Difference between revisions of "Aushärtbare Kupfer-Legierungen"

From Electrical Contacts
Jump to: navigation, search
(Kupfer-Chrom-Legierungen)
(temp edit)
(17 intermediate revisions by 2 users not shown)
Line 10: Line 10:
 
Temperatur rasch abnehmende Löslichkeit des Berylliums im Kupfer. Wie aus
 
Temperatur rasch abnehmende Löslichkeit des Berylliums im Kupfer. Wie aus
 
dem Zustandsschaubild für CuBe ersichtlich, sind bei ca. 780°C 2,4 Massen-%
 
dem Zustandsschaubild für CuBe ersichtlich, sind bei ca. 780°C 2,4 Massen-%
Be in Kupfer löslich (<xr id="fig:Phase_diagram_of_copperberyllium_with_temperature_ranges_for_brazing_and_annealing_treatments"/><!--(Fig. 5.28)-->). In diesem Temperaturbereich wärmebehandelte
+
Be in Kupfer löslich <xr id="fig:Phase_diagram_of_copperberyllium_with_temperature_ranges_for_brazing_and_annealing_treatments"/><!--(Fig. 5.28)-->. In diesem Temperaturbereich wärmebehandelte
 
CuBe-Legierungen sind homogen („lösungsglühen“). Der homogene Zustand
 
CuBe-Legierungen sind homogen („lösungsglühen“). Der homogene Zustand
 
kann durch schnelles Abkühlen auf Raumtemperatur eingefroren werden („abschrecken“).
 
kann durch schnelles Abkühlen auf Raumtemperatur eingefroren werden („abschrecken“).
Line 16: Line 16:
 
von 325°C wird die gewünschte Ausscheidungshärtung erreicht, die einen
 
von 325°C wird die gewünschte Ausscheidungshärtung erreicht, die einen
 
deutlichen Anstieg der Festigkeit und der elektrischen Leitfähigkeit von CuBe
 
deutlichen Anstieg der Festigkeit und der elektrischen Leitfähigkeit von CuBe
bewirkt (<xr id="tab:Physical_Properties_of_Selected_Copper_Beryllium_Alloys"/><!--(Tab. 5.17)-->). Die erreichbaren Festigkeits- und Härtewerte sind abhängig
+
bewirkt <xr id="tab:Physical_Properties_of_Selected_Copper_Beryllium_Alloys"/><!--(Tab. 5.17)-->. Die erreichbaren Festigkeits- und Härtewerte sind abhängig
von der Glühtemperatur und Glühdauer sowie vom Umformgrad
+
von der Glühtemperatur und Glühdauer sowie vom Umformgrad (Tab. 5.18) und
(<xr id="tab:Mechanical Properties of Selected Copper-Beryllium Alloys"/> und [[#figures7|Figs. 2 4)]]<!--(Figs. 5.29 - 5.31)-->.
+
<xr id="tab:Mechanical Properties of Selected Copper-Beryllium Alloys"/><!--(Table 5.18)--> and [[#figures7|(Figs. 43 75)]]<!--(Figs. 5.29 - 5.31)-->.
  
  
Line 39: Line 39:
 
Kupfer-Legierungen ohne toxische bzw. deklarationspfichtige
 
Kupfer-Legierungen ohne toxische bzw. deklarationspfichtige
 
Elemente z.B. CuNiCoSi zielt in Richtung CuBe-Ersatz.
 
Elemente z.B. CuNiCoSi zielt in Richtung CuBe-Ersatz.
 +
 +
<div id="figures7">
 +
 +
<xr id="fig:Phase_diagram_of_copperberyllium_with_temperature_ranges_for_brazing_and_annealing_treatments"/><!--Fig. 5.28:--> Zustandsdiagramm Kupfer-Beryllium mit Temperaturbereichen für Hartlötungen und Wärmebehandlungen
 +
 +
<xr id="fig:Precipitation_hardening_of_CuBe2_at_325°C_after_different_cold_working"/><!--Fig. 5.29:--> Aushärtung von CuBe2 bei 325°C nach unterschiedlicher Kaltumformung
 +
 +
<xr id="fig:Precipitation_hardening_of_CuBe2_(soft)_at_325°C"/><!--Fig. 5.30:--> Precipitation hardening of CuBe2 (soft) at 325°C
 +
 +
<xr id="fig:Precipitation_hardening_of_CuBe2_(half hard)_at_different_annealing_temperatures"/><!--Fig. 5.31:--> Precipitation hardening of CuBe2 (half hard) at different annealing temperatures
 +
</div>
  
 
<div class="multiple-images">
 
<div class="multiple-images">
Line 51: Line 62:
  
 
<figure id="fig:Precipitation_hardening_of_CuBe2_(soft)_at_325°C">  
 
<figure id="fig:Precipitation_hardening_of_CuBe2_(soft)_at_325°C">  
[[File:Precipitation hardening of CuBe2 (soft) at 325C.jpg|left|thumb|<caption>Aushärtung von CuBe2 (weich) bei 325°C</caption>]]
+
[[File:Precipitation hardening of CuBe2 (soft) at 325C.jpg|left|thumb|<caption>Precipitation hardening of CuBe2 (soft) at 325°C</caption>]]
 
</figure>
 
</figure>
  
 
<figure id="fig:Precipitation_hardening_of_CuBe2_(half hard)_at_different_annealing_temperatures">  
 
<figure id="fig:Precipitation_hardening_of_CuBe2_(half hard)_at_different_annealing_temperatures">  
[[File:Precipitation hardening of CuBe2 half hard.jpg|left|thumb|<caption>Aushärtung von CuBe2 (halbhart) bei verschiedenen Anlasstemperaturen</caption>]]
+
[[File:Precipitation hardening of CuBe2 half hard.jpg|left|thumb|<caption>Precipitation hardening of CuBe2 (half hard) at different annealing temperatures</caption>]]
 
</figure>
 
</figure>
 
</div>
 
</div>
Line 62: Line 73:
  
 
<figtable id="tab:Physical_Properties_of_Selected_Copper_Beryllium_Alloys">
 
<figtable id="tab:Physical_Properties_of_Selected_Copper_Beryllium_Alloys">
<caption>'''<!--Table 5.17:-->Physikalische Eigenschaften einiger Kupfer-Beryllium-Legierungen'''</caption>   
+
<caption>'''<!--Table 5.17:-->Physical Properties of Selected Copper-Beryllium Alloys'''</caption>   
  
 
{| class="twocolortable" style="text-align: left; font-size: 12px"
 
{| class="twocolortable" style="text-align: left; font-size: 12px"
 
|-
 
|-
!Werkstoff Bezeichnung<br />EN UNS  
+
!Material<br />Designation<br />EN UNS  
!Zusammensetzung<br />[Massen-%]
+
!Composition<br />[wt%]
!Dichte<br />[g/cm<sup>3</sup>]
+
!Density<br />[g/cm<sup>3</sup>]
!colspan="2" style="text-align:center"|Elektr. Leitfähigkeit
+
!colspan="2" style="text-align:center"|Electrical<br />Conductivity
!Elektr. Widerstand<br />[μΩ·cm]
+
!Electrical<br />Resistivity<br />[μΩ·cm]
!Wärmeleitfähigkeit<br />[W/(m·K)]
+
!Thermal<br />Conductivity<br />[W/(m·K)]
!Lin. Ausdehnungskoeff.<br />[10<sup>-6</sup>/K]
+
!Coeff. of Linear<br />Thermal<br />Expansion<br />[10<sup>-6</sup>/K]
!E-Modul<br />[GPa]
+
!Modulus of<br />Elasticity<br />[GPa]
!Erweichungstemperatur<br />(ca. 10% Festigkeitsabfall)<br />[°C]
+
!Softening Temperature<br />(approx. 10% loss in<br />strength)<br />[°C]
!Schmelzbereich<br />[°C]
+
!Melting<br />Temp Range<br />[°C]
 
|-
 
|-
 
!  
 
