>Zustandsdiagramm von Platin-Iridium</caption>]]
+
[[File:Phase diagram of platinum iridium.jpg|left|thumb|<caption>Fig. 2.27:Phase diagram of platinum-iridium</caption>]]
 
</figure>
 
</figure>
  
 
<figure id="fig:Phase_diagram_of_platinum-nickel">
 
<figure id="fig:Phase_diagram_of_platinum-nickel">
[[File:Phase diagram of platinum nickel.jpg|left|thumb|<caption>Zustandsdiagramm von Platin-Nickel</caption>]]
+
[[File:Phase diagram of platinum nickel.jpg|left|thumb|<caption>Fig. 2.28:Phase diagram of platinum-nickel</caption>]]
 
</figure>
 
</figure>
  
 
<figure id="fig:Phase_diagram_of_platinum-tungsten">
 
<figure id="fig:Phase_diagram_of_platinum-tungsten">
[[File:Phase diagram of palladium copper.jpg|left|thumb|<caption>Zustandsdiagramm von Platin-Wolfram</caption>]]
+
[[File:Phase diagram of palladium copper.jpg|left|thumb|<caption>Fig. 2.29:Phase diagram of platinum-tungsten</caption>]]
 
</figure>
 
</figure>
  
 
<figure id="fig:Phase_diagram_of_platinum-copper">
 
<figure id="fig:Phase_diagram_of_platinum-copper">
[[File:Phase diagram of palladium copper2.jpg|left|thumb|<caption>Zustandsdiagramm von Palladium-Kupfer</caption>]]
+
[[File:Phase diagram of palladium copper2.jpg|left|thumb|<caption>Fig. 2.30: Phase diagram of palladium-copper</caption>]]
 
</figure>
 
</figure>
  
 
<figure id="fig:Strain_hardening_of_Pt_by_cold_working">
 
<figure id="fig:Strain_hardening_of_Pt_by_cold_working">
[[File:Strain hardening of Pt by cold working.jpg|left|thumb|<caption>Verfestigungsverhalten von Pt durch Kaltumformung</caption>]]
+
[[File:Strain hardening of Pt by cold working.jpg|left|thumb|<caption>Fig. 2.31: Strain hardening of Pt by cold working</caption>]]
 
</figure>
 
</figure>
  
 
<figure id="fig:Softening_of_Pt_after_annealing_for_0.5_hrs_after_80%_cold_working">
 
<figure id="fig:Softening_of_Pt_after_annealing_for_0.5_hrs_after_80%_cold_working">
[[File:Softening of Pt after annealing.jpg|left|thumb|<caption>Erweichungsverhalten von Pt nach 0,5h Glühdauer und einer Kaltumformung von 80%</caption>]]
+
[[File:Softening of Pt after annealing.jpg|left|thumb|<caption>Fig. 2.32: Softening of Pt after annealing for 0.5 hrs after 80% cold working</caption>]]
 
</figure>
 
</figure>
  
 
<figure id="fig:Strain_hardening_of_PtIr5_by_cold_working">
 
<figure id="fig:Strain_hardening_of_PtIr5_by_cold_working">
[[File:Strain hardening of PtIr5 by cold working.jpg|left|thumb|<caption>Verfestigungsverhalten von PtIr5 durch Kaltumformung</caption>]]
+
[[File:Strain hardening of PtIr5 by cold working.jpg|left|thumb|<caption>Fig. 2.33: Strain hardening of PtIr5 by cold working</caption>]]
 
</figure>
 
</figure>
  
 
<figure id="fig:Softening_of_PtIr5_after_annealing_for_1_hr_after_different degrees_of_cold_working">
 
<figure id="fig:Softening_of_PtIr5_after_annealing_for_1_hr_after_different degrees_of_cold_working">
[[File:Softening of PtIr5 after annealing.jpg|left|thumb|<caption>Erweichungsverhalten von PtIr5 nach 1h Glühdauer mit unterschiedlicher Kaltumformung</caption>]]
+
[[File:Softening of PtIr5 after annealing.jpg|left|thumb|<caption>Fig. 2.34: Softening of PtIr5 after annealing for 1 hr after different degrees of cold working</caption>]]
 
