Difference between revisions of "Herstellung von Halbzeugen"

From Electrical Contacts
Jump to: navigation, search
(Kontaktprofile)
(temp edit)
(12 intermediate revisions by 2 users not shown)
Line 20: Line 20:
 
beschrieben werden.
 
beschrieben werden.
  
Beim Warmpressschweißen, dem klassischen Plattierverfahren, werden die zu
+
During ''hot cladding'', the classic process, the materials to be clad are assembled into a cladding package in block or plate form, heated to about
verbindenden Werkstoffe in Blockform zu einem Schweißpaket zusammengestellt,
+
800°C and clad (or "welded") together under high pressure <xr id="fig:Hot_cladding_of_pre_materials"/><!--(Fig. 3.3)-->. At the interface between the two materials a non-separable bond is formed by either diffusion of the reaction partners or in liquid phase by forming a AgCu eutectic alloy when an additional brazing alloy foil is placed between the two materials. Further processing is done by rolling with required annealing steps between subsequent thickness reductions. The disadvantage of this process is the usually limited short length of final material strips.
auf ca. 800°C erwärmt und unter hohem Pressdruck verschweißt
 
(<xr id="fig:Hot_cladding_of_pre_materials"/><!--(Fig. 3.3)-->). Dabei entsteht in der Berührungsfläche der beiden Werkstoffe eine
 
unlösbare stoffschlüssige Verbindung entweder in fester Phase durch Diffusion
 
der Reaktionspartner oder in flüssiger Phase mittels einer zwischengelegten
 
Lotfolie bzw. durch Bildung eines AgCu-Eutektikums. Die Weiterverarbeitung
 
des Werkstoffverbundes erfolgt durch Walzen mit entsprechenden Zwischenglühungen. Der Nachteil dieser Plattiertechnik liegt verfahrensbedingt in den kurzen
 
Fertigungslängen.
 
  
Beim Kaltwalzplattieren erfolgt die Verbindung zwischen Kontakt- und Trägerwerkstoff
 
durch eine Kaltumformung > 50% in einem Stich (<xr id="fig:Cold roll-cladding of semi-finished strips (schematic)"/><!-- (Fig. 3.4)-->). Durch die
 
starke plastische Verformung kommt es in der Grenzschicht zwischen den
 
Plattierpartnern zu einer Kaltverschweißung. Um die Qualität der Schweißverbindung
 
zu verbessern wird anschließend meist eine Diffusionsglühung
 
durchgeführt. Dieses Fertigungsverfahren ist besonders zur Herstellung von
 
plattiertem Halbzeug mit dünnen Kontaktauflagen (>2 μm) und großen
 
Bandlängen (>100 m) geeignet.
 
 
*Typische Ausführungsformen für Kontaktbimetalle (<xr id="fig:Typical configurations of clad contact strips"/>)
 
 
*Kontaktwerkstoffe <br />Ag, Ag-Legierungen, Ag/Ni, in Sonderfällen auch Ag/SnO<sub>2</sub>, Ag/ZnO<br />
 
 
*Trägerwerkstoffe<br />Cu, CuSn, CuNiZn, CuNiSn, CuFe, CuBe u.a.
 
 
*Abmessungen (<xr id="fig:Dimensions"/>)
 
 
Bei der Festlegung der Dicke der Edelmetalleinlage wird empfohlen, den
 
Minimalwert anzugeben.
 
 
*Qualitätsmerkmale und Toleranzen
 
Festigkeitswerte und Maßtoleranzen von Kontaktbimetallen sind an die für Cu
 
und Cu-Legierungen geltenden Normen EN 1652 und EN 1654 angelehnt. Bei
 
der Vermaßung der Breite der Edelmetalleinlage wird empfohlen, von den für die
 
jeweilige Anwendung erforderlichen Minimalwerten auszugehen. Die Vermaßung
 
sollte stets von der Bandkante aus erfolgen.
 