!  
Line 92: Line 103:
 
|Be 1.6 - 1.8<br />Co 0.3<br />Ni 0.3<br />Cu Rest
 
|Be 1.6 - 1.8<br />Co 0.3<br />Ni 0.3<br />Cu Rest
 
|8.4
 
|8.4
|8 - 9[[#text-reference1|<sup>a</sup>]]<br />12 - 13[[#text-reference2|<sup>b</sup>]]<br />11[[#text-reference3|<sup>c</sup>]]
+
|8 - 9<sup>a</sup><br />12 - 13<sup>b</sup><br />11<sup>c</sup>
 
|14 - 16<br />21 - 22<br />19
 
|14 - 16<br />21 - 22<br />19
|11 - 12.5[[#text-reference1|<sup>a</sup>]]<br />7.7 - 8.3[[#text-reference2|<sup>b</sup>]]<br />9.1[[#text-reference3|<sup>c</sup>]]
+
|11 - 12.5<sup>a</sup><br />7.7 - 8.3<sup>b</sup><br />9.1<sup>c</sup>
 
|110
 
|110
 
|17
 
|17
|125[[#text-reference1|<sup>a</sup>]]<br />135[[#text-reference2|<sup>b</sup>]]
+
|125<sup>a</sup><br />135<sup>b</sup>
 
|ca. 380
 
|ca. 380
 
|890 - 1000
 
|890 - 1000
Line 104: Line 115:
 
|Be 1.8 - 2.1<br />Co 0.3<br />Ni 0.3<br />Cu Rest
 
|Be 1.8 - 2.1<br />Co 0.3<br />Ni 0.3<br />Cu Rest
 
|8.3
 
|8.3
|8 - 9[[#text-reference1|<sup>a</sup>]]<br />12 - 13[[#text-reference2|<sup>b</sup>]]<br />11[[#text-reference3|<sup>c</sup>]]
+
|8 - 9<sup>a</sup><br />12 - 13<sup>b</sup><br />11<sup>c</sup>
 
|14 - 16<br />21 - 22<br />19
 
|14 - 16<br />21 - 22<br />19
|11 - 12.5[[#text-reference1|<sup>a</sup>]]<br />7.7 - 8.3[[#text-reference2|<sup>b</sup>]]<br />9.1[[#text-reference3|<sup>c</sup>]]
+
|11 - 12.5<sup>a</sup><br />7.7 - 8.3<sup>b</sup><br />9.1<sup>c</sup>
 
|110
 
|110
 
|17
 
|17
|125[[#text-reference1|<sup>a</sup>]]<br />135[[#text-reference2|<sup>b</sup>]]
+
|125<sup>a</sup><br />135<sup>b</sup>
 
|ca. 380
 
|ca. 380
 
|870 - 980
 
|870 - 980
Line 116: Line 127:
 
|Co 2.0 - 2.8<br />Be 0.4 - 0.7<br />Ni 0.3<br />Cu Rest
 
|Co 2.0 - 2.8<br />Be 0.4 - 0.7<br />Ni 0.3<br />Cu Rest
 
|8.8
 
|8.8
|11 - 14[[#text-reference1|<sup>a</sup>]]<br />25 - 27[[#text-reference2|<sup>b</sup>]]<br />27 - 34[[#text-reference3|<sup>c</sup>]]
+
|11 - 14<sup>a</sup><br />25 - 27<sup>b</sup><br />27 - 34<sup>c</sup>
 
|19 - 24<br />43 - 47<br />47 - 59
 
|19 - 24<br />43 - 47<br />47 - 59
|7.1 - 9.1[[#text-reference1|<sup>a</sup>]]<br />3.7 - 4.0[[#text-reference2|<sup>b</sup>]]<br />2.9[[#text-reference3|<sup>c</sup>]]
+
|7.1 - 9.1<sup>a</sup><br />3.7 - 4.0<sup>b</sup><br />2.9<sup>c</sup>
 
|210
 
|210
 
|18
 
|18
|131[[#text-reference1|<sup>a</sup>]]<br />138[[#text-reference2|<sup>b</sup>]]
+
|131<sup>a</sup><br />138<sup>b</sup>
 
|ca. 450
 
|ca. 450
 
|1030 - 1070
 
|1030 - 1070
Line 128: Line 139:
 
|Ni 1.4 - 2.2<br />Be 0.2 - 0.6<br />Co 0.3<br />Cu Rest
 
|Ni 1.4 - 2.2<br />Be 0.2 - 0.6<br />Co 0.3<br />Cu Rest
 
|8.8
 
|8.8
|11 - 14[[#text-reference1|<sup>a</sup>]]<br />25 - 27[[#text-reference2|<sup>b</sup>]]<br />27 - 34[[#text-reference3|<sup>c</sup>]]
+
|11 - 14<sup>a</sup><br />25 - 27<sup>b</sup><br />27 - 34<sup>c</sup>
 
|19 - 24<br />43 - 47<br />47 - 59
 
|19 - 24<br />43 - 47<br />47 - 59
|7.1 - 9.1[[#text-reference1|<sup>a</sup>]]<br />3.7 - 4.0[[#text-reference2|<sup>b</sup>]]<br />2.9[[#text-reference3|<sup>c</sup>]]
+
|7.1 - 9.1<sup>a</sup><br />3.7 - 4.0<sup>b</sup><br />2.9<sup>c</sup>
 
|230
 
|230
 
|18
 
|18
|131[[#text-reference1|<sup>a</sup>]]<br />138[[#text-reference2|<sup>b</sup>]]
+
|131<sup>a</sup><br />138<sup>b</sup>
 
|ca. 480
 
|ca. 480
 
|1060 - 1100
 
|1060 - 1100
 
|}
 
|}
<div id="text-reference1"><sub>a</sub> lösungsgeglüht und kaltumgeformt</div>
 
<div id="text-reference2"><sub>b</sub> lösungsgeglüht, kaltumgeformt und ausscheidungsgehärtet</div>
 
<div id="text-reference3"><sub>c</sub> lösungsgeglüht, kaltumgeformt und ausscheidungsgehärtet im Werk (werksvergütet)</div>
 
 
</figtable>
 
</figtable>
<br/>
+
 
<br/>
+
<sup>a</sup>solution annealed, and cold rolled<br />  
 +
<sup>b</sup>solution annealed, cold rolled, and precipitation hardened<br />  
 +
<sup>c</sup>solution annealed, cold rolled, and precipitation hardened at mill (mill hardened)
  
  
 
<figtable id="tab:Mechanical Properties of Selected Copper-Beryllium Alloys">
 
<figtable id="tab:Mechanical Properties of Selected Copper-Beryllium Alloys">
<caption>'''<!--Table 5.18:-->Mechanische Eigenschaften von Kupfer-Beryllium-Legierungen'''</caption>   
+
<caption>'''<!--Table 5.18:-->Mechanical Properties of Selected Copper-Beryllium Alloys'''</caption>   
  
 
{| class="twocolortable" style="text-align: left; font-size: 12px"
 
