Difference between revisions of "Werkstoffe auf Silber-Basis"

From Electrical Contacts
Jump to: navigation, search
(temp edit)
(temp edit)
Line 738: Line 738:
  
 
====Silber-Nickel (SINIDUR)-Werkstoffe====
 
====Silber-Nickel (SINIDUR)-Werkstoffe====
Since silver and nickel are not soluble in each other in solid form and in the liquid phase have only very limited solubility silver nickel composite materials with higher Ni contents can only be produced by powder metallurgy. During extrusion of sintered Ag/Ni billets into wires, strips and rods the Ni particles embedded in the Ag matrix are stretched and oriented in the microstructure into a pronounced fiber structure <xr id="fig:Micro structure of AgNi9010"/><!--(Fig. 2.75)--> and <xr id="fig:Micro structure of AgNi 8020"/><!--(Fig. 2.76)-->
+
Da Silber und Nickel im festen Zustand ineinander unlöslich sind und im flüssigen
 +
Zustand nur eine geringe Löslichkeit von Nickel im Silber besteht, können Silber-
 +
Nickel-Werkstoffe mit höheren Ni-Anteilen nur nach pulvermetallurgischen Verfahren
 +
hergestellt werden. Durch das Strangpressen der gesinterten Ag/Ni-
 +
Blöcke zu Drähten, Bändern und Stangen sowie die nachfolgenden Verarbeitungsschritte
 +
z.B. Walzen oder Ziehen, werden die in der Ag-Matrix eingelagerten
 +
Nickelpartikel in Umformrichtung so ausgerichtet und gestreckt, dass im
 +
Gefügebild eine deutliche Faserstruktur zu erkennen ist (<xr id="fig:Micro structure of AgNi9010"/><!--(Fig. 2.75)--> und <xr id="fig:Micro structure of AgNi 8020"/><!--(Fig. 2.76)-->).
  
The high density produced during hot extrusion aids the arc erosion resistance of these materials <xr id="tab:Physical Properties of Silver-Nickel (SINIDUR) Materials"/><!--(Tab 2.21)-->. The typical application of Ag/Ni contact materials is in devices for switching currents of up to 100A <xr id="tab:Application Examples and Forms of Supply for Silver-Nickel (SINIDUR) Materials"/><!--(Table 2.24)-->. In this range they are significantly more erosion resistant than silver or silver alloys. In addition they exhibit with nickel contents < 20 wt% a low and over their operational lifetime consistent contact resistance and good arc moving properties. In DC applications Ag/Ni materials exhibit a relatively low tendency of material transfer distributed evenly over the contact surfaces <xr id="tab:Contact and Switching Properties of Silver-Nickel (SINIDUR) Materials"/> <!--(Table 2.23)-->.
+
Die aufgrund der hohen Umformung beim Strangpressen erzeugte hohe Dichte
 +
von Ag/Ni-Werkstoffen wirkt sich vorteilhaft auf die Abbrandfestigkeit aus. Das
 +
typische Einsatzgebiet der Ag/Ni-Werkstoffe sind Schaltströme <100 A. Hierbei
 +
sind sie deutlich abbrandfester als Silber oder Silber-Legierungen. Weiterhin weisen sie bei Nickelanteilen <20 Massen-% niedrige und über die Schaltstücklebensdauer
 +
gleichbleibende Kontaktwiderstände und gute Lichtbogenlaufeigenschaften
 +
auf. Bei Gleichstrombetrieb zeichnen sich die Ag/Ni-Werkstoffe durch eine
 +
verhältnismäßig geringe flächenhafte Materialwanderung aus (<xr id="tab:Contact and Switching Properties of Silver-Nickel (SINIDUR) Materials"/> <!--(Table 2.23)-->).
  
Typically Ag/Ni (SINIDUR) materials are usually produced with contents of 10-40 wt% Ni. The most widely used materials SINIDUR 10 and SINIDUR 20- and also SINIDUR 15, mostly used in north america-, are easily formable and applied by cladding <xr id="fig:Strain hardening of AgNi9010 by cold working"/><!--(Fig. 2.71)--> <xr id="fig:Softening of AgNi9010 after annealing"/><!--(Fig. 2.72)--> <xr id="fig:Strain hardening of AgNi8020"/> <!--(Fig. 2.73)--> <xr id="fig:Softening of AgNi8020 after annealing"/><!--(Fig. 2.74)-->. They can be, without any additional welding aids, economically welded and brazed to the commonly used contact carrier materials.
+
Ag/Ni (SINIDUR)-Werkstoffe werden üblicherweise mit Nickelgehalten von
The (SINIDUR) materials with nickel contents of 30 and 40 wt% are used in switching devices requiring a higher arc erosion resistance and where increases in contact resistance can be compensated through higher contact forces.
+
10-40 Massen-% hergestellt. SINIDUR 10 und SINIDUR 20, die am häufigsten
 +
eingesetzten Werkstoffe, weisen eine sehr gute Umform- und Plattierbarkeit auf (<xr id="fig:Strain hardening of AgNi9010 by cold working"/><!--(Fig. 2.71)--> <xr id="fig:Softening of AgNi9010 after annealing"/><!--(Fig. 2.72)--> <xr id="fig:Strain hardening of AgNi8020"/> <!--(Fig. 2.73)--> <xr id="fig:Softening of AgNi8020 after annealing"/><!--(Fig. 2.74)-->). Sie
 +
können ohne zusätzliche Schweißhilfe sehr wirtschaftlich auf geeignete Trägerwerkstoffe
 +
geschweißt oder gelötet werden. Ag/Ni (SINIDUR)-Werkstoffe mit Nickel-
 +
Anteilen von 30-40 Massen-% kommen in Schaltgeräten zum Einsatz, in denen
 +
einerseits eine höhere Abbrandfestigkeit benötigt wird, andererseits erhöhte
 +
Kontaktwiderstände durch ausreichend hohe Kontaktkräfte kompensiert werden
 +
können.
  
