Difference between revisions of "Other Naturally Hard Copper Alloys"

From Electrical Contacts
Jump to: navigation, search
(5.1.5.2 Copper-Nickel-Tin Alloys)
(5.1.5.2 Copper-Nickel-Tin Alloys)
Line 24: Line 24:
  
  
'''Table 5.15: Physical Properties of Selected Copper-Nickel Alloys'''
 
  
2 Teile!
+
<figtable id="tab:tab5.15">
 +
'''Table 5.15: Physical Properties of Selected Copper-Nickel Alloys''' 
  
'''Table 5.16: Mechanical Properties of Selected Copper-Nickel Alloys'''
+
{| class="twocolortable" style="text-align: left; font-size: 12px"
 +
|-
 +
!Material<br />Designation<br />EN UNS
 +
!Composition<br />[wt%]
 +
!Density<br />[g/cm<sup>3</sup>]
 +
!colspan="2" style="text-align:center"|Electrical<br />Conductivity<br />[MS/m]  [% IACS]
 +
!Electrical<br />Resistivity<br />[μΩ·cm]
 +
!Thermal<br />Conductivity<br />[W/(m·K)]
 +
!Coeff. of Linear<br />Thermal<br />Expansion<br />[10<sup>-6</sup>/K]
 +
!Modulus of<br />Elasticity<br />[GPa]
 +
!Softening Temperature<br />(approx. 10% loss in<br />strength)<br />[°C]
 +
!Melting<br />Temp Range<br />[°C]
 +
|-
 +
|CuAg2<br />not standardized<br />
 +
|Ag 2<br />Cu Rest<br />
 +
|9.0
 +
|49
 +
|85
 +
|2.0
 +
|330
 +
|17.5
 +
|123
 +
|ca. 330
 +
|1050 - 1075
 +
|-
 +
|CuAg2Cd1,5<br />not standardized<br />
 +
|Ag 2<br />Cd1,5<br />Cu Rest
 +
|9.0
 +
|43
 +
|74
 +
|2.3
 +
|260
 +
|17.8
 +
|121
 +
|ca. 350
 +
|970 - 1055
 +
|-
 +
|CuAg6<br />not standardized<br />
 +
|Ag 6<br />Cu Rest
 +
|9.2
 +
|38
 +
|66
 +
|2.4
 +
|270
 +
|17.5
 +
|120
 +
|
 +
|960 - 1050
 +
|}
 +
</figtable>
  
2 Teile!
+
 +
 
 +
<figtable id="tab:tab5.16">
 +
'''Table 5.16: Mechanical Properties of Selected Copper-Nickel Alloys''' 
 +
 
 +
{| class="twocolortable" style="text-align: left; font-size: 12px"
 +
|-
 +
!Material
 +
!Hardness<br />Condition
 +
!Tensile Strength R<sub>m</sub><br />[MPa]
 +
!0,2% Yield Strength<br />R<sub>p02</sub><br />[MPa]
 +
!Elongation<br />A<sub>50</sub><br />[%]
 +
!Vickers<br />Hardness<br />HV
 +
!Bend Radius<sup>1)</sup><br />perpendicular to<br />rolling direction
 +
!Bend Radius<sup>1)</sup><br />parallel to<br />rolling direction
 +
!Spring Bending<br />Limit σ<sub>FB</sub><br />[MPa]
 +
!Spring Fatigue<br />Limit σ<sub>BW</sub><br />[MPa]
 +
|-
 +
|CuAg2
 +
|R 280<br />R 380<br />R 450<br />R 550
 +
|280 - 380<br />380 - 460<br />450 - 570<br />&ge; 550
 +
|&le; 180<br />&ge; 300<br />&ge; 420<br />&ge; 500
 +
|30<br />6<br />3<br />1
 +
|50 - 110<br />100 - 140<br />130 - 165<br />&ge; 160
 +
|0 x t<br />0 x t<br />1 x t
 +
|0 x t<br />0 x t<br />1 x t
 +
|400
 +
|190
 +
|-
 +
|CuAg2Cd1,5
 +
|R 300<br />R 380<br />R 480<br />R 600
 +
|300 - 380<br />380 - 490<br />480 - 620<br />&ge; 600
 +
|&le; 190<br />&ge; 310<br />&ge; 440<br />&ge; 550
 +
|30<br />8<br />3<br />1
 +
|55 - 110<br />100 - 145<br />130 - 170<br />&ge; 160
 +
|0 x t<br />0 x t<br />1 x t
 +
|0 x t<br />0 x t<br />1 x t
 +
|440
 +
|220
 +
|-
 +
|CuAg6
 +
|R 320<br />R 400<br />R 500<br />R 650
 +
|320 - 400<br />400 - 510<br />500 - 660<br />&ge; 650
 +
|&le; 210<br />&ge; 330<br />&ge; 460<br />&ge; 610
 +
|30<br />6<br />3<br />1
 +
|70 - 120<br />110 - 150<br />145 - 175<br />&ge; 175
 +
|0 x t<br />0 x t<br />1 x t
 +
|0 x t<br />0 x t<br />1 x t
 +
|460
 +
|230
 +
|}
 +
</figtable>
 +
<sup>1)</sup> t: Strip thickness max. 0.5 mm
  