{| class="twocolortable" style="text-align: left; font-size: 12px"
 
|-
 
|-
!Werkstoff
+
!Material
!Zustand
+
!Hardness<br />Condition
!Zugfestigkeit R<sub>m</sub><br />[MPa]
+
!Tensile Strength R<sub>m</sub><br />[MPa]
!0,2% Dehngrenze<br />R<sub>p02</sub><br />[MPa]
+
!0,2% Yield Strength<br />R<sub>p02</sub><br />[MPa]
!Bruchdehnung<br />A<sub>50</sub><br />[%]
+
!Elongation<br />A<sub>50</sub><br />[%]
!Vickershärte<br />HV
+
!Vickers<br />Hardness<br />HV
!Biegeradius[[#text-reference4|<sup>1</sup>]]<br />min senkrecht zur<br />Walzrichtung
+
!Bend Radius<sup>1)</sup><br />perpendicular to<br />rolling direction
!Biegeradius[[#text-reference4|<sup>1</sup>]]<br />min parallel zur<br />Walzrichtung
+
!Bend Radius<sup>1)</sup><br />parallel to<br />rolling direction
!Federbiegegrenze<br />σ<sub>FB</sub><br />[MPa]
+
!Spring Bending<br />Limit σ<sub>FB</sub><br />[MPa]
!Biegewechselfestigkeit<br />σ<sub>BW</sub><br />[MPa]
+
!Spring Fatigue<br />Limit σ<sub>BW</sub><br />[MPa]
 
|-
 
|-
 
|CuBe1,7
 
|CuBe1,7
|R 390[[#text-reference5|<sup>a</sup>]]<br />R 680[[#text-reference5|<sup>a</sup>]]<br />R 1030[[#text-reference6|<sup>b</sup>]]<br />R 1240[[#text-reference6|<sup>b</sup>]]<br />R 680[[#text-reference7|<sup>c</sup>]]<br />R 1100[[#text-reference7|<sup>c</sup>]]
+
|R 390<sup>a</sup><br />R 680<sup>a</sup><br />R 1030<sup>b</sup><br />R 1240<sup>b</sup><br />R 680<sup>c</sup><br />R 1100<sup>c</sup>
 
|380 -520<br />680 - 820<br />1030 - 1240<br />1240 - 1380<br />680 - 750<br />1100 - 1200
 
|380 -520<br />680 - 820<br />1030 - 1240<br />1240 - 1380<br />680 - 750<br />1100 - 1200
 
|&ge; 180<br />&ge; 600<br />&ge; 900<br />&ge; 1070<br />&ge; 480<br />&ge; 930
 
|&ge; 180<br />&ge; 600<br />&ge; 900<br />&ge; 1070<br />&ge; 480<br />&ge; 930
Line 173: Line 183:
 
|-
 
|-
 
|CuBe2
 
|CuBe2
|R 410[[#text-reference5|<sup>a</sup>]]<br />R 690[[#text-reference5|<sup>a</sup>]]<br />R 1140[[#text-reference6|<sup>b</sup>]]<br />R 1310[[#text-reference6|<sup>b</sup>]]<br />R 690[[#text-reference7|<sup>c</sup>]]<br />R 1200[[#text-reference7|<sup>c</sup>]]
+
|R 410<sup>a</sup><br />R 690<sup>a</sup><br />R 1140<sup>b</sup><br />R 1310<sup>b</sup><br />R 690<sup>c</sup><br />R 1200<sup>c</sup>
 
|410 -540<br />690 - 820<br />1140 - 1310<br />1310 - 1480<br />690 - 760<br />1200 - 1320
 
|410 -540<br />690 - 820<br />1140 - 1310<br />1310 - 1480<br />690 - 760<br />1200 - 1320
 
|&ge; 190<br />&ge; 650<br />&ge; 1000<br />&ge; 1150<br />&ge; 480<br />&ge; 1030
 
|&ge; 190<br />&ge; 650<br />&ge; 1000<br />&ge; 1150<br />&ge; 480<br />&ge; 1030
Line 184: Line 194:
 
|-
 
|-
 
|CuCo2Be<br />CuNi2Be
 
|CuCo2Be<br />CuNi2Be
|R 250[[#text-reference5|<sup>a</sup>]]<br />R 550[[#text-reference5|<sup>a</sup>]]<br />R 650[[#text-reference6|<sup>b</sup>]]<br />R 850[[#text-reference6|<sup>b</sup>]]<br />R 520[[#text-reference7|<sup>c</sup>]]
+
|R 250<sup>a</sup><br />R 550<sup>a</sup><br />R 650<sup>b</sup><br />R 850<sup>b</sup><br />R 520<sup>c</sup>
 
|250 - 380<br />550 - 700<br />650 - 820<br />850 - 1000<br />520 - 620
 
|250 - 380<br />550 - 700<br />650 - 820<br />850 - 1000<br />520 - 620
 
|&ge; 140<br />&ge; 450<br />&ge; 520<br />&ge; 750<br />&ge; 340
 
|&ge; 140<br />&ge; 450<br />&ge; 520<br />&ge; 750<br />&ge; 340
Line 194: Line 204:
 
| <br /> <br />220<br />250<br />210
 
| <br /> <br />220<br />250<br />210
 
|}
 
|}
<div id="text-reference4"><sub>1</sub> t: Banddicke max 0,5 mm</div>
+
</figtable>
<div id="text-reference5"><sub>a</sub> lösungsgeglüht und kaltumgeformt</div>
+
<sup>1)</sup> t: Strip thickness max. 0.5 mm<br />
<div id="text-reference6"><sub>b</sub> lösungsgeglüht, kaltumgeformt und ausscheidungsgehärtet</div>
+
<sup>a</sup>solution annealed, and cold rolled<br />  
<div id="text-reference7"><sub>c</sub> lösungsgeglüht, kaltumgeformt und ausscheidungsgehärtet im Werk (werksvergütet)</div>
+
<sup>b</sup>solution annealed, cold rolled, and precipitation hardened<br />  
</figtable>  
+
<sup>c</sup>solution annealed, cold rolled, and precipitation hardened at mill (mill hardened)
<br/>
+
 
<br/>
+
====<!--5.1.6.2-->Other Precipitation Hardening Copper Alloys====
 +
 
 +
=====<!--5.1.6.2.1-->Copper-Chromium Alloys=====
  
====<!--5.1.6.2-->Weitere aushärtbare Kupfer-Legierungen====
+
As the phase diagram shows, copper-chromium has a similar hardening profile compared to CuBe <xr id="fig:Copper corner of the copper-chromium phase diagram for up to 0.8 wt% chromium"/><!--(Fig. 5.32)-->. In the hardened stage CuCr has limitations to work hardening. Compared to copper it has a better temperature stability with good electrical conductivity. Hardness and electrical conductivity as a function of cold working and precipitation hardening conditions are illustrated in [[#figures8|(Figs. 6 – 9)]]<!--Figs. 5.33-5.35-->, <xr id="tab:Physical Properties of Other Precipitation Hardening Copper Alloys"/><!--(Tables 5.19)--> and <xr id="tab:Mechanical Properties of Other Precipitation Hardening Copper Alloys"/><!--(Tab. 5.20)-->.
  
=====<!--5.1.6.2.1-->Kupfer-Chrom-Legierungen=====
+
Copper-chromium materials are especially suitable for use as electrodes for resistance welding. During brazing the loss in hardness is limited if low melting brazing alloys and reasonably short heating times are used.
  
