Open main menu

Electrical Contacts β

Werkstoffe auf Silber-Basis

Feinsilber

Feinsilber weist die höchste elektrische und thermische Leitfähigkeit aller Metalle auf. Es ist resistent gegen Oxidbildung. Nachteilig wirken sich die geringe Verschleißfestigkeit, niedrige Entfestigungstemperatur und vor allem die hohe Affinität des Silbers gegen Schwefel und Schwefel-Verbindungen aus. Durch Einwirkung schwefelhaltiger Verbindungen bilden sich bräunliche bis schwarze Deckschichten aus Silbersulfid, die zu einer Erhöhung des Kontaktwiderstandes und u.U. zum völligen Versagen des Schaltgerätes führen können, wenn diese nicht mechanisch, elektrisch oder thermisch zerstört werden. Weiterhin ist nachteilig zu bewerten, dass Kontaktstücke aus Feinsilber beim Einschalten von Überströmen stark zum Verschweißen neigen sowie bei Gleichstrombetrieb nur eine geringe Resistenz gegenüber Materialwanderung aufweisen. Silber kann in feuchter Atmosphäre in Berührung mit Kunststoffen unter Wirkung eines elektrischen Feldes kriechen (Silber-Migration) und dadurch Kurzschlüsse verursachen.

Einen Überblick über die gebräuchlichen Silber-Qualitäten gibt (Table 1). Silber in Pulverform dient vor allem als Ausgangsmaterial für die Herstellung von Silber- Verbundwerkstoffen. Je nach Herstellung werden Silber-Pulver mit unterschiedlichen Qualitätsmerkmalen gewonnen (Table 2). Weitere Angaben zu den verschiedenen Silber-Pulvern sind in Kap. Edelmetallpulver und -präparate enthalten.

Silber ist in Form von Halbzeugen gut warm- und kaltumformbar und lässt sich problemlos mit den üblichen Trägerwerkstoffen durch Plattieren verbinden (Figure 1 und Figure 2). Als Fügeverfahren kommen vor allem das Widerstandsschweißen von Silber- Drähten und -Profilen sowie das Hartlöten zum Einsatz. Daneben werden vielfach auch mechanische Verfahren, wie das Einpressen von Drahtabschnitten und massiven oder plattierten Kontaktnieten angewandt.

Kontakte aus Feinsilber werden in unterschiedlichen Formen z.B. in Relais, Tastern, Geräte- und Hilfsstromschaltern bei Stromstärken < 2A eingesetzt (Table 6). Als galvanischer Überzug findet Silber zur Verringerung des Kontaktwiderstandes und zur Verbesserung der Lötbarkeit von Kontaktteilen verbreitet Anwendung.


Table 1: Überblick über die gebräuchlichsten Silber-Qualitäten

Bezeichnung

Zusammensetzung Ag (Mindestanteil)

Beimengungen

[ppm]

Hinweise für die Verwendung

Spektralreines

Silber

99.999

Cu < 3

Zn < 1

Si < 1

Ca < 2

Fe < 1

Mg < 1

Cd < 1

Bleche, Bänder, Stangen, Drähte für elektronische Bauelemente

Hochreines Silber, sauerstofffrei

99.995

Cu < 30

Zn < 2

Si < 5

Ca < 10

Fe < 3

Mg < 5

Cd < 3

Barren und Granalien für Legierungszwecke


Table 2: Qualitätsmerkmale verschieden hergestellter Silber-Pulver
Verunreinigungen Ag-Chem.* Ag-ES** Ag-V***
Cu ppm < 100 < 300 < 300
Fe ppm < 50 < 100 < 100
Ni ppm < 50 < 50 < 50
Cd ppm < 50
Zn ppm < 10
Na + K + Mg + Ca ppm < 80 < 50 < 50
Ag CI ppm < 500 < 500 < 500
NO3 ppm < 40 < 40
Nh4CI ppm < 30 < 30
Partikelverteilung (Siebanalyse)
> 100 μm % 0 0 0
< 100 bis > 63 μm % < 5 < 5 < 15
< 36 μm % < 80 < 90 < 75
Schüttdichte g/cm3 1.0 - 1.6 1.0 - 1.5 3 - 4
Stampfvolumen ml/100g 40 - 50 40 - 50 15 - 25
Press-/Sinterverhalten
Pressdichte g/cm3 5.6 - 6.5 5.6 - 6.3 6.5 - 8.5
Sinterdichte g/cm3 > 9 > 9.3 > 8
Volumenschrumpfung % > 34 > 35 > 0
Glühverlust % < 2 < 0.1 < 0.1

* hergestellt durch chemische Fällung
** hergestellt durch Elektrolyse
*** hergestellt durch Verdüsen einer Schmelze


Figure 1: Verfestigungsverhalten von Ag 99,95 durch Kaltumformung
Figure 2: Erweichungsverhalten von Ag 99,95 nach 1h Glühdauer und unterschiedlicher Kaltumformung

Silber-Legierungen

Auf dem Schmelzwege hergestellte Silber-Legierungen finden in solchen Fällen Anwendung, in denen die physikalischen und kontaktspezifischen Eigenschaften von Feinsilber nicht ausreichen (Table 3). Durch die metallische Zusatzkomponente werden sowohl die mechanische Eigenschaften wie Härte und Festigkeit als auch typische Kontakteigenschaften wie Abbrandfestigkeit und Resistenz gegenüber Materialwanderung in Gleichstromkreisen erhöht (Table 4). Allerdings können durch Legierungsbildung andere Eigenschaften wie elektrische Leitfähigkeit und chemische Beständigkeit verschlechtert werden (Figure 3 und Figure 4).

Table 3: Physikalische Eigenschaften von Silber und Silberlegierungen
Werkstoff
Silber-Anteil
[wt%]
Dichte
[g/cm3]
Schmelzpunkt
bzw.-intervall
[°C]
Spez. elektr.

Widerstand
[μΩ·cm]

Elektrische

Leitfähigkeit
[MS/m]

Wärmeleitfähigkeit
[W/mK]
Temp. Koeff.d.el.

Widerstandes
[10-3/K]

E-Modul
[GPa]
Ag 99.95 10.5 961 1.67 60 419 4.1 80
AgNi 0,15
99.85 10.5 960 1.72 58 414 4.0 82
AgCu3 97 10.4 900 - 938 1.92 52 385 3.2 85
AgCu5 95 10.4 910 1.96 51 380 3.0 85
AgCu10 90 10.3 870 2.0 50 335 2.8 85
AgCu28 72 10.0 779 2.08 48 325 2.7 92
Ag98CuNi
ARGODUR 27
98 10.4 940 1.92 52 385 3.5 85
AgCu24,5Ni0,5 75 10.0 805 2.20 45 330 2.7 92
Ag99,5NiMg
ARGODUR 32
unvergütet
99.5 10.5 960 2.32 43 293 2.3 80
ARGODUR 32
vergütet
99.5 10.5 960 2.32 43 293 2.1 80


Figure 3: Einfluss von 1-10 Atom-% verschiedener Zusatzmetalle auf den spez. elektrischen Widerstand p von Silber
Figure 4: Spez. elektrischer Widerstand p von AgCu-Legierungen mit 0-20 Massen-% Cu im weichgeglühten und angelassenen Zustand a) geglüht und abgeschreckt b) bei 280°C angelassen
Table 4: Festigkeitseigenschaften von Silber und Silberlegierungen

Werkstoff

Festigkeitszustand

Zugfestigkeit

Rm [MPa]

Dehnung A [%] min.