 
<div class="multiple-images">
 
 
<figure id="fig:Hot_cladding_of_pre_materials">
 
<figure id="fig:Hot_cladding_of_pre_materials">
[[File:Hot cladding of pre-materials (schematisch).jpg|right|thumb|Figure 1: Warmpressschweißen von Kontaktbimetall (schematisch)]]
+
[[File:Hot cladding of pre-materials (schematisch).jpg|right|thumb|Hot cladding of pre-materials (schematisch)]]
 
</figure>
 
</figure>
 +
In the ''Cold Roll-Cladding'' process the bond between the contact and carrier material is achieved by cold deformation of > 50% in one rolling pass <xr id="fig:Cold roll-cladding of semi-finished strips (schematic)"/><!-- (Fig. 3.4)-->. The high plastic deformation causes cold welding in the boundary layer between the two materials. To increase the quality and strength of the bond a subsequent diffusion annealing is performed in most cases. This process is most suitable for clad semi-finished strips with thin contact material layers (&ge; 2 μm) and large strip length (> 100 m).
 +
 
<figure id="fig:Cold roll-cladding of semi-finished strips (schematic)">
 
<figure id="fig:Cold roll-cladding of semi-finished strips (schematic)">
[[File:Cold roll-cladding of semi-finished strips (schematic).jpg|right|thumb|Figure 2: Kaltwalzplattieren von Kontaktbimetall ( schematisch)]]
+
[[File:Cold roll-cladding of semi-finished strips (schematic).jpg|right|thumb|Cold roll-cladding of semi-finished strips (schematic)]]
 
</figure>
 
</figure>
 +
 +
*Typical configurations of clad contact strips <xr id="fig:Typical configurations of clad contact strips"/>
 +
 
<figure id="fig:Typical configurations of clad contact strips">
 
<figure id="fig:Typical configurations of clad contact strips">
[[File:Typical configurations of clad contact strips.jpg|right|thumb|Figure 3: Typische Ausführungsformen für Kontaktbimetalle]]
+
[[File:Typical configurations of clad contact strips.jpg|right|thumb|Typical configurations of clad contact strips]]
 
</figure>
 
</figure>
<figure id="fig:Dimensions">
 
[[File:Dimensions.jpg|right|thumb|Figure 4: Abmessungen]]
 
</figure>
 
</div>
 
<div class="clear"></div>
 
  
===Gelötete Halbzeuge (Toplay-Profile)===
+
*Contact materials <br />Ag, Ag-alloys., Ag/Ni (SINIDUR), in special cases also Ag/CdO (DODURIT CdO), Ag/SnO<sub>2</sub> (SISTADOX), Ag/ZnO (DODURIT ZnO)<br />
Das Toplay-Verfahren geht von einem flachen oder profilierten edelmetallhaltigen
 
Kontaktband aus, das zusammen mit einem Hartlotstreifen und dem
 
unedlen Trägerband einem Induktions-Lötautomaten zugeführt wird (<xr id="fig:Toplay brazing with an inductive heating inline equipment (schematic)"/><!--(Fig. 3.5)-->).
 
Dabei lässt sich eine gleichmäßige und zuverlässige Lötverbindung zwischen
 
Kontaktauflage und Trägermaterial herstellen. Der so erzeugte Werkstoffverbund
 
mit erhabener Edelmetallauflage ist nach dem Löten weich und wird
 
anschließend auf profilierten Walzen nachverfestigt. Auf diese Weise können
 
unterschiedliche Profilformen hergestellt werden.
 
  
*Typische Ausführungsformen für Toplay-Profile (<xr id="fig:Typical configurations of toplay contact profiles2"/>)
+
*Carrier materials
  
*Kontaktwerkstoffe<br />Ag, AgNi 0,15, AgCu, AgCuNi, Ag/Ni, Ag/SnO<sub>2</sub>, Ag/ZnO <br />
+
*Dimensions <xr id="fig:Dimensions"/>
  
*Trägerwerkstoffe <br />Cu, CuZn, CuSn u.a.<br />
+
<figure id="fig:Dimensions">
 +
[[File:Dimensions.jpg|right|thumb|Dimensions]]
 +
</figure>
 +
When specifying the contact material layer thickness it is recommended to use the minimum required thickness.
  