Kupfer-Chrom ist, wie das Zustandsdiagramm zeigt, ähnlich wie Kupfer-
+
<div id="figures5">
Beryllium aushärtbar (<xr id="fig:Copper corner of the copper-chromium phase diagram for up to 0.8 wt% chromium"/><!--(Fig. 5.32)-->). Im ausgehärteten Zustand ist CuCr begrenzt
 
kaltumformbar. Es weist gegenüber Kupfer eine stark erhöhte Warmfestigkeit
 
bei hoher elektrischer Leitfähigkeit auf. Härte und elektrische Leitfähigkeit von
 
Kupfer-Chrom in Abhängigkeit von der Kaltumformung und den Aushärtebedingungen
 
sind in Figure [[#figures8|6 bis 9]]<!--Figs. 5.33 und 5.35--> dargestellt (<xr id="tab:Physical Properties of Other Precipitation Hardening Copper Alloys"/><!--(Tables 5.19)--> und <xr id="tab:Mechanical Properties of Other Precipitation Hardening Copper Alloys"/><!--(Tab. 5.20)-->).
 
  
Kupfer-Chrom-Werkstoffe eignen sich besonders für Widerstands-Schweißelektroden.
+
<xr id="fig:Copper corner of the copper-chromium phase diagram for up to 0.8 wt% chromium"/><!--Fig. 5.32:--> Copper corner of the copper-chromium phase diagram for up to 0.8 wt% chromium
Beim Hartlöten tritt nur ein geringer Härteabfall auf, wenn mit
+
 
niedrigschmelzenden Silberloten und kurzer Lötzeit gearbeitet wird.
+
<xr id="fig:Softening of precipitation hardened and subsequently cold worked CuCr1"/><!--Fig. 5.33:--> Softening of precipitation-hardened and subsequently cold worked CuCr1 after 4hrs annealing
 +
 
 +
<xr id="fig:Electrical conductivity of precipitation hardened CuCr 0.6"/><!--Fig. 5.34 a:--> Electrical conductivity of precipitation hardened CuCr 0.6 as a function of annealing conditions
 +
 
 +
<xr id="fig:Hardness of precipitation hardened CuCr 0.6"/><!--Fig. 5.34 b:--> Hardness of precipitation hardened CuCr 0.6 as a function of annealing conditions
 +
 
 +
<xr id="fig:Electrical conductivity and hardness of precipitation hardened CuCr 0.6"/><!--Fig. 5.35:--> Electrical conductivity and hardness of precipitation hardened CuCr 0.6 after cold working
 +
</div>
  
 
<div class="multiple-images">
 
<div class="multiple-images">
  
 
<figure id="fig:Copper corner of the copper-chromium phase diagram for up to 0.8 wt% chromium">
 
<figure id="fig:Copper corner of the copper-chromium phase diagram for up to 0.8 wt% chromium">
[[File:Copper corner of the copper chromium phase diagram.jpg|left|thumb|<caption>Kupferecke des Zustandsdiagramms Kupfer-Chrom bis 0,8 Massen-% Chrom</caption>]]  
+
[[File:Copper corner of the copper chromium phase diagram.jpg|left|thumb|<caption>Copper corner of the copper-chromium phase diagram for up to 0.8 wt% chromium</caption>]]  
 
</figure>
 
</figure>
  
 
<figure id="fig:Softening of precipitation hardened and subsequently cold worked CuCr1">  
 
<figure id="fig:Softening of precipitation hardened and subsequently cold worked CuCr1">  
[[File:Softening of precipitation hardened and subsequently cold worked CuCr1.jpg|left|thumb|<caption>Erweichungsverhalten von warmausgehärtetem und nachverformtem CuCr1</caption>]]
+
[[File:Softening of precipitation hardened and subsequently cold worked CuCr1.jpg|left|thumb|<caption>Softening of precipitation-hardened and subsequently cold worked CuCr1 after 4hrs annealing</caption>]]
 
</figure>
 
</figure>
  
 
<figure id="fig:Electrical conductivity of precipitation hardened CuCr 0.6">  
 
<figure id="fig:Electrical conductivity of precipitation hardened CuCr 0.6">  
[[File:Electrical conductivity of precipitation hardened CuCr 0.6.jpg|left|thumb|<caption>Abhängigkeit der elektrischen Leitfähigkeit von lösungsgeglühtem CuCr0,6 von der Glühbehandlung</caption>]]
+
[[File:Electrical conductivity of precipitation hardened CuCr 0.6.jpg|left|thumb|<caption>Electrical conductivity of precipitation hardened CuCr 0.6 as a function of annealing conditions</caption>]]
 
</figure>
 
</figure>
  
 
<figure id="fig:Hardness of precipitation hardened CuCr 0.6">  
 
<figure id="fig:Hardness of precipitation hardened CuCr 0.6">  
[[File:Hardness of precipitation hardened CuCr 0.6.jpg|left|thumb|<caption>Abhängigkeit der Härte von lösungsgeglühtem CuCr 0,6 von der Glühbehandlung</caption>]]
+
[[File:Hardness of precipitation hardened CuCr 0.6.jpg|left|thumb|<caption>Hardness of precipitation hardened CuCr 0.6 as a function of annealing conditions</caption>]]
 
</figure>
 
</figure>
  
 
<figure id="fig:Electrical conductivity and hardness of precipitation hardened CuCr 0.6">   
 
<figure id="fig:Electrical conductivity and hardness of precipitation hardened CuCr 0.6">   
[[File:Electrical conductivity and hardness of precipitation hardened CuCr 0.6.jpg|left|thumb|<caption>Elektrische Leitfähigkeit und Härte von warmausgehärtetem CuCr 0,6 nach Kaltumformung</caption>]]
+
[[File:Electrical conductivity and hardness of precipitation hardened CuCr 0.6.jpg|left|thumb|<caption>Electrical conductivity and hardness of precipitation hardened CuCr 0.6 after cold working</caption>]]
 
</figure>
 
</figure>
 
</div>
 
</div>
Line 243: Line 257:
  
 
<figtable id="tab:Physical Properties of Other Precipitation Hardening Copper Alloys">
 
<figtable id="tab:Physical Properties of Other Precipitation Hardening Copper Alloys">
<caption>'''<!--Table 5.19:-->Physikalische Eigenschaften weiterer aushärtbarer Kupfer-Legierungen'''</caption>   
+
<caption>'''<!--Table 5.19:-->Physical Properties of Other Precipitation Hardening Copper Alloys'''</caption>   
  
 
{| class="twocolortable" style="text-align: left; font-size: 12px"
 
{| class="twocolortable" style="text-align: left; font-size: 12px"
 
|-
 
|-
!Werkstoff Bezeichnung<br />EN UNS  
+
!Material<br />Designation<br />EN UNS  
!Zusammensetzung<br />[Massen-%]
+
!Composition<br />[wt%]
!Dichte<br />[g/cm<sup>3</sup>]
+
!Density<br />[g/cm<sup>3</sup>]
!colspan="2" style="text-align:center"|Elektr. Leitfähigkeit
+
!colspan="2" style="text-align:center"|Electrical<br />Conductivity
!Elektr. Widerstand<br />[μΩ·cm]
+
!Electrical<br />Resistivity<br />[μΩ·cm]
!Wärmeleitfähigkeit<br />[W/(m·K)]
+
!Thermal<br />Conductivity<br />[W/(m·K)]
!Lin. Ausdehnungskoeff.<br />[10<sup>-6</sup>/K]
+
!Coeff. of Linear<br />Thermal<br />Expansion<br />[10<sup>-6</sup>/K]
!E-Modul<br />[GPa]
+
!Modulus of<br />Elasticity<br />[GPa]
!Erweichungstemperatur<br />(ca. 10% Festigkeitsabfall)<br />[°C]
+
!Softening Temperature<br />(approx. 10% loss in<br />strength)<br />[°C]
!Schmelzbereich<br />[°C]
+
!Melting<br />Temp Range<br />[°C]
 
|-
 
|-
 
!
 