Vickershärte

HV 10

Ag

R 200

R 250

R 300

R 360

200 - 250

250 - 300

300 - 360

> 360

30

8

3

2

30

60

80

90

AgNi 0,15

R 220

R 270

R 320

R 360

220 - 270

270 - 320

320 - 360

> 360

25

6

2

1

40

70

85

100

AgCu3

R 250

R 330

R 400

R 470

250 - 330

330 - 400

400 - 470

> 470

25

4

2

1

45

90

115

120

AgCu5

R 270

R 350

R 460

R 550

270 - 350

350 - 460

460 - 550

> 550

20

4

2

1

55

90

115

135

AgCu10

R 280

R 370

R 470

R 570

280 - 370

370 - 470

470 - 570

> 570

15

3

2

1

60

95

130

150

AgCu28

R 300

R 380

R 500

R 650

300 - 380

380 - 500

500 - 650

> 650

10

3

2

1

90

120

140

160

Ag98CuNi

ARGODUR 27

R 250

R 310

R 400

R 450

250 - 310

310 - 400

400 - 450

> 450

20

5

2

1

50

85

110

120

AgCu24,5Ni0,5

R 300

R 600

300 - 380

> 600

10

1

105

180

Ag99,5NiMg

ARGODUR 32

Not heat treated

R 220

R 260

R 310

R 360

220

260

310

360

25

5

2

1

40

70

85

100

ARGODUR 32 Heat treated

R 400

400

2

130-170

Feinkornsilber

Unter Feinkornsilber versteht man eine Silberlegierung mit einem Zusatz von 0,15 Massen-% Nickel. Silber und Nickel sind im festen Zustand ineinander völlig unlöslich. Im flüssigen Silber lässt sich nur ein geringer Nickelanteil lösen, wie aus dem entsprechenden Zustandsdiagramm hervorgeht (Figure 7). Durch diesen Nickelzusatz, der sich beim Abkühlen der Schmelze feindispers in der Silbermatrix ausscheidet, gelingt es, die Neigung des Silbers zu ausgeprägter Grobkornbildung nach längerer Wärmeeinwirkung zu unterbinden (Figure 5 und Figure 6).

Figure 5: Grobkörniges Gefüge von Ag 99,97 nach 80% Kaltumformung und 1h Glühdauer bei 600°C
Figure 6: Feinkörniges Gefüge von AgNi0,15 nach 80% Kaltumformung und 1h Glühdauer bei 600°C
Figure 7: Zustandsdiagramm von Silber-Nickel

Feinkornsilber zeichnet sich durch eine ähnlich hohe chemische Beständigkeit wie Feinsilber aus. Gegenüber Silber weist es eine etwas höhere Härte und Festigkeit auf (Table 4). Die elektrische Leitfähigkeit wird durch den geringen Nickelzusatz nur geringfügig verschlechtert. Aufgrund seiner teilweise deutlich günstigeren Kontakteigenschaften hat bei schaltenden Kontakten Feinkornsilber das Feinsilber in vielen Anwendungsfällen abgelöst.

Hartsilber-Legierungen

Durch Kupfer als Legierungspartner werden die Festigkeitseigenschaften des Silbers deutlich erhöht (Figure 9, Figure 10 und Figure 11). Die größte Bedeutung unter den binären AgCu-Legierungen hat der unter dem Namen Hartsilber bekannte Werkstoff AgCu3 erlangt, der sich hinsichtlich chemischer Resistenz noch ähnlich verhält wie Feinsilber. Verglichen mit Feinsilber und Feinkornsilber weist AgCu3 eine höhere Härte und Festigkeit sowie höhere Abbrandfestigkeit und mechanische Verschleißfestigkeit auf.


Mit steigendem Kupferanteil nehmen einerseits Härte und Festigkeit der AgCu- Legierung zu, andererseits wird die Neigung zur Oxidbildung erhöht, was im Schaltbetrieb unter Lichtbogenbildung zu einem Anwachsen des Kontaktwiderstandes mit zunehmender Schaltspielzahl führt. Weiterhin wirken sich höhere Kupferanteile vorteilhaft auf Abbrand und Materialwanderung aus. In Sonderfällen, in denen optimale mechanische Eigenschaften erwünscht sind und gleichzeitig eine verminderte chemische Beständigkeit zugelassen werden kann, findet die eutektische Silber-Kupfer-Legierung (28 Massen-% Cu) Anwendung (Figure 8). AgCu10, auch als Münzsilber bezeichnet, wurde in vielen Anwendungen durch andere Silber-Legierungen ersetzt, während Sterlingsilber (AgCu7,5) seine Bedeutung bei Tafelgeschirr und Schmuck nie auf industrielle Anwendungen für elektrische Kontakte ausweiten konnte.

Neben den binären AgCu-Legierungen kommen auch ternäre AgCuNi- Legierungen zum Einsatz. Von dieser Werkstoffgruppe hat ARGODUR 27, eine Legierung mit 98 Massen-% Ag und Anteilen von Cu und Ni, neben AgCu3 die größte praktische Bedeutung erlangt. Dieser Werkstoff zeichnet sich durch hohe Oxidationsbeständigkeit und geringe Neigung zur Rekristallisation unter der Einwirkung hoher Temperaturen aus. Neben einer hohen mechanischen Verschleißfestigkeit weist die AgCuNi-Legierung auch eine erhöhte Abbrandfestigkeit auf. Die Legierung AgCu24,5Ni0,5 hat aufgrund ihrer geringen Neigung zur Materialwanderung bei Gleichstrombelastung vor allem in Nordamerika über lange Zeit breite Anwendung in der Automobiltechnik gefunden. Im Zuge der Miniaturisierung elektromechanischer Bauelemente und den damit verbundenen geringeren Kontaktkräften in Relais und Schaltern kommt diese Legierung wegen ihrer erhöhten Neigung zur Oxidbildung heute deutlich weniger zum Einsatz.

Die verwendeten Verbindungsverfahren entsprechen weitgehend denen, die auch bei Feinsilber angewandt werden.

Hartsilberlegierungen finden verbreitet Anwendung in vielen Wechsel- und Gleichstromschaltern für Informations- und Energietechnik bei Schaltströmen bis 10A, vereinzelt auch bei höheren Strömen (Table 6).

Dispersionsgehärtete Legierungen des Silbers mit 0,5 Massen-% MgO und NiO (ARGODUR 32) werden durch innere Oxidation hergestellt. Während sich die schmelztechnisch hergestellte Ausgangslegierung gut umformen lässt, ist der dispersionsgehärtete Werkstoff sehr spröde und kaum verformbar. Gegenüber Feinsilber und Hartsilber weist er eine wesentlich höhere Warmfestigkeit auf, so dass mit diesem dispersionsgehärteten Werkstoff auch Hartlötungen bei Temperaturen bis ca. 800°C ohne Einbuße an Härte und Festigkeit durchführbar sind. Aufgrund seiner günstigen Festigkeitseigenschaften und seiner hohen elektrischen Leitfähigkeit eignet sich ARGODUR 32 vor allem für thermisch und mechanisch hoch beanspruchte Kontaktfedern in Relais und Schützen in der Luft- und Raumfahrt.


Figure 8: Zustandsdiagramm von Silber-Kupfer
Figure 9: Verfestigungsverhalten von AgCu3 durch Kaltumformung
Figure 10: Erweichungsverhalten von AgCu3 nach 1h Glühdauer und einer Kaltumformung von 80%
Figure 11: Verfestigungsverhalten von AgCu5 durch Kaltumformung
Figure 12: Erweichungsverhalten von AgCu5 nach 1h Glühdauer und einer Kaltumformung von 80%
Figure 13: Verfestigungsverhalten von AgCu10 durch Kaltumformung
Figure 14: Erweichungsverhalten von AgCu10 nach 1h Glühdauer und einer Kaltumformung von 80%
Figure 15: Verfestigungsverhalten von AgCu28 durch Kaltumformung
Figure 16: Erweichungsverhalten von AgCu28 nach 1h Glühdauer und einer Kaltumformung von 80%
Figure 17: Verfestigungsverhalten von AgNi0,15 durch Kaltumformung
Figure 18: Erweichungsverhalten von AgNi0,15 nach 1h Glühdauer und einer Kaltumformung von 80%
Figure 19: Verfestigungsverhalten von ARGODUR 27 durch Kaltumformung
Figure 20: Erweichungsverhalten von ARGODUR 27 nach 1h Glühdauer und einer Kaltumformung von 80%


Table 5: Kontakt- und Schalteigenschaften von Silber und Silberlegierungen
Werkstoff Eigenschaften
Ag
AgNi0,15
Höchste elektrische und thermische Leitfähigkeit, hohe Affinität zu Schwefel (Sulfidbildung), geringe Verschweißresistenz, niedriger Kontaktwiderstand, sehr gute Verformbarkeit oxidationsbeständig, bei höheren Einschaltströmen begrenzte Abbrandfestigkeit, Neigung zur Materialwanderung in Gleichstromkreisen, gute Löt- und Schweißbarkeit
Ag-Legierungen Mit zunehmendem Kupferanteil Anstieg des Kontaktwiderstandes, höhere Abbrandfestigkeit gegenüber Feinsilber, geringere Neigung zu Materialwanderung, höhere mechanische Festigkeit gegenüber Feinsilber gute Verformbarkeit, gute Löt- und Schweißbarkeit