The most important applications for Ag/Ni contact materials are typically in relays, wiring devices, appliance switches, thermostatic controls, auxiliary switches, and small contactors with nominal currents > 20A <xr id="tab:Application Examples and Forms of Supply for Silver-Nickel (SINIDUR) Materials"/><!--(Table 2.24)-->.
+
Anwendungsschwerpunkte von Ag/Ni-Kontaktwerkstoffen sind z.B. Relais, Installationsschalter,
 +
Schalter für Hausgeräte, Thermostate, Hilfsstromschalter und kleinere
 +
Schütze mit Bemessungs-Betriebsströmen <20A (<xr id="tab:Application Examples and Forms of Supply for Silver-Nickel (SINIDUR) Materials"/><!--(Table 2.24)-->).
  
 
<figtable id="tab:Physical Properties of Silver-Nickel (SINIDUR) Materials">
 
<figtable id="tab:Physical Properties of Silver-Nickel (SINIDUR) Materials">
Line 917: Line 939:
  
 
==== Silber-Metalloxid-Werkstoffe Ag/CdO, Ag/SnO<sub>2</sub>, Ag/ZnO====
 
==== Silber-Metalloxid-Werkstoffe Ag/CdO, Ag/SnO<sub>2</sub>, Ag/ZnO====
The family of silver-metal oxide contact materials includes the material groups: silver-cadmium oxide (DODURIT CdO), silver-tin oxide (SISTADOX), and silverzinc oxide (DODURIT ZnO). Because of their very good contact and switching properties like high resistance against welding, low contact resistance, and high arc erosion resistance, silver-metal oxides have gained an outstanding position in a broad field of applications. They mainly are used in low voltage electrical switching devices like relays, installation and distribution switches, appliances, industrial controls, motor controls, and protective devices <xr id="tab:Application Examples of Silver–Metal Oxide Materials"/><!--(Table 2.31)-->.
+
Die Familie der Silber-Metalloxid-Kontaktwerkstoffe umfasst die Werkstoffgruppen:
 +
Silber-Cadmiumoxid (DODURIT CdO), Silber-Zinnoxid (SISTADOX)
 +
und Silber-Zinkoxid (DODURIT ZnO). Aufgrund ihrer sehr guten Kontakt- und
 +
Schalteigenschaften, wie hohe Verschweißresistenz, niedriger Kontaktwiderstand
 +
und hohe Abbrandfestigkeit, haben Silber-Metalloxid-Werkstoffe eine
 +
herausragende Stellung in einem breiten Anwendungsbereich erlangt. Sie finden vor allem Einsatz in Schaltgeräten der Niederspannungs-Energietechnik,
 +
z.B. in Relais, Installations-, Geräte-, Motor- und Schutzschaltern (<xr id="tab:Application Examples of Silver–Metal Oxide Materials"/><!--(Table 2.31)-->).
  
 
*'''Silver-cadmium oxide (DODURIT CdO) materials'''
 
*'''Silver-cadmium oxide (DODURIT CdO) materials'''
  
Silver-cadmium oxide (DODURIT CdO) materials with 10-15 wt% are produced by both, internal oxidation and powder metallurgical methods <xr id="tab:Physical and Mechanical Properties"/><!--(Table 2.25)-->.
+
Silber-Cadmiumoxid (DODURIT CdO)-Werkstoffe mit 10-15 Massen-% CdO
 +
werden sowohl nach dem Verfahren der inneren Oxidation als auch auf pulvermetallurgischem
 +
Wege hergestellt <xr id="tab:Physical and Mechanical Properties"/><!--(Table 2.25)-->().
  
 
<figtable id="tab:Physical and Mechanical Properties">
 
<figtable id="tab:Physical and Mechanical Properties">
[[File:Physical and Mechanical Properties.jpg|right|thumb|Physical and Mechanical Properties as well as Manufacturing Processes and Forms of Supply of Extruded Silver Cadmium Oxide (DODURIT CdO) Contact Materials]]
+
[[File:Physical and Mechanical Properties.jpg|right|thumb|Physikalische- und Festigkeitseigenschaften sowie Herstellungsverfahren
 +
und Lieferformen von stranggepressten Silber-Cadmiumoxid
 +
(DODURIT CdO)-Werkstoffen]]
 
</figtable>
 
</figtable>
  
The manufacturing of strips and wires by internal oxidation starts with a molten alloy of silver and cadmium. During a heat treatment below it's melting point in a oxygen rich atmosphere in such a homogeneous alloy the oxygen diffuses from the surface into the bulk of the material and oxidizes the Cd to CdO in a more or less fine particle precipitation inside the Ag matrix. The CdO particles are rather fine in the surface area and are becoming larger further away towards the center of the material <xr id="fig:Micro structure of AgCdO9010"/><!--(Fig. 2.83)-->.
+
Bei der Herstellung von Bändern und Drähten durch innere Oxidation wird von
 +
einer auf dem Schmelzwege erzeugten Legierung aus Silber und Cadmium
 +
ausgegangen. Unterzieht man eine solche homogene Legierung einer Glühbehandlung
 +
unterhalb ihres Schmelzpunktes in einer sauerstoffhaltigen
 +
Atmosphäre, so diffundiert der Sauerstoff von der Oberfläche in das Innere der
 +
Silber-Cadmium-Legierung ein und oxidiert das Cd zu CdO, das sich dabei
 +
mehr oder weniger feinkörnig in der Ag-Matrix ausscheidet. Die CdO-Ausscheidungen
 +
sind im Randbereich feinkörnig und werden in Richtung der
 +
Oxidationsfront grobkörniger (<xr id="fig:Micro structure of AgCdO9010"/><!--(Fig. 2.83)-->).
  