!
Line 273: Line 287:
 
|Cr 0.3 - 1.2<br />Cu Rest
 
|Cr 0.3 - 1.2<br />Cu Rest
 
|8.89
 
|8.89
|26[[#text-reference8|<sup>a</sup>]]<br />48[[#text-reference9|<sup>b</sup>]]
+
|26<sup>a</sup><br />48<sup>b</sup>
|45[[#text-reference8|<sup>a</sup>]]<br />83[[#text-reference9|<sup>b</sup>]]
+
|45<sup>a</sup><br />83<sup>b</sup>
|3.8[[#text-reference8|<sup>a</sup>]]<br />2.1[[#text-reference9|<sup>b</sup>]]
+
|3.8<sup>a</sup><br />2.1<sup>b</sup>
|170[[#text-reference8|<sup>a</sup>]]<br />315[[#text-reference9|<sup>b</sup>]]
+
|170<sup>a</sup><br />315<sup>b</sup>
 
|17
 
|17
 
|112
 
|112
Line 285: Line 299:
 
|Zr 0.1 - 0.3<br />Cu Rest
 
|Zr 0.1 - 0.3<br />Cu Rest
 
|8.9
 
|8.9
|35[[#text-reference8|<sup>a</sup>]]<br />52[[#text-reference9|<sup>b</sup>]]
+
|35<sup>a</sup><br />52<sup>b</sup>
|60[[#text-reference8|<sup>a</sup>]]<br />90[[#text-reference9|<sup>b</sup>]]
+
|60<sup>a</sup><br />90<sup>b</sup>
|2.9[[#text-reference8|<sup>a</sup>]]<br />1.9[[#text-reference9|<sup>b</sup>]]
+
|2.9<sup>a</sup><br />1.9<sup>b</sup>
|340[[#text-reference8|<sup>a</sup>]]
+
|340<sup>a</sup>
 
|16
 
|16
 
|135
 
|135
Line 297: Line 311:
 
|Cr 0.5 - 1.2<br />Zr 0.03 - 0.3<br />Cu Rest
 
|Cr 0.5 - 1.2<br />Zr 0.03 - 0.3<br />Cu Rest
 
|8.92
 
|8.92
|20[[#text-reference8|<sup>a</sup>]]<br />43[[#text-reference9|<sup>b</sup>]]
+
|20<sup>a</sup><br />43<sup>b</sup>
|34[[#text-reference8|<sup>a</sup>]]<br />74[[#text-reference9|<sup>b</sup>]]
+
|34<sup>a</sup><br />74<sup>b</sup>
|5.0[[#text-reference8|<sup>a</sup>]]<br />2.3[[#text-reference9|<sup>b</sup>]]
+
|5.0<sup>a</sup><br />2.3<sup>b</sup>
|170[[#text-reference8|<sup>a</sup>]]<br />310 - 330[[#text-reference9|<sup>b</sup>]]
+
|170<sup>a</sup><br />310 - 330<sup>b</sup>
 
|16
 
|16
|110<sup>a</sup><br />130[[#text-reference9|<sup>b</sup>]]
+
|110<sup>a</sup><br />130<sup>b</sup>
 
|ca. 500
 
|ca. 500
 
|1070 - 1080
 
|1070 - 1080
 
|}
 
|}
<div id="text-reference8"><sub>a</sub> lösungsgeglüht und kaltumgeformt</div>
 
<div id="text-reference9"><sub>b</sub> lösungsgeglüht, kaltumgeformt und ausscheidungsgehärtet</div>
 
 
</figtable>
 
</figtable>
<br />
+
 
<br />
+
<sup>a</sup>solution annealed, and cold rolled<br />  
 +
<sup>b</sup>solution annealed, cold rolled, and precipitation hardened<br />  
  
  
 
<figtable id="tab:Mechanical Properties of Other Precipitation Hardening Copper Alloys">
 
<figtable id="tab:Mechanical Properties of Other Precipitation Hardening Copper Alloys">
<caption>'''<!--Table 5.20:-->Mechanische Eigenschaften weiterer aushärtbarer Kupfer-Legierungen'''</caption>
+
<caption>'''<!--Table 5.20:-->Mechanical Properties of Other Precipitation Hardening Copper Alloys'''</caption>
  