Table 6: Anwendungsbeispiele und Lieferformen von Silber und Silberlegierungen
Werkstoff Anwendungsbeispiele Lieferformen
Ag
AgNi0,15

AgCu3
AgNi98NiCu2
ARGODUR 27
AgCu24,5Ni0,5
Relais,
Mikroschalter,
Hilfsstromschalter,
Befehlsschalter,
Schalter für Hausgeräte,
Lichtschalter (≤ 20A),
Hauptschalter
Halbzeuge:
Bänder, Drähte, Kontaktprofile, Kontaktbimetalle, Toplay-Profile, rollennahtgeschweißte Profile
Kontaktteile:
Kontaktauflagen, massive- und Bimetallniete, Aufschweißkontakte, plattierte, geschweißte und genietete Kontaktteile
AgCu5
AgCu10
AgCu28
Spezielle Anwendungen Halbzeuge:
Bänder, Drähte, Kontaktprofile, Kontaktbimetalle, rollennahtgeschweißte Profile
Kontaktteile:
Kontaktauflagen, massive Kontaktniete, Aufschweißkontakte, plattierte, geschweißte und genietete Kontaktteile
Ag99,5NiOMgO
ARGODUR 32
Miniaturrelais, Schütze und Relais in Flugzeugen, Erodierdrähte für Einspritzdüsen Kontaktfedern, Kontaktträgerteile

Silber-Palladium-Legierungen

Durch Zulegieren von 30 Massen-% Pd wird neben den mechanischen Eigenschaften vor allem die Beständigkeit des Silbers gegenüber der Einwirkung von Schwefel und schwefelhaltigen Verbindungen entscheidend verbessert (Table 7 und Table 8). Eine noch höhere Resistenz gegenüber Silber-Sulfid-Bildung weisen Legierungen mit 40-60 Massen-% Pd auf. Bei diesen Pd-Anteilen können sich allerdings die katalytischen Eigenschaften des Palladiums nachteilig auf das Kontaktwiderstandsverhalten auswirken. Auch die Verformbarkeit nimmt mit zunehmenden Pd-Gehalt ab.

AgPd-Legierungen sind hart, abbrandfest und weisen eine etwas geringere Neigung zur Materialwanderung bei Gleichstromlast auf (Table 9). Allerdings wird die elektrische Leitfähigkeit durch hohe Pd-Gehalte stark verringert. Die ternäre AgPd30Cu5-Legierung ermöglicht eine weitere Steigerung der Festigkeitswerte, was sich vor allem bei Gleitkontaktsystemen vorteilhaft auswirkt.

AgPd-Legierungen sind bei Pd-Gehalten bis 30 Massen-% gut plattierbar. Als Verbindungstechnik kommen üblicherweise das Aufschweißen von Draht- oder Profilabschnitten oder die Verwendung von Kontaktnieten in Frage.

AgPd-Legierungen kommen z.B. in Relais beim Schalten mittlerer bis höherer elektrischer Belastung ( <60V; <2A) zum Einsatz (Table 10). Aufgrund des hohen Palladiumpreises werden diese allerdings vielfach durch Mehrschichtwerkstoffe, z.B. AgNi0,15 oder Ag/Ni90/10 jeweils mit einer dünnen Au-Auflage ersetzt. Ein breites Anwendungsfeld haben AgPd-Legierungen als verschleißfeste Gleitkontakte gefunden.

Figure 21: Zustandsdiagramm von Silber-Palladium
Figure 22: Verfestigungsverhalten von AgPd30 durch Kaltumformung
Figure 23: Verfestigungsverhalten von AgPd50 durch Kaltumformung
Figure 24: Verfestigungsverhalten von AgPd30Cu5 durch Kaltumformung
Figure 25: Erweichungsverhalten von AgPd30, AgPd50, AgPd30Cu5 nach 1h Glühdauer und einer Kaltumformung von 80%


Table 7: Physikalische Eigenschaften von Silber-Palladium-Legierungen
Werkstoff Palladiumanteil
[Massen-%]
Dichte
[g/cm3]
Schmelzpunkt
bzw.-intervall
[°C]
Spez. elektr.

Widerstand
[μΩ·cm]

Elektrische

Leitfähigkeit
[MS/m]

Wärmeleitfähigkeit
[W/mK]
Temp. Koeff.d.el.

Widerstandes
[10-3/K]

AgPd30 30 10.9 1155 - 1220 14.7 6.8 60 0.4
AgPd40 40 11.1 1225 - 1285 20.8 4.8 46 0.36
AgPd50 50 11.2 1290 - 1340 32.3 3.1 34 0.23
AgPd60 60 11.4 1330 - 1385 41.7 2.4 29 0.12
AgPd30Cu5 30 10.8 1120 - 1165 15.6 6.4 28 0.37


Table 8: Festigkeitseigenschaften von Silber-Palladium-Legierungen

Werkstoff

Festigkeitszustand

Zugfestigkeit

Rm[MPa]

Dehnung A

[%]min.

Vickershärte

HV

AgPd30

R 320

R 570

320

570

38

3

65

145

AgPd40

R 350

R 630

350

630

38

2

72

165

AgPd50

R 340

R 630

340

630

35

2

78

185

AgPd60

R 430

R 700

430

700

30

2

85

195

AgPd30Cu5

R 410

R 620

410

620

40

2

90

190


Table 9: Kontakt- und Schalteigenschaften der Silber-Palladium-Legierungen
Werkstoff Eigenschaften
AgPd30-60 Korrosionsbeständig, mit steigendem Pd-Anteil nimmt „brown-powder“-Bildung zu, geringere Neigung zur Materialwanderung in Gleichstromkreisen, hohe Verformbarkeit beständig gegenüber Ag2S Bildung, niedriger Kontaktwiderstand, hohe Härte bei höherem Pd-Anteil, Abbrandfestigkeit von AgPd30 am höchsten, gut schweiß- und plattierbar
AgPd30Cu5 hohe mechanische Verschleißfestigkeit hohe Härte


Table 10: Anwendungsbeispiele und Lieferformen von Silber-Palladium-Legierungen

Werkstoff

Anwendungsbeispiele

Lieferformen

AgPd 30-60

Schalter, Relais, Taster,

Steckverbinder, Gleitkontakte

Halbzeuge:

Drähte, Mikroprofile, Kontaktbimetalle,

rollennahtgeschweißte Profile

Kontaktteile:

Massive- und Bimetallniete,

plattierte und geschweißte Kontaktteile, Stanzteile

AgPd30Cu5

Gleitkontakte, Gleitbahnen

Drahtbiegeteile, Kontaktfedern,

massive und plattierte Stanzteile

Silber-Verbundwerkstoffe

Silber-Nickel Werkstoffe

Da Silber und Nickel im festen Zustand ineinander unlöslich sind und im flüssigen Zustand nur eine geringe Löslichkeit von Nickel im Silber besteht, können Silber- Nickel-Werkstoffe mit höheren Ni-Anteilen nur nach pulvermetallurgischen Verfahren hergestellt werden. Durch das Strangpressen der gesinterten Ag/Ni- Blöcke zu Drähten, Bändern und Stangen sowie die nachfolgenden Verarbeitungsschritte z.B. Walzen oder Ziehen, werden die in der Ag-Matrix eingelagerten Nickelpartikel in Umformrichtung so ausgerichtet und gestreckt, dass im Gefügebild eine deutliche Faserstruktur zu erkennen ist (Figure 30 und Figure 31).

Die aufgrund der hohen Umformung beim Strangpressen erzeugte hohe Dichte von Ag/Ni-Werkstoffen wirkt sich vorteilhaft auf die Abbrandfestigkeit aus (Table 11). Das typische Einsatzgebiet der Ag/Ni-Werkstoffe sind Schaltströme <100 A. Hierbei sind sie deutlich abbrandfester als Silber oder Silber-Legierungen. Weiterhin weisen sie bei Nickelanteilen <20 Massen-% niedrige und über die Schaltstücklebensdauer gleichbleibende Kontaktwiderstände und gute Lichtbogenlaufeigenschaften auf. Bei Gleichstrombetrieb zeichnen sich die Ag/Ni-Werkstoffe durch eine verhältnismäßig geringe flächenhafte Materialwanderung aus (Table 13).