*Qualitätsmerkmale, Abmessungen und Toleranzen (<xr id="fig:Quality criteria dimensions and tolerances"/>)
+
*Quality criteria and tolerances
 +
Strength properties and dimensional tolerances of clad contact bi-metals are derived from the standards DIN EN 1652 and DIN EN 1654 for Cu alloys. When specifying the width of the contact material layer it is recommended to use the minimum required value. All dimensions should be specified originating from one strip edge.
  
Festigkeitswerte und Maßtoleranzen von Toplay-Profilen sind angelehnt an die für Cu und Cu-Legierungen geltenden Normen EN 1652 und EN 1654.
+
=== Brazed Semi-Finished Contact Materials (Toplay–Profiles)===
 +
The toplay process starts with a flat or profile – shaped contact material strip which is fed together with the wider non-precious carrier material and in most cases an intermediate thin foil of brazing alloy into a induction brazing machine <xr id="fig:Toplay brazing with an inductive heating inline equipment (schematic)"/><!--(Fig. 3.5)-->. An evenly distributed and reliable braze joint can be achieved this way between contact and carrier materials. The combined material strip is rather soft after the brazing process and re-hardened during a subsequent profile rolling step. In this way different shapes and configurations can easily be achieved.
  
<div class="multiple-images">
 
 
<figure id="fig:Toplay brazing with an inductive heating inline equipment (schematic)">
 
<figure id="fig:Toplay brazing with an inductive heating inline equipment (schematic)">
[[File:Toplay brazing with an inductive heating inline equipment (schematic).jpg|right|thumb|Figure 5: Toplay-Lötung mit Induktionsdurchlaufanlage (schematisch)]]
+
[[File:Toplay brazing with an inductive heating inline equipment (schematic).jpg|right|thumb|Toplay brazing with an inductive heating inline equipment (schematic)]]
 
</figure>
 
</figure>
 +
 +
*Typical configurations of toplay contact profiles <xr id="fig:Typical configurations of toplay contact profiles2"/>
 +
 
<figure id="fig:Typical configurations of toplay contact profiles2">
 
<figure id="fig:Typical configurations of toplay contact profiles2">
[[File:Typical configurations of toplay contact profiles2.jpg|right|thumb|Figure 6: Typische Ausführungsformen für Toplay-Profile]]
+
[[File:Typical configurations of toplay contact profiles2.jpg|right|thumb|Typical configurations of toplay contact profiles]]
 
</figure>
 
</figure>
 +
*Contact materials <br />Ag, AgNi 0,15 (ARGODUR), AgCu, AgCuNi (ARGODUR 27), Ag/Ni (SINIDUR),
 +
Ag/CdO (DODURIT CdO), Ag/SnO<sub>2</sub> (SISTADOX), Ag/ZnO (DODURIT ZnO)<br />
 +
 +
*Carrier materials <br />Cu, CuZn, CuSn et al.<br />
 +
 +
*Quality criteria, dimensions and tolerances <xr id="fig:Quality criteria dimensions and tolerances"/>
 +
 
<figure id="fig:Quality criteria dimensions and tolerances">
 
<figure id="fig:Quality criteria dimensions and tolerances">
[[File:Quality criteria dimensions and tolerances.jpg|right|thumb|Figure 7: Qualitätsmerkmale, Abmessungen und Toleranzen]]
+
[[File:Quality criteria dimensions and tolerances.jpg|right|thumb|Quality criteria dimensions and tolerances]]
 
</figure>
 
</figure>
</div>
+
Strength properties and dimensional tolerances of toplay profiles are derived from the standards DIN EN 1652 and DIN EN 1654 for Cu alloys.
<div class="clear"></div>
 
  
===Kontaktprofile===
+
=== Seam–Welded Contact Strip Materials (FDR–Profiles)===
Kontaktprofile umfassen einen weiten Abmessungsbereich. Breite und Höhe
+
Seam–welding is the process by which the contact material in the form of a solid wire, narrow clad strip, or profile is attached to the carrier strip by overlapping or continuous weld pulses between rolling electrodes <xr id="fig:Seam-welding process (schematic)"/><!--(Fig. 3.6)-->. The weld joint is created by simultaneous effects of heat and pressure. Except for the very small actual weld joint area the original hardness of the carrier strip is maintained because of the limited short time of the heat supply. Therefore also spring-hard base materials can be used without loss of their mechanical strength. The use of clad contact pre-materials and profiles allows to minimize the use of the costly precious metal component tailored to the need for optimum reliability over the expected electrical life of the contact components.
der Profile liegen üblicherweise zwischen 0,3 und 8 mm bzw. 0,2 und 3 mm.
+
 