During the manufacturing of Ag/CdO contact material by internal oxidation the processes vary depending on the type of semi-finished material. For Ag/CdO wires a complete oxidation of the AgCd wire is performed, followed by wire-drawing to the required diameter <xr id="fig:Strain hardening of internally oxidized AgCdO9010"/><!--(Figs. 2.77)--> and <xr id="fig:Softening of internally oxidized AgCdO9010"/><!--(Fig. 2.78)-->. The resulting material is used for example in the production of contact rivets. For Ag/CdO strip materials two processes are commonly used: Cladding of an AgCd alloy strip with fine silver followed by complete oxidation results in a strip material with a small depletion area in the center of it's thickness and a Ag backing suitable for easy attachment by brazing (sometimes called "Conventional Ag/CdO"). Using a technology that allows the partial oxidation of a dual-strip AgCd alloy material in a higher pressure pure oxygen atmosphere yields a composite Ag/CdO strip material that has besides a relatively fine CdO precipitation also a easily brazable AgCd alloy backing <xr id="fig:Micro structure of AgCdO9010ZH"/><!--(Fig. 2.85)-->. These materials (DODURIT CdO ZH) are mainly used as the basis for contact profiles and contact tips.
+
Bei der Herstellung von Ag/CdO-Kontaktmaterial ist je nach Art des Halbzeugs
 +
der Prozessablauf der inneren Oxidation unterschiedlich.
 +
Bei Ag/CdO-Drähten wird das AgCd-Vormaterial vollständig durchoxidiert, auf
 +
das gewünschte Endmaß gezogen und z.B. zu Kontaktnieten weiterverarbeitet (<xr id="fig:Strain hardening of internally oxidized AgCdO9010"/><!--(Figs. 2.77)--> und <xr id="fig:Softening of internally oxidized AgCdO9010"/><!--(Fig. 2.78)-->).
 +
Dagegen wird bei Ag/CdO- Bändern die innere Oxidation einseitig nur bis zu
 +
einer bestimmten Tiefe ausgeführt (<xr id="fig:Micro structure of AgCdO9010ZH"/><!--(Fig. 2.85)-->). Die so erhaltenen Zweischichtbänder
 +
mit der inneroxidierten Ag/CdO-Kontaktschicht auf der Oberseite und
 +
der gut lötbaren AgCd-Unterseite (Bezeichnung: „ZH“) sind Ausgangsmaterial
 +
für die Herstellung von Kontaktprofilen und -auflagen.
  
During powder metallurgical production the powder mixed made by different processes are typically converted by pressing, sintering and extrusion to wires and strips. The high degree of deformation during hot extrusion produces a uniform and fine dispersion of CdO particles in the Ag matrix while at the same time achieving a high density which is advantageous for good contact properties <xr id="fig:Micro structure of AgCdO9010P"/><!--(Fig. 2.84)-->. To obtain a backing suitable for brazing, a fine silver layer is applied by either com-pound extrusion or hot cladding prior to or right after the extrusion <xr id="fig:Micro structure of AgCdO8812WP"/><!--(Fig. 2.86)-->.
+
Bei der pulvermetallurgischen Herstellung werden die nach verschiedenen Verfahren
 +
gewonnenen Pulvermischungen überwiegend durch Pressen, Sintern
 +
und Strangpressen zu Drähten und Bändern weiterverarbeitet. Durch den hohen
 +
Umformgrad beim Strangpressen wird eine gleichmäßige Verteilung der
 +
CdO-Partikel in der Ag-Matrix und eine hohe Dichte erreicht, die sich vorteilhaft
 +
auf die Kontakteigenschaften auswirken (<xr id="fig:Micro structure of AgCdO9010P"/><!--(Fig. 2.84)-->). Die für Bänder und Plättchen
 +
erforderliche gut löt- und schweißbare Unterseite wird durch Verbundstrangpressen
 +
oder Anplattieren einer Silberschicht nach oder vor dem
 +
Strangpressvorgang erzielt (<xr id="fig:Micro structure of AgCdO8812WP"/><!--(Fig. 2.86)-->).
  
For larger contact tips, and especially those with a rounded shape, the single tip Press-Sinter-Repress process (PSR) offers economical advantages. The powder mix is pressed in a die close to the final desired shape, the "green" tips are sintered, and in most cases the repress process forms the final exact shape while at the same time increasing the contact density and hardness.
+
Bei größeren Kontaktauflagen in meist runder Form bietet das Verfahren der
 
+
Einzelpresstechnik vielfach wirtschaftliche Vorteile. Dabei wird die Pulvermischung
Using different silver powders and minor additives for the basic Ag and CdO starting materials can help influence certain contact properties for specialized applications.
+
in eine Form gepresst, die der Endabmessung des Kontaktstückes
 +
entspricht. Nach dem Pressen und Sintern ist i.d.R. ein weiterer Nachpressvorgang
 +
erforderlich, um eine hohe Dichte des Werkstoffes zu erreichen.
  