Ag/Ni Werkstoffe werden üblicherweise mit Nickelgehalten von 10-40 Massen-% hergestellt. Ag/Ni 10 und Ag/Ni 20, die am häufigsten eingesetzten Werkstoffe, weisen eine sehr gute Umform- und Plattierbarkeit auf (Figure 26, Figure 27, Figure 28, Figure 29). Sie können ohne zusätzliche Schweißhilfe sehr wirtschaftlich auf geeignete Trägerwerkstoffe geschweißt oder gelötet werden. Ag/Ni Werkstoffe mit Nickel- Anteilen von 30-40 Massen-% kommen in Schaltgeräten zum Einsatz, in denen einerseits eine höhere Abbrandfestigkeit benötigt wird, andererseits erhöhte Kontaktwiderstände durch ausreichend hohe Kontaktkräfte kompensiert werden können.

Anwendungsschwerpunkte von Ag/Ni-Kontaktwerkstoffen sind z.B. Relais, Installationsschalter, Schalter für Hausgeräte, Thermostate, Hilfsstromschalter und kleinere Schütze mit Bemessungs-Betriebsströmen <20A (Table 14).

Table 11: Physikalische Eigenschaften von Silber-Nickel Werkstoffen
WerkstoffSilberanteilDichteSchmelztemperaturSpez. elektr. WiderstandpElektrische Leitfähigkeit (weich)
[wt%][g/cm3][°C][µΩ·cm] [% IACS][MS/m]

Ag/Ni 90/10

89 - 91

10.2 - 10.3

960

1.82 - 1.92

90 - 95

52 - 55

Ag/Ni 85/15

84 - 86

10.1 - 10.2

960

1.89 - 2.0

86 - 91

50 - 53

Ag/Ni 80/20

79 - 81

10.0 - 10.1

960

1.92 - 2.08

83 - 90

48 - 52

Ag/Ni 70/30

69 - 71

9.8

960

2.44

71

41

Ag/Ni 60/40

59 - 61

9.7

960

2.70

64

37


Table 12: Festigkeitseigenschaften von Silber-Nickel Werkstoffen
Werkstoff Festigkeitszustand Zugfestigkeit Rm [Mpa] Dehnung (weichgeglüht) [%] min. Vickershärte HV 10
Ag/Ni 90/10
soft
R 220
R 280
R 340
R 400
< 250
220 - 280
280 - 340
340 - 400
> 400
25
20
3
2
1
< 50
50 - 70
65 - 90
85 - 105
> 100
Ag/Ni 85/15
soft
R 300
R 350
R 380
R 400
< 275
250 - 300
300 - 350
350 - 400
> 400
20
4
2
2
1
< 70
70 - 90
85 - 105
100 - 120
> 115
Ag/Ni 80/20
soft
R 300
R 350
R 400
R 450
< 300
300 - 350
350 - 400
400 - 450
> 450
20
4
2
2
1
< 80
80 - 95
90 - 110
100 - 125
> 120
Ag/Ni 70/30
R 330
R 420
R 470
R 530
330 - 420
420 - 470
470 - 530
> 530
8
2
1
1
80
100
115
135
Ag/Ni 60/40
R 370
R 440
R 500
R 580
370 - 440
440 - 500
500 - 580
> 580
6
2
1
1
90
110
130
150


Figure 26: Verfestigungsverhalten von Ag/Ni 90/10 durch Kaltumformung
Figure 27: Erweichungsverhalten von Ag/Ni 90/10 nach 1h Glühdauer und einer Kaltumformung von 80%
Figure 28: Verfestigungsverhalten von Ag/Ni 80/20 durch Kaltumformung
Figure 29: Erweichungsverhalten von Ag/Ni 80/20 nach 1h Glühdauer und einer Kaltumformung von 80%
Figure 30: Gefüge von Ag/Ni 90/10 a) senkrecht zur Strangpressrichtung b) parallel zur Strangpressrichtung
Figure 31: Gefüge von Ag/Ni 80/20 a) senkrecht zur Strangpressrichtung b) parallel zur Strangpressrichtung


Table 13: Kontakt- und Schalteigenschaften von Silber-Nickel Werkstoffen
Werkstoff Eigenschaften
Ag/Ni
Hohe Abbbrandfestigkeit bei Schaltströmen bis 100A,

Sicherheit gegen Verschweißen bei Einschaltströmen bis 100A, niedriger und über die Schaltstücklebensdauer nahezu konstanter Kontaktwiderstand bei Ag/Ni 90/10 und Ag/Ni 80/20, geringe flächenhafte Materialwanderung bei Gleichstromlast, nichtleitende Abbrandrückstände auf Isolierstoffen, daher nur geringe Beeinträchtigung der Spannungsfestigkeit des Schaltgerätes, gutes Lichtbogenlaufverhalten, günstige Lichtbogenlöscheigenschaften, gute bis ausreichende Verformbarkeit entsprechend der Werkstoffzusammensetzung, gute Löt- und Schweißbarkeit


Table 14: Anwendungsbeispiele und Lieferformen von Silber-Nickel Werkstoffen
Werkstoff Anwendungsbeispiele Schalt- bzw.

Bemessungsströme

Lieferform
Ag/Ni 90/10-80/20 Relais
Kfz-Relais

-Widerstandslast -Motorlast

> 10A
> 10A
Halbzeuge:
Drähte, Profile,

Kontaktbimetalle, rollennahtgeschweißte Profile, Toplay-Profile
Kontaktteile::
Kontaktauflagen, Massiv-und Bimetallniete, Aufschweißkontakte,
plattierte, geschweißte, gelötete und genietete Kontaktteile

Ag/Ni 90/10, Ag/Ni 85/15-80/20 Hilfsstromschalter ≤ 100A
Ag/Ni 90/10-80/20 Schalter für Hausgeräte ≤ 50A
Ag/Ni 90/10 Lichtschalter ≤ 20A
Ag/Ni 90/10 Hauptschalter,

Treppenhausautomaten

≤ 100A
Ag/Ni 90/10-80/20 Regel- und Steuerschalter,

Thermostate

> 10A
≤ 50A
Ag/Ni 90/10-80/20 Lastschalter ≤ 20A
Ag/Ni 90/10-80/20 Motorschalter (Schütze) ≤ 100A
Ag/Ni 90/10-80/20
paired with Ag/C 97/3-96/4
Motorschutzschalter ≤ 40A
Ag/Ni 80/20-60/40
paired with Ag/C 96/4-95/5
Fehlerstromschutzschalter ≤ 100A Stangen, Profile,

Kontaktauflagen, Formteile, gelötete und geschweißte Kontaktteile

Ag/Ni 80/20-60/40
paired with Ag/C 96/4-95/5
Leistungsschalter > 100A

Silber-Metalloxid-Werkstoffe Ag/CdO, Ag/SnO2, Ag/ZnO

Die Familie der Silber-Metalloxid-Kontaktwerkstoffe umfasst die Werkstoffgruppen: Silber-Cadmiumoxid, Silber-Zinnoxid und Silber-Zinkoxid. Aufgrund ihrer sehr guten Kontakt- und Schalteigenschaften, wie hohe Verschweißresistenz, niedriger Kontaktwiderstand und hohe Abbrandfestigkeit, haben Silber-Metalloxid-Werkstoffe eine herausragende Stellung in einem breiten Anwendungsbereich erlangt. Sie finden vor allem Einsatz in Schaltgeräten der Niederspannungs-Energietechnik, z.B. in Relais, Installations-, Geräte-, Motor- und Schutzschaltern (Table 20).

  • Silber-Cadmiumoxid

Silber-Cadmiumoxid Werkstoffe mit 10-15 Massen-% CdO werden sowohl nach dem Verfahren der inneren Oxidation als auch auf pulvermetallurgischem Wege hergestellt.

Bei der Herstellung von Bändern und Drähten durch innere Oxidation wird von einer auf dem Schmelzwege erzeugten Legierung aus Silber und Cadmium ausgegangen. Unterzieht man eine solche homogene Legierung einer Glühbehandlung unterhalb ihres Schmelzpunktes in einer sauerstoffhaltigen Atmosphäre, so diffundiert der Sauerstoff von der Oberfläche in das Innere der Silber-Cadmium-Legierung ein und oxidiert das Cd zu CdO, das sich dabei mehr oder weniger feinkörnig in der Ag-Matrix ausscheidet. Die CdO-Ausscheidungen sind im Randbereich feinkörnig und werden in Richtung der Oxidationsfront grobkörniger (Figure 38).