 
<table class="twocolortable">
 
<table class="twocolortable">
<tr><th><p class="s16">Werkstoff</p></th><th><p class="s16">Zustand</p></th><th><p class="s16">Zugfestigkeit</p><p class="s16">R<span class="s18">m</span></p><p class="s16">[MPa]</p></th><th><p class="s16">0,2% Dehngrenze</p><p class="s16">R<span class="s18">p02</span></p><p class="s16">[MPa]</p></th><th><p class="s16">Bruchdehnung</p><p class="s16">A50</p><p class="s16">[%]</p></th><th><p class="s16">Vickershärte</p><p class="s16">HV</p></th><th><p class="s16">Federbiegegrenze</p><p class="s16"><span class="s19">F</span><span class="s18">FB </span>[MPa]</p></th></tr><tr><td><p class="s16">CuCr</p></td><td><p class="s16">R 230<span class="s18">a</span></p><p class="s16">R 400<span class="s18">a </span>R 450<span class="s18">b </span>R 550<span class="s18">b</span></p></td><td><p class="s33">&gt;<span class="s16"> 230</span></p><p class="s33">&gt;<span class="s16"> 400</span></p><p class="s33">&gt;<span class="s16"> 450</span></p><p class="s33">&gt;<span class="s16"> 550</span></p></td><td><p class="s33">&gt;<span class="s16"> 80</span></p><p class="s33">&gt;<span class="s16"> 295</span></p><p class="s33">&gt;<span class="s16"> 325</span></p><p class="s33">&gt;<span class="s16"> 440</span></p></td><td><p class="s16">30</p><p class="s16">10</p><p class="s16">10</p><p class="s16">8</p></td><td><p class="s33">&gt;<span class="s16"> 55</span></p><p class="s33">&gt;<span class="s16"> 120</span></p><p class="s33">&gt;<span class="s16"> 130</span></p><p class="s33">&gt;<span class="s16"> 150</span></p></td><td><p class="s16">350</p></td></tr><tr><td><p class="s16">CuZr</p></td><td><p class="s16">R 260<span class="s18">a</span></p><p class="s16">R 370<span class="s18">a </span>R 400<span class="s18">b </span>R 420<span class="s18">b</span></p></td><td><p class="s33">&gt;<span class="s16"> 260</span></p><p class="s33">&gt;<span class="s16"> 370</span></p><p class="s33">&gt;<span class="s16"> 400</span></p><p class="s33">&gt;<span class="s16"> 420</span></p></td><td><p class="s33">&gt;<span class="s16"> 100</span></p><p class="s33">&gt;<span class="s16"> 270</span></p><p class="s33">&gt;<span class="s16"> 280</span></p><p class="s33">&gt;<span class="s16"> 400</span></p></td><td><p class="s16">35</p><p class="s16">12</p><p class="s16">12</p><p class="s16">10</p></td><td><p class="s33">&gt;<span class="s16"> 55</span></p><p class="s33">&gt;<span class="s16"> 100</span></p><p class="s33">&gt;<span class="s16"> 105</span></p><p class="s33">&gt;<span class="s16"> 115</span></p></td><td><p class="s16">280</p></td></tr><tr><td><p class="s16">CuCr1Zr</p></td><td><p class="s16">R 200<span class="s18">a</span></p><p class="s16">R 400<span class="s18">b</span></p><p class="s16">R 450<span class="s18">b</span></p></td><td><p class="s33">&gt;<span class="s16"> 200</span></p><p class="s33">&gt;<span class="s16"> 400</span></p><p class="s33">&gt;<span class="s16"> 450</span></p></td><td><p class="s33">&gt;<span class="s16"> 60</span></p><p class="s33">&gt;<span class="s16"> 210</span></p><p class="s33">&gt;<span class="s16"> 360</span></p></td><td><p class="s16">30</p><p class="s16">12</p><p class="s16">10</p></td><td><p class="s33">&gt;<span class="s16"> 70</span></p><p class="s33">&gt;<span class="s16"> 140</span></p><p class="s33">&gt;<span class="s16"> 155</span></p></td><td><p class="s16">420</p></td></tr></table>
+
<tr><th><p class="s16">Material</p></th><th><p class="s16">Hardness</p><p class="s16">Condi- tion</p></th><th><p class="s16">Tensile</p><p class="s16">Strength R<span class="s18">m</span></p><p class="s16">[MPa]</p></th><th><p class="s16">0,2% Yield</p><p class="s16">Strength R<span class="s18">p02</span></p><p class="s16">[MPa]</p></th><th><p class="s16">Elongation</p><p class="s16">A50</p><p class="s16">[%]</p></th><th><p class="s16">Vickers</p><p class="s16">Hardness</p><p class="s16">HV</p></th><th><p class="s16">Spring Bending</p><p class="s16">Limit <span class="s19">F</span><span class="s18">FB </span>[MPa]</p></th></tr><tr><td><p class="s16">CuCr</p></td><td><p class="s16">R 230<span class="s18">a</span></p><p class="s16">R 400<span class="s18">a </span>R 450<span class="s18">b </span>R 550<span class="s18">b</span></p></td><td><p class="s33">&gt;<span class="s16"> 230</span></p><p class="s33">&gt;<span class="s16"> 400</span></p><p class="s33">&gt;<span class="s16"> 450</span></p><p class="s33">&gt;<span class="s16"> 550</span></p></td><td><p class="s33">&gt;<span class="s16"> 80</span></p><p class="s33">&gt;<span class="s16"> 295</span></p><p class="s33">&gt;<span class="s16"> 325</span></p><p class="s33">&gt;<span class="s16"> 440</span></p></td><td><p class="s16">30</p><p class="s16">10</p><p class="s16">10</p><p class="s16">8</p></td><td><p class="s33">&gt;<span class="s16"> 55</span></p><p class="s33">&gt;<span class="s16"> 120</span></p><p class="s33">&gt;<span class="s16"> 130</span></p><p class="s33">&gt;<span class="s16"> 150</span></p></td><td><p class="s16">350</p></td></tr><tr><td><p class="s16">CuZr</p></td><td><p class="s16">R 260<span class="s18">a</span></p><p class="s16">R 370<span class="s18">a </span>R 400<span class="s18">b </span>R 420<span class="s18">b</span></p></td><td><p class="s33">&gt;<span class="s16"> 260</span></p><p class="s33">&gt;<span class="s16"> 370</span></p><p class="s33">&gt;<span class="s16"> 400</span></p><p class="s33">&gt;<span class="s16"> 420</span></p></td><td><p class="s33">&gt;<span class="s16"> 100</span></p><p class="s33">&gt;<span class="s16"> 270</span></p><p class="s33">&gt;<span class="s16"> 280</span></p><p class="s33">&gt;<span class="s16"> 400</span></p></td><td><p class="s16">35</p><p class="s16">12</p><p class="s16">12</p><p class="s16">10</p></td><td><p class="s33">&gt;<span class="s16"> 55</span></p><p class="s33">&gt;<span class="s16"> 100</span></p><p class="s33">&gt;<span class="s16"> 105</span></p><p class="s33">&gt;<span class="s16"> 115</span></p></td><td><p class="s16">280</p></td></tr><tr><td><p class="s16">CuCr1Zr</p></td><td><p class="s16">R 200<span class="s18">a</span></p><p class="s16">R 400<span class="s18">b</span></p><p class="s16">R 450<span class="s18">b</span></p></td><td><p class="s33">&gt;<span class="s16"> 200</span></p><p class="s33">&gt;<span class="s16"> 400</span></p><p class="s33">&gt;<span class="s16"> 450</span></p></td><td><p class="s33">&gt;<span class="s16"> 60</span></p><p class="s33">&gt;<span class="s16"> 210</span></p><p class="s33">&gt;<span class="s16"> 360</span></p></td><td><p class="s16">30</p><p class="s16">12</p><p class="s16">10</p></td><td><p class="s33">&gt;<span class="s16"> 70</span></p><p class="s33">&gt;<span class="s16"> 140</span></p><p class="s33">&gt;<span class="s16"> 155</span></p></td><td><p class="s16">420</p></td></tr></table>
 
</figtable>
 
</figtable>
  
=====<!--5.1.6.2.2-->Kupfer-Zirkon-Legierungen=====
+
=====<!--5.1.6.2.2-->Copper-Zirconium Alloys=====
 +
 
 +
The solubility of Zirconium in copper is 0.15 wt% Zr at the eutectic temperature of 980°C <xr id="fig:Copper corner of the copper zirconium for up to 0.5-wt zirconium"/><!--(Fig. 5.36)-->. Copper-zirconium materials have a similar properties spectrum compared to the one for copper-chromium materials. At room temperature the mechanical properties of copper-zirconium are less suitable than those of copper chromium, its temperature stability is however at least the same.
 +
 
 +
=====<!--5.1.6.2.3-->Copper-Chromium-Zirconium Alloys=====
  
Die Löslichkeit von Zirkon in Kupfer beträgt ca. 0,15 Massen-% Zr bei der
+
The earlier used CuCr and CuZr materials have been partially replaced over the years by the capitation hardening three materials alloy CuCr1Zr. This material exhibits high mechanical strength at elevated temperatures and good oxidation resistance as well as high softening temperatures. In its hardened condition CuCr1Zr has also a high electrical conductivity <xr id="fig:Softening of CuCr1Zr after 1hr annealing"/><!--(Bild 5.37)-->. Their usage extends from mechanically and thermally highly stressed parts such as contact tulips in high voltage switchgear to electrodes for resistance welding.
eutektischen Temperatur von 980° C (<xr id="fig:Copper corner of the copper zirconium for up to 0.5-wt zirconium"/><!--(Fig. 5.36)-->). Kupfer-Zirkon-Werkstoffe weisen
 
ein ähnliches Eigenschaftsspektrum wie die Kupfer-Chrom-Werkstoffe auf. Bei
 
Raumtemperatur ist Kupfer-Zirkon in den mechanischen Eigenschaften dem
 
Kupfer-Chrom unterlegen, bezüglich Warmfestigkeit jedoch mindestens
 
gleichwertig.
 
  
=====<!--5.1.6.2.3-->Kupfer-Chrom-Zirkon-Legierungen=====
+
<xr id="fig:Copper corner of the copper zirconium for up to 0.5-wt zirconium"/><!--Fig. 5.36:--> Copper corner of the copper- zirconium for up to 0.5 wt% zirconium
  
Anstatt der früher üblichen Werkstoffe CuCr und CuZr wird seit einigen Jahren die
+
<xr id="fig:Softening of CuCr1Zr after 1hr annealing"/><!--Fig. 5.37:--> Softening of CuCr1Zr after 1 hr annealing and after 90% cold working
aushärtbare Dreistofflegierung CuCr1Zr eingesetzt. Dieser Werkstoff zeichnet sich
 
durch hohe Festigkeitswerte auch bei erhöhten Temperaturen und eine sehr hohe
 
Anlaufbeständigkeit sowie hohe Erweichungstemperaturen aus. Im ausgehärteten
 
Zustand weist CuCr1Zr eine hohe elektrische Leitfähigkeit auf (<xr id="fig:Softening of CuCr1Zr after 1hr annealing"/><!--(Bild 5.37)-->).
 
