Difference between revisions of "Contact Physics – Formulas"

From Electrical Contacts
Jump to: navigation, search
(24 intermediate revisions by 3 users not shown)
Line 1: Line 1:
===<!--6.4.2-->Contact Physics – Formulas===
+
===6.4.2 Contact Physics – Formulas===
  
*'''Constriction resistance'''  
+
*'''Constriction resistance''' <math>R_e = \rho/2a</math>
: <math>R_e = \rho/2a</math>
 
 
(Single spot contact according to Holm; circular touching spot between clean
 
(Single spot contact according to Holm; circular touching spot between clean
 
contact surfaces)
 
contact surfaces)
: <math>R_e = \rho/2Na</math>
+
<math>R_e = \rho/2Na</math>
 
(Multi-spot contact according to Holm without influence between the N
 
(Multi-spot contact according to Holm without influence between the N
 
individual spots)
 
individual spots)
: <math>R_e = \rho/2 x \sum a_i + 3 \pi \rho /32N^2 x \sum \sum (s_ij) i \neq j</math>
+
<math>R_e = \rho/2 x \sum a_i + 3 \pi \rho/32N² x \sum \sum (s_ij) i \neq j</math>
 
(Multi-spot contact according to Greenwood considering the influence between
 
(Multi-spot contact according to Greenwood considering the influence between
 
the spots)
 
the spots)
  
*'''Contact resistance'''
+
*'''Contact resistance''' R<sub>K</sub> = R<sub>e</sub> + R<sub>f</sub>
: <math>R_K = R_e + R_f</math>
 
  
*'''Path resistance'''  
+
*'''Path resistance''' cR<sub>d</sub> = R<sub>b</sub> + R<sub>K</sub>
: <math>R_d = R_b + R_K</math>
 
  
*'''Contact resistance and contact force'''
+
*'''Contact resistance and contact force''' <math>R_K = 280D ³ E(F · r) K</math>  
: <math>R_K = 280\rho \sqrt[3]{E (F_K \cdot r)} </math>  
 
 
(According to Holm model for film-free spherical contact surfaces with plastic
 
(According to Holm model for film-free spherical contact surfaces with plastic
 
deformation of the contact material; F<sub>k</sub> < 1 N for typical contact materials)
 
deformation of the contact material; F<sub>k</sub> < 1 N for typical contact materials)
: <math>R_K = 9000 \rho \sqrt{ H/ F_K}</math>
+
<math>R_K = 9000 D H/ FK</math>
 
(According to Holm model for film-free spherical contact surfaces with plastic
 
(According to Holm model for film-free spherical contact surfaces with plastic
 
deformation of the contact material; F<sub>k</sub> > 5 N for typical contact materials)
 
deformation of the contact material; F<sub>k</sub> > 5 N for typical contact materials)
  
*'''Dynamic contact separation''' (without considering magnetic fields caused by the current path)  
+
*'''Dynamic contact separation''' (without considering magnetic fields caused by the current path) <br />F<sub>A</sub> 0,8 x I<sup>2</sup>(Rule of thumb with F<sub>A</sub> in N and I in kA)
: <math>F_A \approx 0,8 xl^2</math>
 
(Rule of thumb with F<sub>A</sub> in N and l in kA)
 
  
*'''Contact voltage and max. contact temperature'''
+
*'''Contact voltage and max. contact temperature''' <br />T<sub>kmax</sub> 3200 U<sub>K</sub>
: <math>T_kmax \approx 3200 U_K</math>
 
  
*'''Contact resistance at higher contact forces (according to Babikow)'''  
+
*'''Contact resistance at higher contact forces (according to Babikow)''' <br />R<sub>K</sub> = cF -m K
: <math>R_K = cF_k^{-m}</math>
+
For F<sub>K</sub> between 10 and 200 N
For F<sub>K</sub> between 10 and 200 N<br/>
+
c = material dependent proportionality factor
c = material dependent proportionality factor<br/>
 
 
m = shape dependent exponent of the contact force
 
m = shape dependent exponent of the contact force
 
 
{| class="twocolortable scalable" style="text-align: left; font-size: 12px; width:45%;"
 
|-
 
!Material combination
 
!c
 
|-
 
|Copper - Copper
 
|(0.08 bis 0.14) x 10<sup>-3</sup>
 
|-
 
|Aluminum - Aluminum
 
|(3 bis 6,7) x 10<sup>-3</sup>
 
|-
 
|Brass - Brass
 
|0.67 x 10<sup>-3</sup>
 
|-
 
|Steel – Silver
 
|0.06 x 10<sup>-3</sup>
 
|-
 
|Steel – Copper
 
|3.1 x 10<sup>-3</sup>
 
|-
 
|Steel – Brass
 
|3.0 x 10<sup>-3</sup>
 
|}
 
 
{| class="twocolortable scalable" style="text-align: left; font-size: 12px; width:45%; "
 
|-
 
!Contact shapes
 
!m
 
|-
 
|Flat – Flat
 
|1
 
|-
 
|Pyramid – Flat
 
|0.5
 
|-
 
|Sphere – Flat
 
|0.6
 
|-
 
|Sphere – Sphere
 
|0.5
 
|-
 
|Multi-strand brush - Flat
 
|1
 
|-
 
|Current bar (Busbar) contact
 
|0.5 - 0.7
 
|}
 
<div class="clear"></div>
 
  
 
==References==
 
==References==
 
[[Application Tables and Guideline Data for Use of Electrical Contact Design#References|References]]
 
[[Application Tables and Guideline Data for Use of Electrical Contact Design#References|References]]
 
[[de:Formeln_aus_der_Kontaktphysik]]
 

Revision as of 18:20, 26 March 2014

6.4.2 Contact Physics – Formulas

  • Constriction resistance R_e = \rho/2a

(Single spot contact according to Holm; circular touching spot between clean contact surfaces) R_e = \rho/2Na (Multi-spot contact according to Holm without influence between the N individual spots) R_e = \rho/2 x \sum a_i + 3 \pi \rho/32N² x \sum \sum (s_ij) i \neq j (Multi-spot contact according to Greenwood considering the influence between the spots)

  • Contact resistance RK = Re + Rf
  • Path resistance cRd = Rb + RK
  • Contact resistance and contact force R_K = 280D ³ E(F · r) K

(According to Holm model for film-free spherical contact surfaces with plastic deformation of the contact material; Fk < 1 N for typical contact materials) R_K = 9000 D H/ FK (According to Holm model for film-free spherical contact surfaces with plastic deformation of the contact material; Fk > 5 N for typical contact materials)

  • Dynamic contact separation (without considering magnetic fields caused by the current path)
    FA 0,8 x I2(Rule of thumb with FA in N and I in kA)
  • Contact voltage and max. contact temperature
    Tkmax 3200 UK
  • Contact resistance at higher contact forces (according to Babikow)
    RK = cF -m K

For FK between 10 and 200 N c = material dependent proportionality factor m = shape dependent exponent of the contact force

References

References