Bei der Herstellung von Ag/CdO-Kontaktmaterial ist je nach Art des Halbzeugs der Prozessablauf der inneren Oxidation unterschiedlich. Bei Ag/CdO-Drähten wird das AgCd-Vormaterial vollständig durchoxidiert, auf das gewünschte Endmaß gezogen und z.B. zu Kontaktnieten weiterverarbeitet (Figure 32 und Figure 33). Dagegen wird bei Ag/CdO- Bändern die innere Oxidation einseitig nur bis zu einer bestimmten Tiefe ausgeführt. Die so erhaltenen Zweischichtbänder mit der inneroxidierten Ag/CdO-Kontaktschicht auf der Oberseite und der gut lötbaren AgCd-Unterseite (Bezeichnung: „ZH“) sind Ausgangsmaterial für die Herstellung von Kontaktprofilen und -auflagen.

Bei der pulvermetallurgischen Herstellung werden die nach verschiedenen Verfahren gewonnenen Pulvermischungen überwiegend durch Pressen, Sintern und Strangpressen zu Drähten und Bändern weiterverarbeitet. Durch den hohen Umformgrad beim Strangpressen wird eine gleichmäßige Verteilung der CdO-Partikel in der Ag-Matrix und eine hohe Dichte erreicht, die sich vorteilhaft auf die Kontakteigenschaften auswirken (Figure 39). Die für Bänder und Plättchen erforderliche gut löt- und schweißbare Unterseite wird durch Verbundstrangpressen oder Anplattieren einer Silberschicht nach oder vor dem Strangpressvorgang erzielt.

Bei größeren Kontaktauflagen in meist runder Form bietet das Verfahren der Einzelpresstechnik vielfach wirtschaftliche Vorteile. Dabei wird die Pulvermischung in eine Form gepresst, die der Endabmessung des Kontaktstückes entspricht. Nach dem Pressen und Sintern ist i.d.R. ein weiterer Nachpressvorgang erforderlich, um eine hohe Dichte des Werkstoffes zu erreichen.

Figure 32: Verfestigungsverhalten von Ag/CdO 90/10 durch Kaltumformung
Figure 33: Erweichungsverhalten von Ag/CdO 90/10 nach 1h Glühdauer und einer Kaltumformung von 40%
Figure 34: Verfestigungsverhalten von Ag/Cd 90/10P durch Kaltumformung
Figure 35: Erweichungsverhalten von Ag/CdO 90/10P nach 1 h Glühdauer und einer Kaltumformung von 40%
<captionVerfestigungsverhalten von Ag/CdO 88/12 WP durch Kaltumformung
Figure 37: Erweichungsverhalten von Ag/CdO 88/12 WP nach 1h Glühdauer und unterschiedlicher Kaltumformung
Figure 38: Gefüge von Ag/CdO 90/10 i.o. a) Randbereich b) innerer Bereich
Figure 39: Gefüge von Ag/CdO 90/10 P a) senkrecht zur Strangpressrichtung b) parallel zur Strangpressrichtung


  • Silber-Zinnoxid Werkstoffe

Aufgrund der Toxizität des Cadmiums wurden in den letzten Jahren in vielen Anwendungsfällen die Ag/CdO-Werkstoffe durch Ag/SnO2-Werkstoffe mit 2-14 Massen-% SnO2 ersetzt. Diese Substitution wurde noch dadurch begünstigt, dass Ag/SnO2 -Werkstoffe häufig bessere Kontakt- und Schalteigenschaften, wie höhere Abbrandfestigkeit, erhöhte Verschweißresistenz und eine deutlich geringere Neigung zur Materialwanderung bei Gleichstrombetrieb aufweisen (Table 19). Durch spezielle Metalloxid-Zusätze und Fertigungsverfahren wurden Ag/SnO2- Werkstoffe für unterschiedliche Anwendungsfälle optimiert (Table 17 und Table 18).

Die Herstellung von Silber-Zinnoxid auf dem Wege der inneren Oxidation ist grundsätzlich möglich. Bei Silber-Zinn-Legierungen mit >5 Massen-% Sn bilden sich jedoch bei oxidierender Glühung in oberflächennahen Bereichen Deckschichten, die eine weitere Diffusion des Sauerstoffs ins Innere des Werkstoffes verhindern. Die Herstellung von Werkstoffen mit höheren Oxidgehalten ist nur durch Zusätze von Indium oder Wismut möglich. Solche nach dem klassischen Verfahren der inneren Oxidation hergestellten Ag/SnO2-Werkstoffe sind sehr spröde und weisen höhere Kontaktwiderstände auf, was z.B. bei Dauerstromführung in Motorschaltern zu hohen Übertemperaturen führen kann. Ihr Einsatz beschränkt sich daher weitgehend auf Relais. Für diesen Anwendungsfall ist es erforderlich, einen hinreichend duktilen Werkstoff mit feinkörnigen SnO2-Einlagerungen herzustellen (Figure 55). Dies gelingt durch Optimierung des Prozessverlaufs bei der inneren Oxidation und wiederholte Arbeitsschritte beim Strangpressen. Durch Anbringen einer Silberschicht lassen sich auch Bänder und Profile mit einer löt- und schweißbaren Unterschicht herstellen (Figure 56). Aufgrund ihrer geringen Neigung zur Materialwanderung in Gleichstromkreisen und ihrer erhöhten Abbrandfestigkeit kommen diese Werkstoffe z.B. in Kfz-Relais zum Einsatz (Table 20).

Bei der Herstellung von Silber-Zinnoxid Werkstoffen spielt die Pulvermetallurgie eine wesentliche Rolle. Neben SnO2 wird meist noch ein geringer Anteil (<1 Massen-%) eines oder mehrerer Metalloxide z.B. WO3, MoO3, CuO und/oder Bi2O3 zugemischt, die im Schaltbetrieb an der Grenzfläche zwischen Silberschmelze und Oxidpartikel wirksam sind. Diese Additive fördern einerseits die Benetzung und erhöhen die Viskosität der Silberschmelze, andererseits beeinflussen sie wesentlich die mechanischen und Schalteigenschaften der Ag/SnO2 -Werkstoffe (Table 15).

Table 15: Physikalische und mechanische Eigenschaften sowie Herstellungsverfahren und Lieferformen von stranggepressten Silber-Zinn-Oxid-Kontaktmaterialien
Material Silber Anteil
[gew.%]
Zusätze Theoretische
Dichte
[g/cm3]
Elektrische
Leitfähigkeit
[MS/m]
Vickers
Härte
Zugfestigkeit
[MPa]
Dehnung (weichgeglüht)
A[%]min.
Herstellungsprozess Art der Bereitstellung
Ag/SnO2 98/2 SPW 97 - 99 WO3 10,4 59 ± 2 57 ± 15 HV0,1 215 35 Pulvermetallurgisch 1
Ag/SnO2 92/8 SPW 91 - 93 WO3 10,1 51 ± 2 62 ± 15 HV0,1 255 25 Pulvermetallurgisch 1
Ag/SnO2 90/10 SPW 89 - 91 WO3 10 47 ± 5 250 25 Pulvermetallurgisch 1
Ag/SnO2 88/12 SPW 87 - 89 WO3 9.9 46 ± 5 67 ± 15 HV0,1 270 20 Pulvermetallurgisch 1
Ag/SnO2 92/8 SPW4 91 - 93 WO3 10,1 51 ± 2 62 ± 15 HV0,1 255 25 Pulvermetallurgisch 1,2
Ag/SnO2 90/10 SPW4 89 - 91 WO3 10 68 ± 15 HV5 Pulvermetallurgisch 1,2
Ag/SnO2 88/12 SPW4
87 - 89 WO3 9,8 46 ± 5 80 ± 10 HV0,1 Pulvermetallurgisch 1,2
Ag/SnO2 88/12 SPW6 87 - 89 MoO3 9.8 42 ± 5 70 ± 10 HV0,1 Pulvermetallurgisch 2
Ag/SnO2 97/3 SPW7 96 - 98 Bi2O3 und WO3 60 ± 15 HV5 Pulvermetallurgisch 2
Ag/SnO2 90/10 SPW7 89 - 91 Bi2O3 und WO3 9,9 Pulvermetallurgisch 2
Ag/SnO2 88/12 SPW7 87 - 89 Bi2O3 und WO3 9.8 42 ± 5 70 ± 10 HV0,1 Pulvermetallurgisch 2
Ag/SnO2 98/2 PMT1 97 - 99 Bi2O3 und CuO 10,4 57 ± 2 45 ± 15 HV5 215 35 Pulvermetallurgisch 1,2
Ag/SnO2 96/4 PMT1 95 - 97 Bi2O3 und CuO Pulvermetallurgisch 1,2
Ag/SnO2 94/6 PMT1 93 - 95 Bi2O3 und CuO 10,0 53 ± 2 58 ± 15 HV0,1 230 30 Pulvermetallurgisch 1,2
Ag/SnO2 92/8 PMT1 91 - 93 Bi2O3 und CuO 10 50 ± 2 62 ± 15 HV0,1 240 25 Pulvermetallurgisch 1,2
Ag/SnO2 90/10 PMT1 89 - 91 Bi2O3 und CuO 10 48 ± 2 65 ± 15 HV0,1 240 25 Pulvermetallurgisch 1,2
Ag/SnO2 88/12 PMT1 87 - 89 Bi2O3 und CuO 9,9 46 ± 5 75 ± 15 HV5 260 20 Pulvermetallurgisch 1,2
Ag/SnO2 90/10 PE 89 - 91 Bi2O3 und CuO 9,8 48 ± 2 55 - 100 HV0,1 230 - 330 28 Pulvermetallurgisch 1
Ag/SnO2 88/12 PE 87 - 89 Bi2O3 und CuO 9,7 46 ± 5 60 - 106 HV0,1 235 - 330 25 Pulvermetallurgisch 1
Ag/SnO2 88/12 PMT2 87 - 89 CuO 9,9 90 ± 10 HV0,1 Pulvermetallurgisch 1,2
Ag/SnO2 86/14 PMT3 85 - 87 Bi2O3 und CuO 9,8 95 ± 10 HV0,1 Pulvermetallurgisch 2
Ag/SnO2 94/6 LC1 93 - 95 Bi2O3 und In2O3 9,8 45 ± 5 55 ± 10 HV0,1 Pulvermetallurgisch 2
Ag/SnO2 90/10 POX1 89 - 91 In2O3 9,9 50 ± 5 85 ± 15 HV0,1 310 25 Innere Oxidation 1,2
Ag/SnO2 88/12 POX1 87 - 89 In2O3 9,8 48 ± 5 90 ± 15 HV0,1 325 25 Innere Oxidation 1,2
Ag/SnO2 86/14 POX1 85 - 87 In2O3 9,6 45 ± 5 95 ± 15 HV0,1 330 20 Innere Oxidation 1,2