Neben ihrem Einsatz als mechanisch und thermisch hochbeanspruchbare Teile,
 
z.B. als Kontakttulpen in Hochspannungsschaltern, ist auch ihre Verwendung als
 
Elektrodenwerkstoffe für das Widerstandsschweißen hervorzuheben.
 
  
 
<div class="multiple-images">
 
<div class="multiple-images">
 
<figure id="fig:Copper corner of the copper zirconium for up to 0.5-wt zirconium">
 
<figure id="fig:Copper corner of the copper zirconium for up to 0.5-wt zirconium">
[[File:Copper corner of the copper zirconium for up to 0.5-wt zirconium.jpg|right|thumb|Figure 10: Kupferecke des Zustandsdiagramms Kupfer-Zirkon bis 0,5 Massen-% Zirkon]]  
+
[[File:Copper corner of the copper zirconium for up to 0.5-wt zirconium.jpg|right|thumb|Copper corner of the copper- zirconium for up to 0.5 wt% zirconium]]  
 
</figure>
 
</figure>
  
 
<figure id="fig:Softening of CuCr1Zr after 1hr annealing">
 
<figure id="fig:Softening of CuCr1Zr after 1hr annealing">
[[File:Softening of CuCr1Zr after 1hr annealing.jpg|right|thumb|Figure 11: Erweichungsverhalten von CuCr1Zr nach 1h Glühdauer und einer Kaltumformung von 90%]]
+
[[File:Softening of CuCr1Zr after 1hr annealing.jpg|right|thumb|Softening of CuCr1Zr after 1 hr annealing and after 90% cold working]]
 
</figure>
 
</figure>
 
</div>
 
</div>

Revision as of 14:43, 20 September 2014

Neben den naturharten Kupferwerkstoffen spielen aushärtbare Kupferlegierungen als Trägerwerkstoffe für elektrische Kontakte eine wichtige Rolle. Bei den aushärtbaren Legierungen können durch eine geeignete Wärmebehandlung fein verteilte Ausscheidungen einer zweiten Phase erzeugt werden, die die Festigkeit des Werkstoffes deutlich erhöhen.

Kupfer-Beryllium-Legierungen (Berylliumbronze)

Voraussetzung für die Aushärtbarkeit der CuBe-Werkstoffe ist die mit sinkender Temperatur rasch abnehmende Löslichkeit des Berylliums im Kupfer. Wie aus dem Zustandsschaubild für CuBe ersichtlich, sind bei ca. 780°C 2,4 Massen-% Be in Kupfer löslich Figure 1. In diesem Temperaturbereich wärmebehandelte CuBe-Legierungen sind homogen („lösungsglühen“). Der homogene Zustand kann durch schnelles Abkühlen auf Raumtemperatur eingefroren werden („abschrecken“). Durch die anschließende Wärmebehandlung bei einer Temperatur von 325°C wird die gewünschte Ausscheidungshärtung erreicht, die einen deutlichen Anstieg der Festigkeit und der elektrischen Leitfähigkeit von CuBe bewirkt Table 1. Die erreichbaren Festigkeits- und Härtewerte sind abhängig von der Glühtemperatur und Glühdauer sowie vom Umformgrad (Tab. 5.18) und Table 2 and (Figs. 43 – 75).


Von den aushärtbaren Kupferlegierungen haben CuBe-Werkstoffe, vor allem CuBe2 und CuBe1,7 für stromführende Kontaktfedern wegen ihrer herausragenden mechanischen Eigenschaften eine besondere Bedeutung erlangt. Daneben sind noch die Werkstoffe CuCo2Be und CuNi2Be zu erwähnen, die bei mittleren Festigkeitswerten eine relativ hohe elektrische Leitfähigkeit aufweisen. CuBe-Legierungen sind als aushärtbare Halbzeuge in verschiedenen Lieferzuständen erhältlich. Daneben können CuBe-Halbzeuge mit geringen Einbußen hinsichtlich der Festigkeitseigenschaften im „werksvergüteten“ Zustand eingesetzt werden. In diesem Falle wurde das Halbzeug bereits beim Hersteller ausscheidungsgehärtet.

Da Beryllium in der EU-67/548 als kanzerogen eingestuft ist, wird bei einer Reihe von Legierungen versucht, das Eigenschaftsspektrum der bewährten CuBe1,7- und CuBe2-Werkstoffe wenigstens näherungsweise auch mit einem geringeren Be-Anteil zu erreichen. Auch die Entwicklung weiterer ausscheidungshärtender Kupfer-Legierungen ohne toxische bzw. deklarationspfichtige Elemente z.B. CuNiCoSi zielt in Richtung CuBe-Ersatz.

Figure 1 Zustandsdiagramm Kupfer-Beryllium mit Temperaturbereichen für Hartlötungen und Wärmebehandlungen

Figure 2 Aushärtung von CuBe2 bei 325°C nach unterschiedlicher Kaltumformung

Figure 3 Precipitation hardening of CuBe2 (soft) at 325°C

Figure 4 Precipitation hardening of CuBe2 (half hard) at different annealing temperatures

Figure 1: Zustandsdiagramm Kupfer-Beryllium mit Temperaturbereichen für Hartlötungen und Wärmebehandlungen
Figure 2: Aushärtung von CuBe2 bei 325°C nach unterschiedlicher Kaltumformung
Figure 3: Precipitation hardening of CuBe2 (soft) at 325°C
Figure 4: Precipitation hardening of CuBe2 (half hard) at different annealing temperatures


Table 1: Physical Properties of Selected Copper-Beryllium Alloys
Material
Designation
EN UNS
Composition
[wt%]
Density
[g/cm3]
Electrical
Conductivity
Electrical
Resistivity
[μΩ·cm]
Thermal
Conductivity
[W/(m·K)]
Coeff. of Linear
Thermal
Expansion
[10-6/K]
Modulus of
Elasticity
[GPa]
Softening Temperature
(approx. 10% loss in
strength)
[°C]
Melting
Temp Range
[°C]
[MS/m] [% IACS]
CuBe1.7
CW100C
C17000
Be 1.6 - 1.8
Co 0.3
Ni 0.3
Cu Rest
8.4 8 - 9a
12 - 13b
11c
14 - 16
21 - 22
19
11 - 12.5a
7.7 - 8.3b
9.1c
110 17 125a
135b
ca. 380 890 - 1000
CuBe2
CW101C
C17200
Be 1.8 - 2.1
Co 0.3
Ni 0.3
Cu Rest
8.3 8 - 9a
12 - 13b
11c
14 - 16
21 - 22
19
11 - 12.5a
7.7 - 8.3b
9.1c
110 17 125a
135b
ca. 380 870 - 980
CuCo2Be
CW104C
C17500
Co 2.0 - 2.8
Be 0.4 - 0.7
Ni 0.3
Cu Rest
8.8 11 - 14a
25 - 27b
27 - 34c
19 - 24
43 - 47
47 - 59
7.1 - 9.1a
3.7 - 4.0b
2.9c
210 18 131a
138b
ca. 450 1030 - 1070
CuNi2Be
CW110C
C17510
Ni 1.4 - 2.2
Be 0.2 - 0.6
Co 0.3
Cu Rest
8.8 11 - 14a
25 - 27b
27 - 34c
19 - 24
43 - 47
47 - 59
7.1 - 9.1a
3.7 - 4.0b
2.9c
230 18 131a
138b
ca. 480 1060 - 1100

asolution annealed, and cold rolled
bsolution annealed, cold rolled, and precipitation hardened
csolution annealed, cold rolled, and precipitation hardened at mill (mill hardened)