Eine Sonderstellung nehmen hierbei Kontaktprofile mit einer Breite < ca. 2 mm,
+
*Typical configurations of seam–welded contact strips and stamped parts <xr id="fig:Typical configurations of seam-welded contact strips"/>
sog. Miniprofile, häufig auch als Mikroprofile bezeichnet, ein.
+
<figure id="fig:Typical configurations of seam-welded contact strips">
 +
[[File:Typical configurations of seam-welded contact strips.jpg|right|thumb|Typical configurations of seam-welded contact strips]]
 +
</figure>
  
Miniprofile bestehen meist aus Kontaktbimetall, wobei die Kontaktauflage aus
+
<figure id="fig:Seam-welding process (schematic)">
Edelmetall, einer Edelmetalllegierung oder edelmetallhaltigem Verbundwerkstoff
+
[[File:Seam-welding process (schematic).jpg|right|thumb|Seam-welding process (schematic)]]
durch Plattieren bzw. Schweißen oder auf galvanischem bzw. vakuumtechnischem
+
</figure>
Wege (Sputtern) mit dem Basiswerkstoff verbunden wird. Da Miniprofile
 
meist durch Horizontal-Abschnitt- oder Rollennahtschweißen auf Trägerteile
 
aufgebracht werden, muss der Basiswerkstoff u.a. die Forderung nach einer
 
guten Schweißbarkeit erfüllen. Übliche Basiswerkstoffe sind Nickel, Kupfer-
 
Nickel-, Kupfer-Zinn- sowie Kupfer-Nickel-Zink-Legierungen. Die Unterseite der
 
Miniprofile enthält i.d.R. Schweißrippen, die eine sichere, stoffschlüssige
 
Verbindung zwischen Kontaktprofil und Träger gewährleisten.
 
  
Kontaktprofile größerer Abmessungen werden häufig in Schaltgeräten der
+
*Contact materials <br />Au-Alloys, Pd-Alloys, Ag, AgNi 0,15 (ARGODUR), AgCu, AgCuNi (ARGODUR 27), Ag/Ni (SINIDUR), Ag/CdO (DODURIT CdO), Ag/SnO<sub>2</sub> (SISTADOX), Ag/ZnO (DODURIT ZnO)<br />
Niederspannungs-Energietechnik eingesetzt. Die Kontaktschicht besteht dabei
 
z.B. aus abbrandfesten Werkstoffen, wie Silber-Nickel, den Silber-Metalloxiden
 
oder dem verschweißresistenten Silber-Graphit. Die löt- bzw. schweißbare
 
Unterseite besteht bei den metalloxid- und grafithaltigen Werkstoffen
 
üblicherweise aus Silber, wobei häufig als Löt- oder Schweißhilfe eine dünne
 
Schicht aus phosphorhaltigem Lot aufgebracht wird.
 
  
*Typische Profilformen für Mehrschichtprofile (<xr id="fig:Typical configurations of multi-layer contact profiles"/>)
+
*Carrier materials <br />Cu, CuSn, CuZn, CuNiZn, CuBe et al.<br />
  
*Kontaktwerkstoffe <br />Au-Legierungen, Pd-Legierungen, Ag-Legierungen, Ag/Ni, Ag/SnO<sub>2</sub>, Ag/ZnO<br />
+
*Dimensions <xr id="fig:Contact Profiles Dimensions"/>
 +
<figure id="fig:Contact Profiles Dimensions">
 +
[[File:Contact Profiles Dimensions.jpg|right|thumb|Contact Profiles Dimensions]]
 +
</figure>
  
*Basiswerkstoffe <br />(schweißbare Unterseite bei Mehrschichtprofilen) Cu, Ni, CuNiFe, CuNiZn, CuSn, CuNiSn, NiCuFe<br />
+
*Quality criteria and tolerances
 +
Strength properties and dimensional tolerances of toplay profiles are derived from the standards DIN EN 1652 and DIN EN 1654 for Cu alloys..
  