1 = Drähte, Stäbe, Kontaktnieten 2 = Bänder, Profile, Kontaktstifte

Für die Herstellung der Pulvermischung werden verschiedene Verfahren angewandt, aus denen sich spezifische Vorteile im Schaltverhalten ergeben. Einige dieser Verfahren werden im Folgenden kurz beschrieben:

a) Pulvermischung aus Einzelpulvern
Bei diesem klassischen Verfahren der Pulvermetallurgie werden alle, in den Werkstoff eingebrachten Komponenten, einschließlich der Zusätze, als Einzelpulver miteinander vermischt. Das Mischen der Pulver erfolgt üblicherweise trocken in Mischern unterschiedlicher Bauart.
b) Pulvermischung auf Basis dotierter Oxide
Für den Einbau von Zusatzoxiden in das Zinnoxid hat sich das Reaktions-Sprüh-Verfahren (RSV) als vorteilhaft erwiesen. Bei diesem Verfahren wird von einer wässrigen Lösung ausgegangen, in der Zinn sowie die als Zusätze verwendeten Metalle in Form chemischer Verbindungen vorliegen. Diese wässrige Lösung wird unter hohem Druck in einer heißen Reaktionskammer verdüst. Durch die schlagartige Verdampfung des Wassers entsteht aus jedem einzelnen Tröpfchen zunächst ein Salzkristall und hieraus durch Oxidation ein Zinnoxid-Partikel, in dem die Zusatzmetalle in oxidierter Form gleichmäßig verteilt vorliegen. Das so erhaltene „dotierte“ Zinnoxidpulver wird anschließend mit Silberpulver vermischt.
c) Pulvermischung auf Basis beschichteter Oxidpulver
Nach diesem Verfahren wird Zinnoxidpulver mit niedrigschmelzenden Zusätzen, z.B. Ag2 MoO4 , vermischt und anschließend einer Glühbehandlung ausgesetzt. Dabei überzieht sich die Zinnoxid-Oberfläche mit einer dünnen Schicht.
d) Pulvermischung auf Basis inneroxidierter Legierungspulver
Dieses Verfahren schließt sowohl Arbeitsschritte der Pulvermetallurgie als auch der inneren Oxidation ein. Ausgegangen wird dabei von einer Silber-Metall-Legierung, die geschmolzen und anschließend zu feinkörnigem Pulver verdüst wird. Dieses Legierungspulver wird in sauerstoffhaltiger Atmosphäre geglüht, wobei sich das im Silber gelöste Zinn sowie weitere Zusatzmetalle als Oxidpartikel ausscheiden.
e) Pulvermischung auf Basis nasschemisch gefällter Verbundpulvern
In eine Suspension von Metalloxiden, z.B. SnO2 werden eine Silbersalzlösungzusammen mit einem Fällungsmittel eingeleitet. In einer chemischen Fällreaktion scheidet sich Silber bzw. Silberoxid ab. Die suspensierten Metalloxidpartikel wirken dabei als Kristallisationskeime.

Die Weiterverarbeitung der nach den verschiedenen Verfahren hergestellten Pulvermischungen erfolgt auf übliche Art durch Sintern und Strangpressen. Aus den so erhaltenen Halbzeugen, wie Bändern, Profilen und Drähten werden dann Kontaktauflagen oder -niete gefertigt. Zur Erzeugung einer lötund schweißbaren Kontaktunterseite aus Feinsilber werden die gleichen Verfahren angewandt, wie bei Ag/CdO beschrieben (Table 16).

Große, speziell geformte oder runde Ag/SnO2-Kontaktauflagen können aus wirtschaftlichen Gründen, wie bei Ag/CdO, nach dem Verfahren der Einzelpresstechnik hergestellt werden.

Figure 40: Verfestigungsverhalten von Ag/SnO2 92/8 PE durch Kaltumformung
Figure 41: Erweichungsverhalten von Ag/SnO2 92/8 PE nach 1h Glühdauer und einer Kaltumformung von 40%
Figure 42: Verfestigungsverhalten von Ag/SnO2 88/12 PE durch Kaltumformung
Figure 43: Erweichungsverhalten von Ag/SnO2 88/12 PE nach 1h Glühdauer und einer Kaltumformung von 40%
Figure 44: Verfestigungsverhalten von Ag/SnO2 88/12 PW4 durch Kaltumformung
Figure 45: Erweichungsverhalten von Ag/SnO2 88/12 PW4 nach 1h Glühdauer und einer Kaltumformung von 30%
Figure 46: Verfestigungsverhalten von Ag/SnO2 88/12 TOS F durch Kaltumformung
Figure 47: Erweichungsverhalten von Ag/SnO2 88/12 TOS F nach 1h Glühdauer und einer Kaltumformung von 30%
Figure 48: Verfestigungsverhalten von Ag/SnO2 88/12P durch Kaltumformung
Figure 49: Erweichungsverhalten von Ag/SnO2 88/12P nach 1h Glühdauer und einer Kaltumformung von 40%
Figure 50: Verfestigungsverhalten von Ag/SnO2 88/12 WPD durch Kaltumformung
Figure 51: Erweichungsverhalten von Ag/SnO2 88/12 WPD nach 1h Glühdauer und unterschiedlicher Kaltumformung
Figure 52: Gefüge von Ag/SnO2 92/8 PE a) senkrecht zur Strangpressrichtung b) parallel zur S trangpressrichtung
Figure 53: Gefüge von Ag/SnO2 88/12 PE a) senkrecht zur Strangpressrichtung b) parallel zur Strangpressrichtung
Figure 54: Gefüge von Ag/SnO2 88/12 SPW: a) a) senkrecht zur Strangpressrichtung b) parallel zur Strangpressrichtung
Figure 55: Gefüge von Ag/SnO2 88/12 TOS F: a) senkrecht zur Strangpressrichtung b) parallel zur Strangpressrichtung
Figure 56: Gefüge von Ag/SnO2 92/8 WTOS F: a) senkrecht zur Strangpressrichtung b) parallel zur Strangpressrichtung,1) AgSnO2-Schicht, 2) Ag-Unterschicht
Figure 57: Gefüge von Ag/SnO2 88/12 WPD: parallel zur Strangpressrichtung, 1) AgSnO2-Schicht, 2) Ag-Unterschicht


Table 16: Physikalische Eigenschaften von pulvermetallurgisch in Einzelpresstechnik hergestellten Silber-Metalloxid-Werkstoffen mit Silber-Rücken

Werkstoff

Metalloxid-Zusätze

Dichte

[ g/cm3]

Spez. elektr.