 
<xr id="fig:Strain hardening of internally oxidized AgCdO9010"/><!--Fig. 2.77:--> Strain hardening of internally oxidized Ag/CdO 90/10 by cold working
 
<xr id="fig:Strain hardening of internally oxidized AgCdO9010"/><!--Fig. 2.77:--> Strain hardening of internally oxidized Ag/CdO 90/10 by cold working
Line 1,001: Line 1,059:
  
  
*'''Silver–tin oxide (SISTADOX) materials'''
+
*'''Silber-Zinnoxid (SISTADOX)-Werkstoffe'''
Over the past years, many Ag/CdO contact materials have been replaced by Ag/SnO<sub>2</sub> based materials with 2-14 wt% SnO<sub>2</sub> because of the toxicity of Cadmium. This changeover was further favored by the fact that Ag/SnO<sub>2</sub> contacts quite often show improved contact and switching properties such as lower arc erosion, higher weld resistance, and a significant lower tendency towards material transfer in DC switching circuits <xr id="tab:Contact and Switching Properties of Silver–Metal Oxide Materials"/><!--(Table 2.30)-->. Ag/SnO<sub>2</sub> materials have been optimized for a broad range of applications by other metal oxide additives and modification in the manufacturing processes that result in different metallurgical, physical and electrical properties<xr id="tab:tab2.28"/><!--(Tab. 2.28)--> und <xr id="tab:tab2.29"/><!--(Table 2.29)-->.
+
Aufgrund der Toxizität des Cadmiums wurden in den letzten Jahren in vielen
 
+
Anwendungsfällen die Ag/CdO-Werkstoffe durch Ag/SnO<sub>2</sub>-Werkstoffe mit 2-14
Manufacturing of Ag/SnO<sub>2</sub> by ''internal oxidation'' is possible in principle, but during heat treatment of alloys containing > 5 wt% of tin in oxygen, dense oxide layers formed on the surface of the material prohibit the further diffusion of oxygen into the bulk of the material. By adding Indium or Bismuth to the alloy the internal oxidation is possible and results in materials that typically are rather hard and brittle and may show somewhat elevated contact resistance and is limited to applications in relays. To make a ductile material with fine oxide dispersion (SISTADOX TOS F) <xr id="fig:Micro structure of Ag SnO2 88 12 TOS F"/><!--(Fig. 2.114)--> it is necessary to use special process variations in oxidation and extrusion which lead to materials with improved properties in relays. Adding a brazable fine silver layer to such materials results in a semifinished material suitable for the manufacture as smaller weld profiles (SISTADOX WTOS F) <xr id="fig:Micro structure of Ag SnO2 92 8 WTOS F"/><!--(Fig. 2.116)-->. Because of their resistance to material transfer and low arc erosion these materials find for example a broader application in automotive relays <xr id="tab:Application Examples of Silver–Metal Oxide Materials"/><!--(Table 2.31)-->.
+
Massen-% SnO<sub>2</sub> ersetzt. Diese Substitution wurde noch dadurch begünstigt,
 +
dass Ag/SnO<sub>2</sub> -Werkstoffe häufig bessere Kontakt- und Schalteigenschaften,
 +
wie höhere Abbrandfestigkeit, erhöhte Verschweißresistenz und eine deutlich
 +
geringere Neigung zur Materialwanderung bei Gleichstrombetrieb aufweisen (<xr id="tab:Contact and Switching Properties of Silver–Metal Oxide Materials"/><!--(Table 2.30)-->).
 +
Durch spezielle Metalloxid-Zusätze und Fertigungsverfahren wurden Ag/SnO<sub>2</sub>-
 +
Werkstoffe für unterschiedliche Anwendungsfälle optimiert (<xr id="tab:tab2.28"/><!--(Tab. 2.28)--> und <xr id="tab:tab2.29"/><!--(Table 2.29)-->).
  
 +
Die Herstellung von Silber-Zinnoxid auf dem Wege der inneren Oxidation ist
 +
grundsätzlich möglich. Bei Silber-Zinn-Legierungen mit >5 Massen-% Sn bilden
 +
sich jedoch bei oxidierender Glühung in oberflächennahen Bereichen Deckschichten,
 +
die eine weitere Diffusion des Sauerstoffs ins Innere des Werkstoffes
 +
verhindern. Die Herstellung von Werkstoffen mit höheren Oxidgehalten ist nur
 +
durch Zusätze von Indium oder Wismut möglich. Solche nach dem klassischen
 +
Verfahren der inneren Oxidation hergestellten Ag/SnO<sub>2</sub>-Werkstoffe sind sehr
 +
spröde und weisen höhere Kontaktwiderstände auf, was z.B. bei Dauerstromführung
 +
in Motorschaltern zu hohen Übertemperaturen führen kann. Ihr Einsatz
 +
beschränkt sich daher weitgehend auf Relais. Für diesen Anwendungsfall ist es
 +
erforderlich, einen hinreichend duktilen Werkstoff mit feinkörnigen SnO<sub>2</sub>-Einlagerungen
 +
herzustellen (SISTADOX TOS F) (<xr id="fig:Micro structure of Ag SnO2 88 12 TOS F"/><!--(Fig. 2.114)-->). Dies gelingt durch Optimierung des
 +
Prozessverlaufs bei der inneren Oxidation und wiederholte Arbeitsschritte beim
 +
Strangpressen. Durch Anbringen einer Silberschicht lassen sich auch Bänder
 +
und Profile mit einer löt- und schweißbaren Unterschicht herstellen
 +
(SISTADOX WTOS F) (<xr id="fig:Micro structure of Ag SnO2 92 8 WTOS F"/><!--(Fig. 2.116)-->). Aufgrund ihrer geringen Neigung zur Materialwanderung
 +
in Gleichstromkreisen und ihrer erhöhten Abbrandfestigkeit kommen diese
 +
Werkstoffe z.B. in Kfz-Relais zum Einsatz (<xr id="tab:Application Examples of Silver–Metal Oxide Materials"/><!--(Table 2.31)-->).
  