*Lotschicht <br />L-Ag15P<br />
+
=== Contact Profiles (Contact Weld Tapes)===
 +
Contact profiles span a broad range of dimensions. Width and thickness are typically between 0.8 – 8.0 mm and 0.2 – 3.0 mm resp. Special configurations, often defined as miniature-profiles or even micro–profiles can have a width < 2.0 mm.
  
*Qualitätsmerkmale <br />Aufgrund der Vielfalt der Ausführungsformen von Kontaktprofilen werden üblicherweise gesonderte Qualitätsvereinbarungen zwischen Hersteller und Anwender getroffen.<br />
+
Miniature–profiles are mostly composed of a contact-bimetal material with the contact material being a precious metal alloy or composite material clad, welded or coated by electroplating or vacuum-deposition (sputtered) onto a weldable base material. Since these profiles are attached to carrier strip materials usually by segment– or seam– welding to the base materials, materials with good welding properties such as nickel, copper-nickel, copper-tin, as well as copper-nickel-zinc alloys are used. The bottom surface of the profiles usually has formed weld rails or similar patterns to ensure a solid continuous metallurgical weld joint between the profile and the contact carrier.
  
*Abmessungen und Toleranzen (<xr id="fig:Contact Profiles Dimensions and tolerances"/>)
+
Contact profiles in larger sizes are often used for switching devices in the low voltage technology. For these the contact layer mostly consists of arc erosion resistant materials such as silver–nickel, silver–metal oxides or the weld resistant silver– graphite. The brazable or weldable underside of the metal oxide or silver–graphite materials is usually pure silver with also quite often a thin layer of a phosphorous containing brazing alloy applied to aid the welding process.
Die Dicke einer z.B. durch Sputtern aufgebrachten Au-Auflage liegt je nach
 
Anforderung zwischen 0,2 bis 5 μm, wobei die Dickentoleranz ca. &plusmn;10%
 
beträgt.
 
  
<div class="multiple-images">
+
*Typical configurations of multi-layer contact profiles <xr id="fig:Typical configurations of multi-layer contact profiles"/>
 
<figure id="fig:Typical configurations of multi-layer contact profiles">
 
<figure id="fig:Typical configurations of multi-layer contact profiles">
[[File:Typical configurations of multi-layer contact profiles.jpg|right|thumb|Figure 8: Typische Profilformen für Mehrschichtprofile]]
+
[[File:Typical configurations of multi-layer contact profiles.jpg|right|thumb|Typical configurations of multi-layer contact profiles]]
 
</figure>
 
</figure>
 +
 +
*Contact materials <br />Au-Alloys, Pd-Alloys, Ag-Alloys, Ag/Ni (SINIDUR), Ag/CdO (DODURIT CdO), Ag/SnO<sub>2</sub> (SISTADOX), Ag/ZnO (DODURIT ZnO)<br />
 +
 +
*Carrier materials <br />(weldable substrate material for multi-layer materials) Cu, Ni, CuNiFe, CuNiZn, CuSn, CuNiSn, NiCuFe<br />
 +
 +
*Brazing alloy <br />L-Ag15P<br />
 +
 +
*Quality criteria <br />Beause of the variety of configurations of contact profiles usually the quality issues are separately agreed upon between the manufacturer and the user.<br />
 +
 +
*Dimensions and tolerances <xr id="fig:Contact Profiles Dimensions and tolerances"/>
 
<figure id="fig:Contact Profiles Dimensions and tolerances">
 
<figure id="fig:Contact Profiles Dimensions and tolerances">
[[File:Contact Profiles Dimensions and tolerances.jpg|right|thumb|Figure 9: Abmessungen und Toleranzen]]
+
[[File:Contact Profiles Dimensions and tolerances.jpg|right|thumb|Contact Profiles Dimensions and tolerances]]
 
</figure>
 
</figure>
</div>
+
The thickness of the Au top-layer, which is sputtered for example, is between 0.2 and 5 μm, depending on the requirements. Tolerance of thickness is about &plusmn; 10%.
<div class="clear"></div>
 
  
 