Widerstand

S ·cm]

Elektrische

Leitfähigkeit (weich)

Vickershärte

HV 10.

[%IACS]

[MS/m]

AgCdO 90/10

10.1

2.08

83

48

60

AgCdO 85/15

9.9

2.27

76

44

65

AgSnO2 90/10

CuO und

Bi2 O3

9.8

2.22

78

45

55

AgSnO2 88/12

CuO und

Bi2O3

9.6

2.63

66

38

60

Lieferformen: Formteile, Pressteile, Plättchen
  • Silber-Zinkoxid Werkstoffe

Silber-Zinkoxid Werkstoffe mit 6-10 Massen-% Oxidanteil, einschließlich geringer Metalloxidzusätze, werden ausschließlich auf pulvermetallurgischem Wege gefertigt ((Figs. 58 – 63)). Besonders bewährt hat sich der Zusatz Ag2WO4 - nach Verfahrensweg c) in den Werkstoff eingebracht - für Anwendungen in Wechselstrom-Relais, Lichtschaltern und Schaltern für Hausgeräte. Wie bei den anderen Silber-Metalloxid-Werkstoffen werden zunächst Halbzeuge hergestellt, aus denen dann Kontaktauflagen oder -niete gefertigt werden. Ag/ZnO-Werkstoffe stellen aufgrund ihrer hohen Verschweißresistenz und Abbrandfestigkeit in manchen Anwendungen eine wirtschaftlich günstige Alternative zu Ag/SnO2 dar (Table 19 und Table 20).


Table 17: Physikalische- und Festigkeitseigenschaften sowie Herstellungsverfahren und Lieferformen von stranggepressten Silber-Zinkoxid Werkstoffen
Werkstoff
Silberanteil
[Massen-%]
Zusätze Dichte
[g/cm3]
Spez. elektr.
Widerstand (20°)
[μΩ·cm]
Elektrische
Leitfähigkeit
[% IACS] [MS/m]
Vickershärte
Hv1
Zugfestigkeit
[MPa]
Dehnung
(weichgeglüht)
A[%]min.
Herstellungsverfahren Lieferform
Ag/ZnO 92/8SP
91 - 93 9.8 2.22 78 45 60 - 95 220 - 350 25 Pulvermetallurgie

a) Einzelpulver

1
Ag/ZnO 92/8PW25
91 - 93 Ag2WO4 9.6 2.08 83 48 65 - 105 230 - 340 25 Pulvermetallurgie

c) beschichtet

1
Ag/ZnO 90/10PW25
89 - 91 Ag2WO4 9.6 2.17 79 46 65 - 100 230 - 350 20 Pulvermetallurgie

c) beschichtet

1
Ag/ZnO 92/8SP
91 - 93 9.8 2.0 86 50 60 - 95 Pulvermetallurgie mit Ag-

Rücken a) Einzelpulver

2
Ag/ZnO 92/8WPW25
91 - 93 Ag2WO4 9.6 2.08 83 48 65 - 105 Pulvermetallurgie mit Ag-

Rücken c) beschichtet

2
Ag/ZnO 90/10WPW25
89 - 91 Ag2WO4 9.6 2.7 79 46 65 - 110 Pulvermetallurgie mit Ag-

Rücken c) beschichtet

2

1 = Drähte, Stangen, Niete, 2) Streifen, Bänder, Profile, Plättchen


Figure 58: Verfestigungsverhalten von Ag/ZnO 92/8 PW25 durch Kaltumformung
Figure 59: Erweichungsverhalten von Ag/ZnO 92/8 PW25 nach 1h Glühdauer und einer Kaltumformung von 30%
Figure 60: Verfestigungsverhalten von Ag/ZnO 92/8 WPW25 durch Kaltumformung
Figure 61: Erweichungsverhalten von Ag/ZnO 92/8 WPW25 nach 1h Glühdauer und unterschiedlicher Kaltumformung
Figure 62: Gefüge von Ag/ZnO 92/8 PW25 a) senkrecht zur Strangpressrichtung b) parallel zur Strangpressrichtung
Figure 63: Gefüge von Ag/ZnO 92/8 WPW25 a) senkrecht zur Strangpressrichtung b) parallel zur Strangpressrichtung, 1) Ag/ZnO-Schicht, 2) Ag-Unterschicht


Table 18: Optimierung der Silber-Zinnoxid-Werkstoffe hinsichtlich Schalteigenschaften und Umformungsverhalten

Werkstoff/

Werkstoffgruppe

Spezielle Eigenschaften

Ag/SnO2 PE

Besonders geeignet für Kfz-Relais (Lampenlast)

gute Umformbarkeit (Niete)

Ag/SnO2 TOS F

Besonders geeignet für hohe induktive Gleichstromlast

sehr gute Umformbarkeit (Niete)

Ag/SnO2 WPD

Besonders geeignet für Schwerlastbetrieb (AC-4) und hohe Schaltströme

Ag/SnO2 W TOS F

Besonders geeignet für hohe induktive Gleichstromlast


Table 19: Kontakt- und Schalteigenschaften von Silber-Metalloxid-Werkstoffen
Werkstoff Eigenschaften
Ag/SnO2
Umweltfreundliche Werkstoffe,

sehr hohe Sicherheit gegenüber Einschaltverschweißungen, Sicherheit gegenüber Verschweißungen mit steigendem Oxidgehalt zunehmend, niedriger und über die Gerätelebensdauer weitgehend stabiler Kontaktwiderstand und günstiges Übertemperaturverhalten durch spezielle Oxidzusätze, hohe Abbrandfestigkeit und Schaltstücklebensdauer, sehr geringe, flächenhafte Materialwanderung bei Gleichstromlast, günstige Lichtbogenlaufeigenschaften, sehr gutes Lichtbogenlöschverhalten

Ag/ZnO
Umweltfreundliche Werkstoffe,

hohe Sicherheit gegenüber Einschaltverschweißungen (Kondensatorschütze), niedriger und konstanter Kontaktwiderstand durch spezielle Oxidzusätze, besonders hohe Abbrandfestigkeit bei hohen Schaltströmen, hinsichtlich Materialwanderung und Lebensdauer bei Gleichstromlast ungünstiger als Ag/SnO2 ,mit Zusatz Ag2WO4 besonders geeignet für Wechselstrom-Relais und Schalter in Hausgeräten, in den sonstigen Eigenschaften vergleichbar mit Ag/SnO2


Table 20: Anwendungsbeispiele von Silber-Metalloxid-Werkstoffen

Werkstoff

Anwendungsbeispiele

Ag/SnO2

Mikroschalter, Elementarrelais, Kfz-Relais, Schalter für Hausgeräte,

Hauptschalter, Motorschalter ( Schütze ), Fehlerstromschutzschalter

( gepaart mit Ag/C ), Leistungsschalter.

Ag/ZnO

Lichtschalter, Wechselstrom-Relais, Schalter für Hausgeräte

Motorschutzschalter ( gepaart mit Ag/Ni bzw. Ag/C), Fehlerstromschutzschalter

( gepaart mit Ag/C ), Leistungsschalter.

Silber-Grafit Werkstoffe

Ag/C Kontaktwerkstoffe werden üblicherweise mit Grafitgehalten von 2-5 Massen-% auf pulvermetallurgischem Wege hergestellt (Table 21). Die früher übliche Herstellung von Ag/C-Plättchen nach dem Verfahren der Einzelpresstechnik , d.h. durch Mischen von Silber- und Grafit-Pulver, Pressen, Sintern und Nachpressen, wurde seit langem in Europa durch das Strangpressen abgelöst, hat jedoch für spezielle Kontaktformen, z.B. trapezförmige Auflagen, und kostenkritische Anwendungen in den USA und in anderen Regionen eine gewisse Bedeutung.

Das Strangpressen gesinterter Ag/C-Blöcke ist das dominierende Fertigungsverfahren für Ag/C-Halbzeuge. Durch das Strangpressen wird eine hohe Verdichtung des Werkstoffes und eine zeilenförmige Ausrichtung der Grafitpartikel in Pressrichtung erreicht ((Figs. 68 – 71)). Je nach Art des Strangpressens, als Band oder in Stangenform, sind die Grafitpartikel im fertigen Kontaktstück senkrecht oder parallel zur Schaltfläche angeordnet (Figure 69 und Figure 70).