''Powder metallurgy'' plays a significant role in the manufacturing of Ag/SnO<sub>2</sub> contact materials. Besides SnO<sub>2</sub> a smaller amount (<1 wt%) of one or more other metal oxides such as WO<sub>3</sub>, MoO<sub>3</sub>, CuO and/or Bi<sub>2</sub>O<sub>3</sub> are added. These
+
Bei der Herstellung von Silber-Zinnoxid (SISTADOX)-Werkstoffen spielt die
additives improve the wettability of the oxide particles and increase the viscosity of the Ag melt. They also provide additional benefits to the mechanical and arcing contact properties of materials in this group <xr id="tab:Physical Mechanical Properties as Manufacturing"/> (Table 2.26 als PDF herunterladen: [[File:Physical Mechanical properties.pdf|Physical and Mechanical Properties as well as Manufacturing Processes and
+
Pulvermetallurgie eine wesentliche Rolle. Neben SnO2 wird meist noch ein
Forms of Supply of Extruded Silver-Tin Oxide (SISTADOX) Contact Materials]] )''.
+
geringer Anteil (<1 Massen-%) eines oder mehrerer Metalloxide z.B. WO<sub>3</sub>,
 +
MoO<sub>3</sub>, CuO und/oder Bi<sub>2</sub>O<sub>3</sub> zugemischt, die im Schaltbetrieb an der
 +
Grenzfläche zwischen Silberschmelze und Oxidpartikel wirksam sind. Diese
 +
Additive fördern einerseits die Benetzung und erhöhen die Viskosität der
 +
Silberschmelze, andererseits beeinflussen sie wesentlich die mechanischen
 +
und Schalteigenschaften der Ag/SnO<sub>2</sub> -Werkstoffe (<xr id="tab:Physical Mechanical Properties as Manufacturing"/> (Table 2.26 als PDF herunterladen: [[File:Physical Mechanical properties.pdf|Physical and Mechanical Properties as well as Manufacturing Processes and
 +
Forms of Supply of Extruded Silver-Tin Oxide (SISTADOX) Contact Materials]] )).
  
  
Line 1,017: Line 1,104:
 
</figtable>
 
</figtable>
  
In the manufacture the initial powder mixes different processes are applied which provide specific advantages of the resulting materials in respect to their contact properties <!--[[#figures|(Figs. 43 – 75)]]-->. Some of them are described here as follows:
+
Für die Herstellung der Pulvermischung werden verschiedene Verfahren angewandt,
:'''a) Powder blending from single component powders''' <br> In this common process all components including additives that are part of the powder mix are blended as single powders. The blending is usually performed in the dry stage in blenders of different design.
+
aus denen sich spezifische Vorteile im Schaltverhalten ergeben (<!--[[#figures|(Figs. 43 – 75)]]-->). Einige
 +
dieser Verfahren werden im Folgenden kurz beschrieben:
 +
:'''a) Pulvermischung aus Einzelpulvern''' <br> Bei diesem klassischen Verfahren der Pulvermetallurgie werden alle, in den Werkstoff eingebrachten Komponenten, einschließlich der Zusätze, als Einzelpulver miteinander vermischt. Das Mischen der Pulver erfolgt üblicherweise trocken in Mischern unterschiedlicher Bauart.
 +
 
 +
:'''b) Pulvermischung auf Basis dotierter Oxide''' <br> Für den Einbau von Zusatzoxiden in das Zinnoxid hat sich das Reaktions-Sprüh-Verfahren (RSV) als vorteilhaft erwiesen. Bei diesem Verfahren wird von einer wässrigen Lösung ausgegangen, in der Zinn sowie die als Zusätze verwendeten Metalle in Form chemischer Verbindungen vorliegen. Diese wässrige Lösung wird unter hohem Druck in einer heißen Reaktionskammer verdüst. Durch die schlagartige Verdampfung des Wassers entsteht aus jedem einzelnen Tröpfchen zunächst ein Salzkristall und hieraus durch Oxidation ein Zinnoxid-Partikel, in dem die Zusatzmetalle in oxidierter Form gleichmäßig verteilt vorliegen. Das so erhaltene „dotierte“ Zinnoxidpulver wird anschließend mit Silberpulver vermischt.
 +
 
 +
:'''c) Pulvermischung auf Basis beschichteter Oxidpulver''' <br> Nach diesem Verfahren wird Zinnoxidpulver mit niedrigschmelzenden Zusätzen, z.B. Ag<sub>2</sub> MoO<sub>4</sub> , vermischt und anschließend einer Glühbehandlung ausgesetzt. Dabei überzieht sich die Zinnoxid-Oberfläche mit einer dünnen Schicht.
  
:'''b) Powder blending on the basis of doped powders''' <br> For incorporation of additive oxides in the SnO<sub>2</sub> powder the reactive spray process (RSV) has shown advantages. This process starts with a waterbased solution of the tin and other metal compounds. This solution is nebulized under high pressure and temperature in a reactor chamber. Through the rapid evaporation of the water each small droplet is converted into a salt crystal and from there by oxidation into a tin oxide particle in which the additive metals are distributed evenly as oxides. The so created doped AgSnO<sub>2</sub> powder is then mechanically mixed with silver powder.
+
:'''d) Pulvermischung auf Basis inneroxidierter Legierungspulver''' <br> Dieses Verfahren schließt sowohl Arbeitsschritte der Pulvermetallurgie als auch der inneren Oxidation ein. Ausgegangen wird dabei von einer Silber-Metall-Legierung, die geschmolzen und anschließend zu feinkörnigem Pulver verdüst wird. Dieses Legierungspulver wird in sauerstoffhaltiger Atmosphäre geglüht, wobei sich das im Silber gelöste Zinn sowie weitere Zusatzmetalle als Oxidpartikel ausscheiden.
  