==Referenzen==
 
==Referenzen==

Revision as of 14:19, 21 September 2014

Halbzeuge für elektrische Kontakte können z.B. aus massivem Edelmetall, einer Edelmetalllegierung oder edelmetallhaltigen Verbundwerkstoffen bestehen. Sie werden als Drähte, Bänder oder Profile nach den bekannten Verfahren, wie Strangpressen und gegebenfalls anschließendem Glühen und Ziehen, hergestellt und nach werkseigenen Normen, die sich an die EN-Vorschriften für Kupfer-Halbzeuge anlehnen, geliefert. Große wirtschaftliche und technische Bedeutung haben Zwei- oder Mehrschichthalbzeuge, bei denen der Kontaktwerkstoff in fester Phase durch Plattieren, Löten und Schweißen oder durch Beschichtung aus flüssiger oder gasförmiger Phase auf das Trägermaterial aufgebracht wird.

Plattierte Halbzeuge (Kontaktbimetalle)

Plattierte Halbzeuge bestehen aus mindestens zwei Schichten verschiedener Metalle, dem Kontaktwerkstoff und dem Trägerwerkstoff, die stoffschlüssig miteinander verbunden sind. Entsprechend den jeweiligen elektrischen Anforderungen besteht der Kontaktwerkstoff meist aus Legierungen auf Gold-, Palladium- oder Silber-Basis, während als Trägerwerkstoff vor allem Kupfer- Legierungen zum Einsatz kommen. Für die Herstellung dieser Halbzeuge gibt es eine Reihe von Verfahren, von denen im folgenden die beiden wichtigsten beschrieben werden.

During hot cladding, the classic process, the materials to be clad are assembled into a cladding package in block or plate form, heated to about 800°C and clad (or "welded") together under high pressure Figure 1. At the interface between the two materials a non-separable bond is formed by either diffusion of the reaction partners or in liquid phase by forming a AgCu eutectic alloy when an additional brazing alloy foil is placed between the two materials. Further processing is done by rolling with required annealing steps between subsequent thickness reductions. The disadvantage of this process is the usually limited short length of final material strips.

Hot cladding of pre-materials (schematisch)

In the Cold Roll-Cladding process the bond between the contact and carrier material is achieved by cold deformation of > 50% in one rolling pass Figure 2. The high plastic deformation causes cold welding in the boundary layer between the two materials. To increase the quality and strength of the bond a subsequent diffusion annealing is performed in most cases. This process is most suitable for clad semi-finished strips with thin contact material layers (≥ 2 μm) and large strip length (> 100 m).

Cold roll-cladding of semi-finished strips (schematic)
  • Typical configurations of clad contact strips Figure 3
Typical configurations of clad contact strips
  • Contact materials
    Ag, Ag-alloys., Ag/Ni (SINIDUR), in special cases also Ag/CdO (DODURIT CdO), Ag/SnO2 (SISTADOX), Ag/ZnO (DODURIT ZnO)
  • Carrier materials
  • Dimensions Figure 4
Dimensions

When specifying the contact material layer thickness it is recommended to use the minimum required thickness.

  • Quality criteria and tolerances

Strength properties and dimensional tolerances of clad contact bi-metals are derived from the standards DIN EN 1652 and DIN EN 1654 for Cu alloys. When specifying the width of the contact material layer it is recommended to use the minimum required value. All dimensions should be specified originating from one strip edge.

Brazed Semi-Finished Contact Materials (Toplay–Profiles)

The toplay process starts with a flat or profile – shaped contact material strip which is fed together with the wider non-precious carrier material and in most cases an intermediate thin foil of brazing alloy into a induction brazing machine Figure 5. An evenly distributed and reliable braze joint can be achieved this way between contact and carrier materials. The combined material strip is rather soft after the brazing process and re-hardened during a subsequent profile rolling step. In this way different shapes and configurations can easily be achieved.