</figure>
 
</figure>
  
 
<figure id="fig:Strain_hardening_of_PtNi8_by_cold_working">
 
<figure id="fig:Strain_hardening_of_PtNi8_by_cold_working">
[[File:Strain hardening of PtNi8 by cold working.jpg|left|thumb|<caption>Verfestigungsverhalten von PtNi8 durch Kaltumformung</caption>]]
+
[[File:Strain hardening of PtNi8 by cold working.jpg|left|thumb|<caption>Fig. 2.35: Strain hardening of PtNi8 by cold working</caption>]]
 
</figure>
 
</figure>
  
 
<figure id="fig:Softening_of_PtNi8_after_annealing_for_1_hr_after_80%_cold_working">
 
<figure id="fig:Softening_of_PtNi8_after_annealing_for_1_hr_after_80%_cold_working">
[[File:Softening of PtNi8 after annealing.jpg|left|thumb|<caption>Erweichungsverhalten von PtNi8 nach 1h Glühdauer und einer Kaltumformung von 80%</caption>]]
+
[[File:Softening of PtNi8 after annealing.jpg|left|thumb|<caption>Fig. 2.36: Softening of PtNi8 after annealing for 1 hr after 80% cold working</caption>]]
 
</figure>
 
</figure>
  
 
<figure id="fig:Strain_hardening_of_PtW5_by_cold_working">
 
<figure id="fig:Strain_hardening_of_PtW5_by_cold_working">
[[File:Strain hardening of PtW5 by cold working.jpg|left|thumb|<caption>Verfestigungsverhalten von PtW5 durch Kaltumformung</caption>]]
+
[[File:Strain hardening of PtW5 by cold working.jpg|left|thumb|<caption>Fig. 2.37: Strain hardening of PtW5 by cold working</caption>]]
 
</figure>
 
</figure>
  
 
<figure id="fig:Softening_of_PtW5_after_annealing_for_1_hr_after_80%_cold_working">
 
<figure id="fig:Softening_of_PtW5_after_annealing_for_1_hr_after_80%_cold_working">
[[File:Softening of PtW5 after annealing.jpg|left|thumb|<caption>Erweichungsverhalten von PtW5 nach 1h Glühdauer und einer Kaltumformung von 80%</caption>]]
+
[[File:Softening of PtW5 after annealing.jpg|left|thumb|<caption>Fig. 2.38: Softening of PtW5 after annealing for 1 hr after 80% cold working</caption>]]
 
</figure>
 
</figure>
  
 
<figure id="fig:Strain_hardening_of_Pd_99.99_by_cold_working">
 
<figure id="fig:Strain_hardening_of_Pd_99.99_by_cold_working">
[[File:Strain hardening of Pd-99 99by cold working.jpg|left|thumb|<caption>Verfestigungsverhalten von Pd 99,99 durch Kaltumformung</caption>]]
+
[[File:Strain hardening of Pd-99 99by cold working.jpg|left|thumb|<caption>Fig. 2.39:  Strain hardening of Pd 99.99 by cold working</caption>]]
 
</figure>
 
</figure>
  
 
<figure id="fig:Strain_hardening_of_PdCu15_by_cold_working">
 
<figure id="fig:Strain_hardening_of_PdCu15_by_cold_working">
[[File:Strain hardening of PdCu15 by cold working.jpg|left|thumb|<caption>Verfestigungsverhalten von PdCu15 durch Kaltumformung</caption>]]
+
[[File:Strain hardening of PdCu15 by cold working.jpg|left|thumb|<caption>Fig. 2.40:  Strain hardening of PdCu15 by cold working</caption>]]
 
</figure>
 
</figure>
  
 
<figure id="fig:Softening_of_PdCu15_after_annealing_for_0.5_hrs">
 
<figure id="fig:Softening_of_PdCu15_after_annealing_for_0.5_hrs">
[[File:Softening of PdCu15 after annealing.jpg|left|thumb|<caption>Erweichungsverhalten von PdCu15 nach 0,5h Glühdauer und einer Kaltumformung von 80%</caption>]]
+
[[File:Softening of PdCu15 after annealing.jpg|left|thumb|<caption>Softening of PdCu15 after annealing for 0.5 hrs</caption>]]
 