:'''c) Powder blending based on coated oxide powders''' <br> In this process tin oxide powder is blended with lower meting additive oxides such as for example Ag<sub>2</sub> MoO<sub>4</sub> and then heat treated. The SnO<sub>2</sub> particles are coated in this step with a thin layer of the additive oxide.
+
:'''e) Pulvermischung auf Basis nasschemisch gefällter Verbundpulvern''' <br> In eine Suspension von Metalloxiden, z.B. SnO<sub>2</sub> werden eine Silbersalzlösung
 +
zusammen mit einem Fällungsmittel eingeleitet. In einer chemischen
 +
Fällreaktion scheidet sich Silber bzw. Silberoxid ab. Die suspensierten
 +
Metalloxidpartikel wirken dabei als Kristallisationskeime.
  
:'''d) Powder blending based on internally oxidized alloy powders''' <br> A combination of powder metallurgy and internal oxidation this process starts with atomized Ag alloy powder which is subsequently oxidized in pure oxygen. During this process the Sn and other metal components are transformed to metal oxide and precipitated inside the silver matrix of each powder particle.
+
Die Weiterverarbeitung der nach den verschiedenen Verfahren hergestellten
 +
Pulvermischungen erfolgt auf übliche Art durch Sintern und Strangpressen.
 +
Aus den so erhaltenen Halbzeugen, wie Bändern, Profilen und Drähten
 +
werden dann Kontaktauflagen oder -niete gefertigt. Zur Erzeugung einer lötund
 +
schweißbaren Kontaktunterseite aus Feinsilber werden die gleichen
 +
Verfahren angewandt, wie bei Ag/CdO beschrieben (<xr id="tab:Physical Properties of Powder Metallurgical Silver-Metal Oxide Materials with Fine Silver Backing Produced by the Press-Sinter-Repress Process"/><!--(Table 2.27)-->).
  
:'''e) Powder blending based on chemically precipitated compound powders''' <br> A silver salt solution is added to a suspension of for example SnO<sub>2</sub> together with a precipitation agent. In a chemical reaction silver and silver oxide respectively are precipitated around the additive metal oxide particles who act as crystallization sites. Further chemical treatment then reduces the silver oxide with the resulting precipitated powder being a mix of Ag and SnO<sub>2</sub>.
+
Große, speziell geformte oder runde Ag/SnO2-Kontaktauflagen können aus
 +
wirtschaftlichen Gründen, wie bei Ag/CdO, nach dem Verfahren der Einzelpresstechnik
 +
hergestellt werden.
  
Further processing of these differently produced powders follows the conventional processes of pressing, sintering and hot extrusion to wires and strips. From these contact parts such as contact rivets and tips are manufactured. To obtain a brazable backing the same processes as used for Ag/CdO are applied. As for Ag/CdO, larger contact tips can also be manufactured more economically using the press-sinter-repress (PSR) process <xr id="tab:Physical Properties of Powder Metallurgical Silver-Metal Oxide Materials with Fine Silver Backing Produced by the Press-Sinter-Repress Process"/><!--(Table 2.27)-->.
 
 
<div id="figures">
 
<div id="figures">
 
<xr id="fig:Strain hardening of AgSNO2 92 8 PE"/><!--Fig. 2.87:--> Strain hardening of Ag/SnO<sub>2</sub> 92/8 PE by cold working
 
<xr id="fig:Strain hardening of AgSNO2 92 8 PE"/><!--Fig. 2.87:--> Strain hardening of Ag/SnO<sub>2</sub> 92/8 PE by cold working
Line 1,245: Line 1,347:
  
 
<figtable id="tab:Physical Properties of Powder Metallurgical Silver-Metal Oxide Materials with Fine Silver Backing Produced by the Press-Sinter-Repress Process">
 
<figtable id="tab:Physical Properties of Powder Metallurgical Silver-Metal Oxide Materials with Fine Silver Backing Produced by the Press-Sinter-Repress Process">
<caption>'''<!--Table 2.27:-->Physical Properties of Powder Metallurgical Silver-Metal Oxide Materials with Fine Silver Backing Produced by the Press-Sinter-Repress Process'''</caption>
+
<caption>'''<!--Table 2.27:-->Physikalische Eigenschaften von pulvermetallurgisch in Einzelpresstechnik hergestellten Silber-Metalloxid-Werkstoffen mit Silber-Rücken'''</caption>
 
<table class="twocolortable">
 
<table class="twocolortable">
 
<tr><th rowspan="2"><p class="s11">Material/</p><p class="s11">DODUCO- Designation</p></th><th rowspan="2"><p class="s11">Additives</p></th><th rowspan="2"><p class="s11">Density</p><p class="s11">[ g/cm<sup>3</sup>]</p></th><th rowspan="2"><p class="s11">Electrical</p><p class="s11">Resistivity</p><p class="s11">[µ<span class="s14">S ·</span>cm]</p></th><th colspan="2"><p class="s11">Electrical</p><p class="s11">Conductivity</p></th><th rowspan="2"><p class="s11">Vickers</p><p class="s11">Hardness</p><p class="s11">HV 10.</p></th></tr>
 
<tr><th rowspan="2"><p class="s11">Material/</p><p class="s11">DODUCO- Designation</p></th><th rowspan="2"><p class="s11">Additives</p></th><th rowspan="2"><p class="s11">Density</p><p class="s11">[ g/cm<sup>3</sup>]</p></th><th rowspan="2"><p class="s11">Electrical</p><p class="s11">Resistivity</p><p class="s11">[µ<span class="s14">S ·</span>cm]</p></th><th colspan="2"><p class="s11">Electrical</p><p class="s11">Conductivity</p></th><th rowspan="2"><p class="s11">Vickers</p><p class="s11">Hardness</p><p class="s11">HV 10.</p></th></tr>
Line 1,258: Line 1,360:
  