Da sich Kontaktauflagen aus Silber-Grafit wegen der in der Ag-Matrix eingelagerten Grafitpartikel direkt weder schweißen noch löten lassen, ist für das Aufbringen der Auflagen auf Kontaktträger eine grafitfreie Unterschicht erforderlich. Diese kann durch einseitiges Ausbrennen des Grafits oder durch Verbundstrangpressen des Ag/C-Pressblockes mit Silber erzeugt werden.

Ag/C-Werkstoffe weisen einerseits eine extrem hohe Verschweißresistenz, die von keiner anderen Werkstoffgruppe erreicht wird, andererseits jedoch eine geringe Abbrandfestigkeit auf. Dieses außergewöhnliche Schaltverhalten von Ag/C wird durch die Reaktion der Wirkkomponente Grafit mit der Umgebungsatmosphäre bei den infolge Lichtbogeneinwirkung auftretenden hohen Temperaturen bestimmt. Bei Ag/C-Werkstoffen mit einer Orientierung der Grafit-Partikel parallel zur Schaltfläche ist die Verschweißresistenz besonders hoch. Da die Schaltstückoberfläche nach Lichtbogeneinwirkung aus reinem Silber besteht, sind die Kontaktwiderstände während der Schaltstücklebensdauer gleichbleibend niedrig.

Ein Schwachpunkt von Ag/C-Kontaktwerkstoffen ist die geringe Abbrandfestigkeit. Bei Ag/C-Kontaktmaterial mit parallel zur Schaltfläche orientierten Grafit- Partikeln kann eine deutliche Verbesserung im Abbrandverhalten erreicht werden, wenn ein Teil des Grafits in Form von Fasern in den Werkstoff (Ag/C DF) eingebracht wird (Figure 71). Das Schweißverhalten wird dabei durch den Anteil an Grafit-Partikeln bestimmt.

Ag/C-Plättchen mit senkrechter Ausrichtung der Grafit-Partikel werden nach bestimmten Arbeitsschritten - Strangpressen, nachfolgendem Trennen zu Doppelplättchen, Ausbrennen des Grafits und zweitem Trennen zu Einzelplättchen - hergestellt (Table 22). Solche Plättchen mit Ag/C-Schaltfläche und gut löt- und schweißbarer Ag-Unterseite sind besonders geeignet für Anwendungen, die sowohl hohe Verschweißresistenz als auch eine ausreichend hohe Abbrandfestigkeit im Schaltbetrieb erfordern.

Als Verbindungsverfahren kommen Hartlöten und Schweißen in Frage. Beim Aufschweißen hängt der Fertigungsablauf von der Orientierung der Grafit- Partikel in der Ag-Matrix ab. Bei Ag/C-Werkstoffen mit einer Ausrichtung der Grafit-Partikel senkrecht zur Schaltfläche werden die Kontaktauflagen als Einzelteile weiterverarbeitet. Bei paralleler Ausrichtung ist die Verarbeitung besonders wirtschaftlich, da von Bandmaterial ausgegangen werden kann, aus dem in einer Arbeitsfolge Kontaktplättchen getrennt und unmittelbar danach aufgeschweißt werden. Um den Fügevorgang energiesparender zu gestalten, können die Ag/C-Profile auch mit einer dünnen Hartlotschicht versehen werden.

In begrenztem Umfang können Ag/C-Werkstoffe mit 2-3 Massen-% Grafit auch zu Drähten und bei nur geringer Kaltumformung zu Kontaktnieten verarbeitet werden.

Haupteinsatzgebiet der Ag/C-Werkstoffe sind Schutzschalter, wie Leistungs-, Leitungsschutz-, Motorschutz- und Fehlerstromschutzschalter, in denen im Kurzschlussfall höchste Anforderungen an die Verschweißresistenz der Kontaktstücke gestellt werden (Table 23). Die geringe Abbrandfestigkeit des Ag/C wird dabei in unsymmetrischer Kontaktpaarung durch abbrandfeste Gegenkontakte aus Ag/Ni oder Ag/W kompensiert.

Figure 64: Verfestigungsverhalten von Ag/C 96/4 D durch Kaltumformung
Figure 65: Erweichungsverhalten von Ag/C 96/4 D
Figure 66: Verfestigungsverhalten von Ag/C D durch Kaltumformung
Figure 67: Erweichungsverhalten von Ag/C DF
Figure 68: Gefüge von Ag/C 97/3 a) senkrecht zur Strangpressrichtung b) parallel zur Strangpressrichtung, 1) Ag/C-Schicht, 2) Ag-Unterschicht
Figure 69: Gefüge von Ag/C 95/5 a) senkrecht zur Strangpressrichtung b) parallel zur Strangpressrichtung, 1) Ag/C-Schicht, 2) Ag-Unterschicht
Figure 70: Gefüge von Ag/C 96/4 D a) senkrecht zur Strangpressrichtung b) parallel zur Strangpressrichtung, 1) Ag/C-Schicht, 2) Ag-Unterschicht
Figure 71: Gefüge von Ag/C DF a) senkrecht zur Strangpressrichtung b) parallel zur Strangpressrichtung, 1) Ag/C-Schicht, 2) Ag/Ni 90/10-Unterschicht
Table 21: Physikalische Eigenschaften von Silber-Grafit Werkstoffen
Werkstoff Silberanteil
[Massen-%]
Dichte
[g/cm3]
Schmelztemperatur
[°C]
Spez. elektr. Widerstand (20°)
[μΩ·cm]
Elektrische Leitfähigkeit
[% IACS] [MS/m]
Vickershärte
HV10
42 - 45
Ag/C 98/2
97.5 - 98.5 9.5 960 1.85 - 1.92 90 - 93 48 - 50 42 - 44
Ag/C 97/3
96.5 - 97.5 9.1 960 1.92 - 2.0 86 - 90 45 - 48 41 - 43
Ag/C 96/4
95.5 - 96.5 8.7 960 2.04 - 2.13 81 - 84 42 - 46 40 - 42
Ag/C 95/5
94.5 - 95.5 8.5 960 2.12 - 2.22 78 - 81 40 - 44 40 - 60
AgC DF
GRAPHOR DF*)
95.7 - 96.7 8.7 - 8.9 960 2.27 - 2.50 69 - 76 40 - 44

*) Grafit-Partikel parallel zur Schaltfläche


Table 22: Kontakt- und Schalteigenschaften von Silber-Grafit Werkstoffen

Werkstoff

Eigenschaften

Ag/C

Höchste Sicherheit gegenüber Verschweißungen beim Einschalten hoher Ströme,

hohe Sicherheit hinsichtlich Verschweißen geschlossener Kontakte im Kurzschlussfall,

Zunahme der Verschweißresistenz mit steigendem Grafit-Anteil, niedriger Kontaktwiderstand,

ungünstiges Abbrandverhalten insbesondere beim Ausschalten, mit zunehmendem Grafit-Anteil erhöhter Abbrand;

gleichzeitig nimmt die Verrußung der Schaltkammerwände zu,

Ag/C mit senkrechter Orientierung der Grafit-Partikel weist Vorteile hinsichtlich Abbrandfestigkeit, mit paralleler Orientierung Vorteile hinsichtlich Verschweißresistenz auf,

ungünstiges Lichtbogenlaufverhalten; daher Einsatz in unsymmetrischer Paarung, begrenzte Umformbarkeit,

löt- und schweißbar durch ausgebrannten Rücken, Ag/C ist hinsichtlich Abbrandfestigkeit und

Verschweißverhalten optimiert.


Table 23: Anwendungsbeispiele und Lieferformen von Silber-Grafit Werkstoffen

Werkstoff

Anwendungsbeispiele

Lieferform

Ag/C 98/2

Motorschutzschalter, gepaart mit Ag/Ni

Kontaktauflagen, gelötete und

geschweißte Kontaktteile,

begrenzt Kontakniete

Ag/C 97/3

Ag/C 96/4

Ag/C 95/5

Ag/C DF

Leitungsschutzschalter, gepaart mit

Cu, Motorschutzschalter, gepaart mit Ag/Ni, Fehlerstromschutzschalter,

gepaart mit Ag/Ni, Ag/W, Ag/W

Kontaktauflagen, gelötete und

geschweißte Kontaktteile,

begrenzt Kontaktniete bei Ag/C 97/3

Referenzen

Referenzen