Toplay brazing with an inductive heating inline equipment (schematic)
  • Typical configurations of toplay contact profiles Figure 6
Typical configurations of toplay contact profiles
  • Contact materials
    Ag, AgNi 0,15 (ARGODUR), AgCu, AgCuNi (ARGODUR 27), Ag/Ni (SINIDUR),

Ag/CdO (DODURIT CdO), Ag/SnO2 (SISTADOX), Ag/ZnO (DODURIT ZnO)

  • Carrier materials
    Cu, CuZn, CuSn et al.
  • Quality criteria, dimensions and tolerances Figure 7
Quality criteria dimensions and tolerances

Strength properties and dimensional tolerances of toplay profiles are derived from the standards DIN EN 1652 and DIN EN 1654 for Cu alloys.

Seam–Welded Contact Strip Materials (FDR–Profiles)

Seam–welding is the process by which the contact material in the form of a solid wire, narrow clad strip, or profile is attached to the carrier strip by overlapping or continuous weld pulses between rolling electrodes Figure 9. The weld joint is created by simultaneous effects of heat and pressure. Except for the very small actual weld joint area the original hardness of the carrier strip is maintained because of the limited short time of the heat supply. Therefore also spring-hard base materials can be used without loss of their mechanical strength. The use of clad contact pre-materials and profiles allows to minimize the use of the costly precious metal component tailored to the need for optimum reliability over the expected electrical life of the contact components.

  • Typical configurations of seam–welded contact strips and stamped parts Figure 8
Typical configurations of seam-welded contact strips
Seam-welding process (schematic)
  • Contact materials
    Au-Alloys, Pd-Alloys, Ag, AgNi 0,15 (ARGODUR), AgCu, AgCuNi (ARGODUR 27), Ag/Ni (SINIDUR), Ag/CdO (DODURIT CdO), Ag/SnO2 (SISTADOX), Ag/ZnO (DODURIT ZnO)
  • Carrier materials
    Cu, CuSn, CuZn, CuNiZn, CuBe et al.
  • Dimensions Figure 10
Contact Profiles Dimensions
  • Quality criteria and tolerances

Strength properties and dimensional tolerances of toplay profiles are derived from the standards DIN EN 1652 and DIN EN 1654 for Cu alloys..

Contact Profiles (Contact Weld Tapes)

Contact profiles span a broad range of dimensions. Width and thickness are typically between 0.8 – 8.0 mm and 0.2 – 3.0 mm resp. Special configurations, often defined as miniature-profiles or even micro–profiles can have a width < 2.0 mm.

Miniature–profiles are mostly composed of a contact-bimetal material with the contact material being a precious metal alloy or composite material clad, welded or coated by electroplating or vacuum-deposition (sputtered) onto a weldable base material. Since these profiles are attached to carrier strip materials usually by segment– or seam– welding to the base materials, materials with good welding properties such as nickel, copper-nickel, copper-tin, as well as copper-nickel-zinc alloys are used. The bottom surface of the profiles usually has formed weld rails or similar patterns to ensure a solid continuous metallurgical weld joint between the profile and the contact carrier.

Contact profiles in larger sizes are often used for switching devices in the low voltage technology. For these the contact layer mostly consists of arc erosion resistant materials such as silver–nickel, silver–metal oxides or the weld resistant silver– graphite. The brazable or weldable underside of the metal oxide or silver–graphite materials is usually pure silver with also quite often a thin layer of a phosphorous containing brazing alloy applied to aid the welding process.

  • Typical configurations of multi-layer contact profiles Figure 11
Typical configurations of multi-layer contact profiles
  • Contact materials
    Au-Alloys, Pd-Alloys, Ag-Alloys, Ag/Ni (SINIDUR), Ag/CdO (DODURIT CdO), Ag/SnO2 (SISTADOX), Ag/ZnO (DODURIT ZnO)
  • Carrier materials
    (weldable substrate material for multi-layer materials) Cu, Ni, CuNiFe, CuNiZn, CuSn, CuNiSn, NiCuFe
  • Brazing alloy
    L-Ag15P
  • Quality criteria
    Beause of the variety of configurations of contact profiles usually the quality issues are separately agreed upon between the manufacturer and the user.
  • Dimensions and tolerances Figure 12
Contact Profiles Dimensions and tolerances

The thickness of the Au top-layer, which is sputtered for example, is between 0.2 and 5 μm, depending on the requirements. Tolerance of thickness is about ± 10%.

Referenzen

Referenzen