</figure>
 
</figure>
  
 
<figure id="fig:Strain_hardening_of_PdCu40_by_cold_working">
 
<figure id="fig:Strain_hardening_of_PdCu40_by_cold_working">
[[File:Strain hardening of PdCu40 by cold working.jpg|left|thumb|<caption>Verfestigungsverhalten von PdCu40 durch Kaltumformung</caption>]]
+
[[File:Strain hardening of PdCu40 by cold working.jpg|left|thumb|<caption>Strain hardening of PdCu40 by cold working</caption>]]
 
</figure>
 
</figure>
  
 
<figure id="fig:Softening_of_PdCu40_after_annealing_for_0.5_hrs_after_80%_cold_working">
 
<figure id="fig:Softening_of_PdCu40_after_annealing_for_0.5_hrs_after_80%_cold_working">
[[File:Softening of PdCu40 after annealing.jpg|left|thumb|<caption>Erweichungsverhalten von PdCu40 nach 0,5h Glühdauer und einer Kaltumformung von 80%</caption>]]
+
[[File:Softening of PdCu40 after annealing.jpg|left|thumb|<caption>Softening of PdCu40 after annealing for 0.5 hrs after 80% cold working</caption>]]
 
</figure>
 
</figure>
  
 
<figure id="fig:Electrical_resistivity_p_of_PdCu_alloys">
 
<figure id="fig:Electrical_resistivity_p_of_PdCu_alloys">
[[File:Electrical resistivity p of PdCu alloys.jpg|left|thumb|<caption>Spez. elektrischer Widerstand p von PdCu-Legierungen ohne und mit einer Glühbehandlung zur Ausbildung einer geordneten Phase</caption>]]
+
[[File:Electrical resistivity p of PdCu alloys.jpg|left|thumb|<caption>Electrical resistivity p of PdCu alloys with and without an annealing step for forming an ordered phase</caption>]]
 
</figure>
 
</figure>
  

Revision as of 18:13, 22 September 2014

Zur Platingruppe zählen die Elemente Pt, Pd, Rh, Ru, Ir und Os (Table 1). Für Anwendungen in der Kontakttechnik haben Platin und Palladium als Legierungsgrundmetalle sowie Ruthenium und Iridium als Legierungsbestandteile praktische Bedeutung. Pt und Pd sind zwar ähnlich korrosionsbeständig wie Au, neigen aber aufgrund ihrer katalytischen Eigenschaften dazu, an der Kontaktoberfläche adsorbierte organische Dämpfe zu polymerisieren. Bei Reibbeanspruchung der Kontaktpartner entsteht dabei als Polymerisationsprodukt das sog. brown powder, das zu einer starken Erhöhung des Kontaktwiderstandes führen kann. Daher werden Pt und Pd nicht rein, sondern ausschließlich in Legierungsform für Kontaktzwecke eingesetzt.

Table 1: Eigenschaften, Verarbeitung und Anwendungsformen der Platin-Metalle
Elemente Eigenschaften Verarbeitung Anwendungsformen
Ru
Ruthenium
Mattgrau bis silberweiß, sehr hart und spröde, gegen Säuren bei Anwesenheit von
Sauerstoff beständig, oxidiert bei Erhitzen an Luft
Aufdampfen, Sputtern, pulvermetallurgisch,
Warmverformen nur bei 1200-1500°C möglich
Pulver, in Blechen und Beschichtungen,
in Drähten meist nur als Legierungsbestandteil
Rh
Rhodium
Nahezu silberweiß, sehr hart und spröde, in Säuren unlöslich, oxidiert an Luft
bei Rotglut
Galvanisch, Aufdampfen, Sputtern, nach Warmverformung
bei 800-1000°C, Kaltverformen möglich
Beschichtungen (galvanische Überzüge), Legierungsbestandteil,
in geringem Umfang als Bleche und Drähte
Pd
Palladium
Mattweiß, duktil, gegen die meisten Säuren beständig, oxidiert bei Rotglut Galvanisch, Aufdampfen, Sputtern,
Kaltverformen
Bleche, Bänder, Rohre, Drähte, Niete
und Beschichtungen
Os
Osmium
Bläulichweiß, härtestes Platinmetall, sehr spröde, gegen nichtoxidierende Säuren
beständig, an Luft leicht oxidierbar
Pulvermetallurgisch Pulver, Legierungsbestandteil
Ir
Iridium
Nahezu silberweiß, sehr hart und spröde,
säurebeständig, oxidiert bei Rotglut
Aufdampfen, Sputtern, pulvermetallurgisch,
bei 1200-1500°C Warmverformen möglich
Pulver, Legierungsbestandteil, in geringem,
Umfang als Blech
Pt
Platin
Grauweiß, duktil, säurebeständig außer gegen Königswasser, HBr und HJ,
oxidationsbeständig bei Rotglut
Galvanisch, Aufdampfen,
Sputtern, Kaltverformen
Bleche, Bänder, Rohre, Drähte, Niete und Beschichtungen