 
<figtable id="tab:tab2.28">
 
<figtable id="tab:tab2.28">
<caption>'''<!--Table 2.28:--> Physical and Mechanical Properties as well as Manufacturing Processes and Forms of Supply of Extruded Silver-Zinc Oxide (DODURIT ZnO) Contact'''</caption>
+
<caption>'''<!--Table 2.28:--> Physikalische- und Festigkeitseigenschaften sowie Herstellungsverfahren und Lieferformen von stranggepressten Silber-Zinkoxid (DODURIT ZnO)-Werkstoffen'''</caption>
  
 
{| class="twocolortable" style="text-align: left; font-size: 12px"
 
{| class="twocolortable" style="text-align: left; font-size: 12px"
Line 1,428: Line 1,530:
  
 
<figtable id="tab:tab2.29">
 
<figtable id="tab:tab2.29">
<caption>'''<!--Table 2.29:-->Optimizing of Silver–Tin Oxide Materials Regarding their Switching Properties and Forming Behavior'''</caption>
+
<caption>'''<!--Table 2.29:-->Optimierung der Silber-Zinnoxid-Werkstoffe hinsichtlich Schalteigenschaften und Umformungsverhalten'''</caption>
 
<table class="twocolortable">
 
<table class="twocolortable">
 
<tr><th><p class="s12">Material/</p><p class="s12">Material Group</p></th><th><p class="s12">Special Properties<th colspan="2"></p></th></tr><tr><td><p class="s12">Ag/SnO<span class="s48">2 </span>PE</p></td><td><p class="s12">Especially suitable for automotive relays</p><p class="s12">(lamp loads)</p></td><td><p class="s12">Good formability (contact rivets)</p></td></tr><tr><td><p class="s12">Ag/SnO<span class="s48">2 </span>98/2 PX/PC</p></td><td><p class="s12">Especially good heat resistance</p></td><td><p class="s12">Easily riveted, can be directly welded</p></td></tr><tr><td><p class="s12">Ag/SnO<span class="s48">2 </span>TOS F</p></td><td><p class="s12">Especially suited for high inductive</p><p class="s12">DC loads</p></td><td><p class="s12">Very good formability (contact rivets)</p></td></tr><tr><td><p class="s12">Ag/SnO<span class="s48">2 </span>WPC</p></td><td><p class="s12">For AC-3 and AC-4 applications in motor</p><p class="s12">switches (contactors)</p></td><td/></tr><tr><td><p class="s12">Ag/SnO<span class="s48">2 </span>WPD</p></td><td><p class="s12">Especially suited for severe loads (AC-4)</p><p class="s12">and high switching currents</p></td><td/></tr><tr><td><p class="s12">Ag/SnO<span class="s48">2 </span>WPX</p></td><td><p class="s12">For standard motor loads (AC-3) and</p><p class="s12">Resistive loads (AC-1), DC loads (DC-5)</p></td><td/></tr><tr><td><p class="s12">Ag/SnO<span class="s48">2 </span>WTOSF</p></td><td><p class="s12">Especially suitable for high inductive DC</p><p class="s12">loads</p></td><td/></tr></table>
 
<tr><th><p class="s12">Material/</p><p class="s12">Material Group</p></th><th><p class="s12">Special Properties<th colspan="2"></p></th></tr><tr><td><p class="s12">Ag/SnO<span class="s48">2 </span>PE</p></td><td><p class="s12">Especially suitable for automotive relays</p><p class="s12">(lamp loads)</p></td><td><p class="s12">Good formability (contact rivets)</p></td></tr><tr><td><p class="s12">Ag/SnO<span class="s48">2 </span>98/2 PX/PC</p></td><td><p class="s12">Especially good heat resistance</p></td><td><p class="s12">Easily riveted, can be directly welded</p></td></tr><tr><td><p class="s12">Ag/SnO<span class="s48">2 </span>TOS F</p></td><td><p class="s12">Especially suited for high inductive</p><p class="s12">DC loads</p></td><td><p class="s12">Very good formability (contact rivets)</p></td></tr><tr><td><p class="s12">Ag/SnO<span class="s48">2 </span>WPC</p></td><td><p class="s12">For AC-3 and AC-4 applications in motor</p><p class="s12">switches (contactors)</p></td><td/></tr><tr><td><p class="s12">Ag/SnO<span class="s48">2 </span>WPD</p></td><td><p class="s12">Especially suited for severe loads (AC-4)</p><p class="s12">and high switching currents</p></td><td/></tr><tr><td><p class="s12">Ag/SnO<span class="s48">2 </span>WPX</p></td><td><p class="s12">For standard motor loads (AC-3) and</p><p class="s12">Resistive loads (AC-1), DC loads (DC-5)</p></td><td/></tr><tr><td><p class="s12">Ag/SnO<span class="s48">2 </span>WTOSF</p></td><td><p class="s12">Especially suitable for high inductive DC</p><p class="s12">loads</p></td><td/></tr></table>
Line 1,435: Line 1,537:
  
 
<figtable id="tab:Contact and Switching Properties of Silver–Metal Oxide Materials">
 
<figtable id="tab:Contact and Switching Properties of Silver–Metal Oxide Materials">
<caption>'''<!--Table 2.30:-->Contact and Switching Properties of Silver–Metal Oxide Materials'''</caption>
+
<caption>'''<!--Table 2.30:-->Kontakt- und Schalteigenschaften von Silber-Metalloxid-Werkstoffen'''</caption>
  
 
{| class="twocolortable" style="text-align: left; font-size: 12px"
 
{| class="twocolortable" style="text-align: left; font-size: 12px"
Line 1,471: Line 1,573:
  