 
<xr id="fig:Strain hardening of copper-nickel alloys as a function of nickel content"/> Fig. 5.23: Strain hardening of copper-nickel alloys as a function of nickel content
 
<xr id="fig:Strain hardening of copper-nickel alloys as a function of nickel content"/> Fig. 5.23: Strain hardening of copper-nickel alloys as a function of nickel content

Revision as of 14:28, 19 March 2014

5.1.5.1 Copper-Nickel Alloys

Copper and nickel are in their solid and liquid phase completely soluble in each other Figure 1 (Fig. 5.21). Because of their very low electrical conductivity they are mainly used as resistance alloys Figure 2 (Fig. 5.22). The work hardening and softening behavior of CuNi alloys and CuNi9Sn2 are shown in (Figs. 3 – 7) Figs. 5.23 – 5.27. Coppernickel alloys exhibit high corrosion resistance, good weldabilty, and the suitability for cladding to other materials. Because of these and their other properties (Tables 5.15 and 5.16) they are, with and without additives of iron or manganese, widely used as good weldable backing layers on weld buttons and weld profiles (weld tapes).

5.1.5.2 Copper-Nickel-Tin Alloys

Copper-Nickel- multi component alloys with 9 wt% Ni and 2 wt% Sn are used mainly as connector materials because of their suitable mechanical properties, their excellent relaxation behavior, and their high corrosion resistance. Other advantages include their high temperature stability and the good solderability even after longer storage. They are also used as base materials for clad profiles and tapes.

Figure 1 Fig. 5.21: Phase diagram of copper-nickel for the range of 0 – 50 wt% nickel

Figure 2 Fig. 5.22: Electrical conductivity of copper-nickel alloys as a function of nickel content

Figure 1: Phase diagram of copper-nickel for the range of 0 – 50 wt% nickel
Figure 2: Electrical conductivity of copper-nickel alloys as a function of nickel content


Table 5.15: Physical Properties of Selected Copper-Nickel Alloys
Material
Designation
EN UNS
Composition
[wt%]
Density
[g/cm3]
Electrical
Conductivity
[MS/m] [% IACS]
Electrical
Resistivity
[μΩ·cm]
Thermal
Conductivity
[W/(m·K)]
Coeff. of Linear
Thermal
Expansion
[10-6/K]
Modulus of
Elasticity
[GPa]
Softening Temperature
(approx. 10% loss in
strength)
[°C]
Melting
Temp Range
[°C]
CuAg2
not standardized
Ag 2
Cu Rest
9.0 49 85 2.0 330 17.5 123 ca. 330 1050 - 1075
CuAg2Cd1,5
not standardized
Ag 2
Cd1,5
Cu Rest
9.0 43 74 2.3 260 17.8 121 ca. 350 970 - 1055
CuAg6
not standardized
Ag 6
Cu Rest
9.2 38 66 2.4 270 17.5 120 960 - 1050


Table 5.16: Mechanical Properties of Selected Copper-Nickel Alloys
Material Hardness
Condition
Tensile Strength Rm
[MPa]
0,2% Yield Strength
Rp02
[MPa]
Elongation
A50
[%]
Vickers
Hardness
HV
Bend Radius1)
perpendicular to
rolling direction
Bend Radius1)
parallel to
rolling direction
Spring Bending
Limit σFB
[MPa]
Spring Fatigue
Limit σBW
[MPa]
CuAg2 R 280
R 380
R 450
R 550
280 - 380
380 - 460
450 - 570
≥ 550
≤ 180
≥ 300
≥ 420
≥ 500
30
6
3
1
50 - 110
100 - 140
130 - 165
≥ 160
0 x t
0 x t
1 x t
0 x t
0 x t
1 x t
400 190
CuAg2Cd1,5 R 300
R 380
R 480
R 600
300 - 380
380 - 490
480 - 620
≥ 600
≤ 190
≥ 310
≥ 440
≥ 550
30
8
3
1
55 - 110
100 - 145
130 - 170
≥ 160
0 x t
0 x t
1 x t
0 x t
0 x t
1 x t
440 220
CuAg6 R 320
R 400
R 500
R 650
320 - 400
400 - 510
500 - 660
≥ 650
≤ 210
≥ 330
≥ 460
≥ 610
30
6
3
1
70 - 120
110 - 150
145 - 175
≥ 175
0 x t
0 x t
1 x t
0 x t
0 x t
1 x t
460 230

1) t: Strip thickness max. 0.5 mm

Figure 3 Fig. 5.23: Strain hardening of copper-nickel alloys as a function of nickel content

Figure 4 Fig. 5.24: Strain hardening of CuNi25 by cold working

Figure 5 Fig. 5.25: Softening of CuNi25 after 1 hr annealing after 50% cold working

Figure 6 Fig. 5.26: Strain hardening of CuNi9Sn2 by cold working (Wieland)

Figure 7 Fig. 5.27: Softening of CuNi9Sn2 after 1 hr annealing after 60% cold working (Wieland)

Strain hardening of copper-nickel alloys as a function of nickel content
Figure 4: Strain hardening of CuNi25 by cold working
Figure 5: Softening of CuNi25 after 1 hr annealing after 50% cold working
Figure 6: Strain hardening of CuNi9Sn2 by cold working (Wieland)
Figure 7: Softening of CuNi9Sn2 after 1 hr annealing after 60% cold working (Wieland)

References

References