Rhodium kommt als massiver Kontaktwerkstoff nicht zum Einsatz, wird jedoch als galvanisch aufgebrachte Schicht z.B. in Gleitkontaktsystemen verwendet. Ruthenium dient hauptsächlich als Legierungskomponente in PdRu15. Die Metalle Osmium und Iridium finden keine praktische Anwendung in der Kontakttechnik.

Da Pd lange Zeit sehr preisstabil war, galt es als geeignete Alternative zu dem teuren Gold. Zwischenzeitlich hatte der Palladiumpreis ein Niveau erreicht, das über dem des Goldes lag, so dass der Einsatz von Pd für Kontaktzwecke stark rückläufig war. Heute (2011) liegt der Palladiumpreis bei ca. 50% des Goldpreises.

Die Legierungen des Pt mit Ru, Ir, Ni und W wurden vor allem in elektromechanischen Bauelementen der Fernmeldetechnik und in hochwertigen Zündunterbrechern verbreitet eingesetzt (Table 2).

Physikalische Eigenschaften von Platin-Metallen und deren Legierungen

Today these components have been replaced in many applications by solid state technology and the usage of these materials is greatly reduced. Pd alloys however have a more significant importance. PdCu15 is widely used for example in automotive flasher relays. Because of their resistance to sulfide formation PdAg alloys are applied in various relay designs. The ability to thermally precipitation harden some multi component alloys based on PdAgAuPt they find special usage in wear resistant sliding contact applications. Pd44Ag38Cu15PtAuZn is a standard alloy in this group Table 3 und Table 4

Platinum and palladium alloys are mainly used similar to the gold based materials in the form of welded wire and profile segments but rarely as contact rivets. Because of the high precious metal prices joining technologies are used that allow the most economic application of the contact alloy in the area where functionally needed. Because of their resistance to material transfer they are used for DC applications and due to their higher arc erosion resistance they are applied for medium electrical loads up to about 30W in relays and switches Table 5. Multi-component alloys based on Pd with higher hardness and wear resistance are mainly used as spring arms in sliding contact systems and DC miniature motors.

Table 3: Mechanical Properties of the Platinum Metals and their Alloys
MaterialTensile Strength [MPa]Elongation A [%]Vickers Hardness HV 1
soft70% cold worketsoft70% cold worketsoft70% cold worket
Pt (99,95)15036040340120
PtIr526055025285160
PtIr10340570242105210
PtRu106501000242195320
PtNi8640950222200320
PtW5530860212150270
Pd (99,95)2004204224090
PdCu1540078038290220
PdCu40550950352120260
PdNi534070025295200
Pd35AuAgPt420*
Pd44Ag38Cu15 PtAuZn405*
Pd40Co40W20680*
  • maximum hardness

Table 4: Contact and Switching Properties of the Platinum Metals and their Alloys

Material

Properties

Pt

Very high corrosion resistance

PtIr5 - 10

Very high corrosion resistance, low contact resistance

High arc erosion resistance, high hardness

PtRu10

Very high corrosion resistance, low welding tendency

Low contact resistance, very

high hardness

PtNi8

Low material transfer tendency

Very high hardness

PtW5

Low material transfer tendency

High hardness

Pd

Strong tendency to “Brown Powder” formation

Less arc erosion resistant than Pt

PdCu15

PdCu40

Tendency to “Brown Powder” formation

Mostly resistant to material

transfer, high hardness

PdNi5

Strong tendency to “Brown Powder” formation

Low welding tendency

Pd44Ag38Cu15

PtAuZn

High mechanical wear resistance

Standard material for sliding

contact brushes


Table 5: Application Examples and Form of Supply for Platinum Metals and their Alloys

Material

Application Examples

Forms of Supply

Pt (99,95)

Relays

Contact rivets, welded contact parts

PtIr5

PtIr10

PtRu10

PtNi8

PtW5

Relays, sliding contact systems,

automotive ignition breaker points

Semi-finished Contact Materials:

Wire, seam-welded contact profiles

Contact Parts:

Tips, wire-formed parts, solid and composite contact rivets, welded contact parts

Pd (99,95)

PdNi5

Relays

Micro-profiles (weld tapes), contact rivets, welded contact parts

PdCu15

PdCu40

Automotive flasher relays

Micro-profiles, composite contact rivets

Pd35AuAgPt

Pd44Ag38Cu15

PtAuZn

Pd40Co40W20

Potentiometers, slip rings, miniature

DC motors

Wire-formed parts, welded wire segments, multi-arm sliding contact brushes


Figure 1Influence of 1-20 atom% of different additive metals on the electrical resistivity p of platinum (Degussa)

Figure 2 Influence of 1-22 atom% of different additive metals on the electrical resistivity p of palladium

Figure 3Fig. 2.27: Phase diagram of platinum-iridium

Figure 4 Fig. 2.28: Phase diagram of platinum-nickel

Figure 5 Fig. 2.29: Phase diagram of platinum-tungsten

Figure 6 Fig. 2.30: Phase diagram of palladium-copper

Figure 7 Fig. 2.31: Strain hardening of Pt by cold working

Figure 8 Fig. 2.32: Softening of Pt after annealing for 0.5 hrs after 80% cold working

Figure 9 Fig. 2.33: Strain hardening of PtIr5 by cold working

Figure 10 Fig. 2.34: Softening of PtIr5 after annealing for 1 hr after different degrees of cold working

Figure 11Fig. 2.35: Strain hardening of PtNi8 by cold working

Figure 12 Fig. 2.36: Softening of PtNi8 after annealing for 1 hr after 80% cold working

Figure 13Fig. 2.37: Strain hardening of PtW5 by cold working

Figure 14Fig. 2.38: Softening of PtW5 after annealing for 1hr after 80% cold working

Figure 15Fig. 2.39: Strain hardening of Pd 99.99 by cold working

Figure 16Fig. 2.40: Strain hardening of PdCu15 by cold working

Figure 17Fig. 2.41: Softening of PdCu15 after annealing for 0.5 hrs

Figure 18Fig. 2.42: Strain hardening of PdCu40 by cold working

Figure 19Fig. 2.43: Softening of PdCu40 after annealing for 0.5 hrs after 80% cold working

Figure 20Fig. 2.44: Electrical resistivity p of PdCu alloys with and without an annealing step for forming an ordered phase



Figure 1: Influence of 1- 20 atom% of different additive metals on the electrical resistivity p of platinum (Degussa)
Figure 2: Influence of 1-22 atom% of different additive metals on the electrical resistivity p of palladium
Figure 3: Fig. 2.27:Phase diagram of platinum-iridium
Figure 4: Fig. 2.28:Phase diagram of platinum-nickel
Figure 5: Fig. 2.29:Phase diagram of platinum-tungsten
Figure 6: Fig. 2.30: Phase diagram of palladium-copper
Figure 7: Fig. 2.31: Strain hardening of Pt by cold working
Figure 8: Fig. 2.32: Softening of Pt after annealing for 0.5 hrs after 80% cold working
Figure 9: Fig. 2.33: Strain hardening of PtIr5 by cold working
Figure 10: Fig. 2.34: Softening of PtIr5 after annealing for 1 hr after different degrees of cold working
Figure 11: Fig. 2.35: Strain hardening of PtNi8 by cold working
Figure 12: Fig. 2.36: Softening of PtNi8 after annealing for 1 hr after 80% cold working
Figure 13: Fig. 2.37: Strain hardening of PtW5 by cold working
Figure 14: Fig. 2.38: Softening of PtW5 after annealing for 1 hr after 80% cold working
Figure 15: Fig. 2.39: Strain hardening of Pd 99.99 by cold working
Figure 16: Fig. 2.40: Strain hardening of PdCu15 by cold working
Figure 17: Softening of PdCu15 after annealing for 0.5 hrs
Figure 18: Strain hardening of PdCu40 by cold working
Figure 19: Softening of PdCu40 after annealing for 0.5 hrs after 80% cold working
Figure 20: Electrical resistivity p of PdCu alloys with and without an annealing step for forming an ordered phase

Referenzen

Referenzen