Table 2: Mechanical Properties of Selected Copper-Beryllium Alloys
Material Hardness
Condition
Tensile Strength Rm
[MPa]
0,2% Yield Strength
Rp02
[MPa]
Elongation
A50
[%]
Vickers
Hardness
HV
Bend Radius1)
perpendicular to
rolling direction
Bend Radius1)
parallel to
rolling direction
Spring Bending
Limit σFB
[MPa]
Spring Fatigue
Limit σBW
[MPa]
CuBe1,7 R 390a
R 680a
R 1030b
R 1240b
R 680c
R 1100c
380 -520
680 - 820
1030 - 1240
1240 - 1380
680 - 750
1100 - 1200
≥ 180
≥ 600
≥ 900
≥ 1070
≥ 480
≥ 930
35
2
3
1
18
3
80 - 135
210 - 250
330 - 380
360 - 420
220 - 350
330 - 370
0 x t
1 x t
1 x t

1 x t
6 x t
0 x t
3 x t
1.5 x t

1 x t
10 x t


700
1000
390
790


260
280

260
CuBe2 R 410a
R 690a
R 1140b
R 1310b
R 690c
R 1200c
410 -540
690 - 820
1140 - 1310
1310 - 1480
690 - 760
1200 - 1320
≥ 190
≥ 650
≥ 1000
≥ 1150
≥ 480
≥ 1030
35
2
3
1
18
3
90 - 140
215 - 260
350 - 400
380 - 450
220 - 250
360 - 410
0 x t
1 x t


1 x t
5 x t
0 x t
3 x t


1.5 x t
10 x t


800
1040
400
900


270
300

280
CuCo2Be
CuNi2Be
R 250a
R 550a
R 650b
R 850b
R 520c
250 - 380
550 - 700
650 - 820
850 - 1000
520 - 620
≥ 140
≥ 450
≥ 520
≥ 750
≥ 340
20
2
10
1
5
60 - 90
160 - 200
195 - 230
240 - 290
150 - 180
0 x t
3 x t
1 x t
3 x t
1 x t
0 x t

1 x t
3.5 x t
1 x t


360
650
300


220
250
210

1) t: Strip thickness max. 0.5 mm
asolution annealed, and cold rolled
bsolution annealed, cold rolled, and precipitation hardened
csolution annealed, cold rolled, and precipitation hardened at mill (mill hardened)

Other Precipitation Hardening Copper Alloys

Copper-Chromium Alloys

As the phase diagram shows, copper-chromium has a similar hardening profile compared to CuBe Figure 5. In the hardened stage CuCr has limitations to work hardening. Compared to copper it has a better temperature stability with good electrical conductivity. Hardness and electrical conductivity as a function of cold working and precipitation hardening conditions are illustrated in (Figs. 6 – 9), Table 3 and Table 4.

Copper-chromium materials are especially suitable for use as electrodes for resistance welding. During brazing the loss in hardness is limited if low melting brazing alloys and reasonably short heating times are used.

Figure 5 Copper corner of the copper-chromium phase diagram for up to 0.8 wt% chromium

Figure 6 Softening of precipitation-hardened and subsequently cold worked CuCr1 after 4hrs annealing

Figure 7 Electrical conductivity of precipitation hardened CuCr 0.6 as a function of annealing conditions

Figure 8 Hardness of precipitation hardened CuCr 0.6 as a function of annealing conditions

Figure 9 Electrical conductivity and hardness of precipitation hardened CuCr 0.6 after cold working

Figure 5: Copper corner of the copper-chromium phase diagram for up to 0.8 wt% chromium
Figure 6: Softening of precipitation-hardened and subsequently cold worked CuCr1 after 4hrs annealing
Figure 7: Electrical conductivity of precipitation hardened CuCr 0.6 as a function of annealing conditions
Figure 8: Hardness of precipitation hardened CuCr 0.6 as a function of annealing conditions
Figure 9: Electrical conductivity and hardness of precipitation hardened CuCr 0.6 after cold working


Table 3: Physical Properties of Other Precipitation Hardening Copper Alloys
Material
Designation
EN UNS
Composition
[wt%]
Density
[g/cm3]
Electrical
Conductivity
Electrical
Resistivity
[μΩ·cm]
Thermal
Conductivity
[W/(m·K)]
Coeff. of Linear
Thermal
Expansion
[10-6/K]
Modulus of
Elasticity
[GPa]
Softening Temperature
(approx. 10% loss in
strength)
[°C]
Melting
Temp Range
[°C]
[MS/m] [% IACS]
CuCr Cr 0.3 - 1.2
Cu Rest
8.89 26a
48b
45a
83b
3.8a
2.1b
170a
315b
17 112 ca. 450 980 - 1080
CuZr Zr 0.1 - 0.3
Cu Rest
8.9 35a
52b
60a
90b
2.9a
1.9b
340a 16 135 ca. 500 1020 - 1080
CuCr1Zr
CW106C
C18150
Cr 0.5 - 1.2
Zr 0.03 - 0.3
Cu Rest
8.92 20a
43b
34a
74b
5.0a
2.3b
170a
310 - 330b
16 110a
130b
ca. 500 1070 - 1080

asolution annealed, and cold rolled
bsolution annealed, cold rolled, and precipitation hardened


Table 4: Mechanical Properties of Other Precipitation Hardening Copper Alloys

Material

Hardness

Condi- tion

Tensile

Strength Rm

[MPa]

0,2% Yield

Strength Rp02

[MPa]

Elongation

A50

[%]

Vickers

Hardness

HV

Spring Bending

Limit FFB [MPa]

CuCr

R 230a

R 400a R 450b R 550b

> 230

> 400

> 450

> 550

> 80

> 295

> 325

> 440

30

10

10

8

> 55

> 120

> 130

> 150

350

CuZr

R 260a

R 370a R 400b R 420b

> 260

> 370

> 400

> 420

> 100

> 270

> 280

> 400

35

12

12

10

> 55

> 100

> 105

> 115

280

CuCr1Zr

R 200a

R 400b

R 450b

> 200

> 400

> 450

> 60

> 210

> 360

30

12

10

> 70

> 140

> 155

420

Copper-Zirconium Alloys

The solubility of Zirconium in copper is 0.15 wt% Zr at the eutectic temperature of 980°C Figure 10. Copper-zirconium materials have a similar properties spectrum compared to the one for copper-chromium materials. At room temperature the mechanical properties of copper-zirconium are less suitable than those of copper chromium, its temperature stability is however at least the same.

Copper-Chromium-Zirconium Alloys

The earlier used CuCr and CuZr materials have been partially replaced over the years by the capitation hardening three materials alloy CuCr1Zr. This material exhibits high mechanical strength at elevated temperatures and good oxidation resistance as well as high softening temperatures. In its hardened condition CuCr1Zr has also a high electrical conductivity Figure 11. Their usage extends from mechanically and thermally highly stressed parts such as contact tulips in high voltage switchgear to electrodes for resistance welding.

Figure 10 Copper corner of the copper- zirconium for up to 0.5 wt% zirconium

Figure 11 Softening of CuCr1Zr after 1 hr annealing and after 90% cold working

Copper corner of the copper- zirconium for up to 0.5 wt% zirconium
Softening of CuCr1Zr after 1 hr annealing and after 90% cold working

Referenzen

Referenzen