Difference between revisions of "Contact Spring Calculations"
Doduco Admin (talk | contribs) (Blanked the page) (Tag: Blanking) |
(→6.4.7 Contact Spring Calculations) |
||
| (47 intermediate revisions by 5 users not shown) | |||
| Line 1: | Line 1: | ||
| + | ===6.4.7 Contact Spring Calculations=== | ||
| + | [[File:One side fixed contact bending spring.jpg|right|thumb|One side fixed contact bending spring]] | ||
| + | Fig. 6.20: | ||
| + | One side fixed contact bending spring<br /> | ||
| + | L = Length of spring<br /> | ||
| + | E = Modulus of elasticity<br /> | ||
| + | B = Width of spring<br /> | ||
| + | F = Spring force<br /> | ||
| + | D = Thickness of spring<br /> | ||
| + | x = Deflection<br /> | ||
| + | max = maximum bending force | ||
| + | The influence of the dimensions can be illustrated best by using the single side fixed beam model (Fig. 6.20). For small deflections the following equation is valid: | ||
| + | |||
| + | <math>F = | ||
| + | \frac {3 x E x J}{L^3} x</math> | ||
| + | |||
| + | |||
| + | where J is the momentum of inertia of the rectangular cross section of the beam | ||
| + | |||
| + | <math>J = | ||
| + | \frac {B x D^3}{12}</math> | ||
| + | |||
| + | |||
| + | For springs with a circular cross-sectional area the momentum of inertia is | ||
| + | |||
| + | <math>J=\piD^4/64</math><br /> | ||
| + | D= Durchmesser | ||
| + | |||
| + | To avoid plastic deformation of the spring the max bending force σ cannot be max | ||
| + | exceeded | ||
| + | |||
| + | Fmax= 3 x E x D xmax | ||
| + | 2L² | ||
| + | |||
| + | The stress limit is defined through the fatigue limit and the 0.2% elongation limit | ||
| + | resp. | ||
| + | |||
| + | xmax= 2 x L ² Rp0,2 | ||
| + | 3 x D x E | ||
| + | |||
| + | and/or | ||
| + | |||
| + | Fmax= B x D ² Rp0,2 | ||
| + | 6L | ||
| + | |||
| + | |||
| + | *'''Special Spring Shapes''' | ||
| + | |||
| + | *'''Triangular spring''' | ||
| + | |||
| + | Deflection | ||
| + | x= L³ | ||
| + | F | ||
| + | 2 x E x J | ||
| + | |||
| + | = x L³ | ||
| + | D³ | ||
| + | 6 x F | ||
| + | E x B | ||
| + | |||
| + | Max. bending force | ||
| + | Fmax= 1 8 x F x L | ||
| + | B x D² | ||
| + | |||
| + | *'''Trapezoidal spring''' | ||
| + | |||
| + | Deflection | ||
| + | x= x L³ | ||
| + | E x J | ||
| + | F | ||
| + | (2 + B /B ) | ||
| + | |||
| + | x= x L³ | ||
| + | E x B x D³ | ||
| + | 12 x F | ||
| + | (2 + B /B ) min ma | ||
| + | |||
| + | Max. bending force | ||
| + | |||
| + | Fmax= 1 8 x F x L | ||
| + | (2 + B /B ) x B x D² min max max | ||
| + | |||
| + | ==References== | ||
| + | [[Application Tables and Guideline Data for Use of Electrical Contact Design#References|References]] | ||
Revision as of 12:35, 2 April 2014
6.4.7 Contact Spring Calculations
Fig. 6.20:
One side fixed contact bending spring
L = Length of spring
E = Modulus of elasticity
B = Width of spring
F = Spring force
D = Thickness of spring
x = Deflection
max = maximum bending force
The influence of the dimensions can be illustrated best by using the single side fixed beam model (Fig. 6.20). For small deflections the following equation is valid:
where J is the momentum of inertia of the rectangular cross section of the beam
For springs with a circular cross-sectional area the momentum of inertia is
D= Durchmesser
To avoid plastic deformation of the spring the max bending force σ cannot be max exceeded
Fmax= 3 x E x D xmax 2L²
The stress limit is defined through the fatigue limit and the 0.2% elongation limit resp.
xmax= 2 x L ² Rp0,2 3 x D x E
and/or
Fmax= B x D ² Rp0,2 6L
- Special Spring Shapes
- Triangular spring
Deflection x= L³ F 2 x E x J
= x L³ D³ 6 x F E x B
Max. bending force Fmax= 1 8 x F x L B x D²
- Trapezoidal spring
Deflection x= x L³ E x J F (2 + B /B )
x= x L³ E x B x D³ 12 x F (2 + B /B ) min ma
Max. bending force
Fmax= 1 8 x F x L (2 + B /B ) x B x D² min max max