 
<figtable id="tab:Application Examples of Silver–Metal Oxide Materials">
 
<figtable id="tab:Application Examples of Silver–Metal Oxide Materials">
<caption>'''<!--Table 2.31:-->Application Examples of Silver–Metal Oxide Materials'''</caption>
+
<caption>'''<!--Table 2.31:-->Anwendungsbeispiele von Silber-Metalloxid-Werkstoffen'''</caption>
 
<table class="twocolortable">
 
<table class="twocolortable">
 
<tr><th><p class="s12">Material</p></th><th><p class="s12">Application Examples</p></th></tr><tr><td><p class="s12">Ag/CdO</p></td><td><p class="s12">Micro switches, Network relays, Wiring devices, Appliance switches, Main switches, contactors, Small (main) power switches</p></td></tr><tr><td><p class="s12">Ag/SnO<span class="s48">2</span></p></td><td><p class="s12">Micro switches, Network relays, Automotive relays, Appliance switches,</p><p class="s12">Main switches, contactors, Fault current protection relays (paired against</p><p class="s12">Ag/C), (Main) Power switches</p></td></tr><tr><td><p class="s12">Ag/ZnO</p></td><td><p class="s12">Wiring devices, AC relays, Appliance switches, Motor-protective circuit</p><p class="s12">breakers (paired with Ag/Ni or Ag/C), Fault current circuit breakers paired againct Ag/C, (Main) Power switches</p></td></tr></table>
 
<tr><th><p class="s12">Material</p></th><th><p class="s12">Application Examples</p></th></tr><tr><td><p class="s12">Ag/CdO</p></td><td><p class="s12">Micro switches, Network relays, Wiring devices, Appliance switches, Main switches, contactors, Small (main) power switches</p></td></tr><tr><td><p class="s12">Ag/SnO<span class="s48">2</span></p></td><td><p class="s12">Micro switches, Network relays, Automotive relays, Appliance switches,</p><p class="s12">Main switches, contactors, Fault current protection relays (paired against</p><p class="s12">Ag/C), (Main) Power switches</p></td></tr><tr><td><p class="s12">Ag/ZnO</p></td><td><p class="s12">Wiring devices, AC relays, Appliance switches, Motor-protective circuit</p><p class="s12">breakers (paired with Ag/Ni or Ag/C), Fault current circuit breakers paired againct Ag/C, (Main) Power switches</p></td></tr></table>
Line 1,477: Line 1,579:
  
 
====Silber-Grafit (GRAPHOR)-Werkstoffe====
 
====Silber-Grafit (GRAPHOR)-Werkstoffe====
Ag/C (GRAPHOR) contact materials are usually produced by powder metallurgy with graphite contents of 2 5 wt% <xr id="tab:tab2.32"/><!--(Table 2.32)-->. The earlier typical manufacturing process of single pressed tips by pressing - sintering - repressing (PSR) has been replaced in Europe for quite some time by extrusion. In North America and some other regions however the PSR process is still used to some extend mainly for cost reasons.
+
Ag/C (GRAPHOR)-Kontaktwerkstoffe werden üblicherweise mit Grafitgehalten
 +
von 2-5 Massen-% auf pulvermetallurgischem Wege hergestellt (<xr id="tab:tab2.32"/><!--(Table 2.32)-->). Die früher
 +
übliche Herstellung von Ag/C-Plättchen nach dem Verfahren der Einzelpresstechnik
 +
, d.h. durch Mischen von Silber- und Grafit-Pulver, Pressen, Sintern und
 +
Nachpressen, wurde seit langem in Europa durch das Strangpressen abgelöst,
 +
hat jedoch für spezielle Kontaktformen, z.B. trapezförmige Auflagen, und
 +
kostenkritische Anwendungen in den USA und in anderen Regionen eine
 +
gewisse Bedeutung.
  
The extrusion of sintered billets is now the dominant manufacturing method for semi-finished AgC materials <!--[[#figures3|(Figs. 82 – 85)]]<!--(Figs. 2.126 – 2.129)-->. The hot extrusion process results in a high density material with graphite particles stretched and oriented in the extrusion direction [[#figures4|(Figs. 86 – 89)]]<!--(Figs. 2.130 – 2.133)-->. Depending on the extrusion method in either rod or strip form the graphite particles can be oriented in the finished contact tips perpendicular (GRAPHOR) or parallel (GRAPHOR D) to the switching contact surface <xr id="fig:Micro structure of Ag C 95 5"/><!--(Fig. 2.131)--> and <xr id="fig:Micro structure of Ag C 96 4 D"/><!--(Fig. 2.132)-->.
+
Das Strangpressen gesinterter Ag/C-Blöcke ist das dominierende Fertigungsverfahren
 +
für Ag/C-Halbzeuge (<!--[[#figures3|(Figs. 82 – 85)]]<!--(Figs. 2.126 – 2.129)-->). Durch das Strangpressen wird eine hohe Verdichtung
 +
des Werkstoffes und eine zeilenförmige Ausrichtung der Grafitpartikel
 +
in Pressrichtung erreicht ([[#figures4|(Figs. 86 – 89)]]<!--(Figs. 2.130 – 2.133)-->). Je nach Art des Strangpressens, als Band
 +
oder in Stangenform, sind die Grafitpartikel im fertigen Kontaktstück senkrecht
 +
(GRAPHOR) oder parallel (GRAPHOR D) zur Schaltfläche angeordnet
 +
(<xr id="fig:Micro structure of Ag C 95 5"/><!--(Fig. 2.131)--> und <xr id="fig:Micro structure of Ag C 96 4 D"/><!--(Fig. 2.132)-->).
  
Since the graphite particles in the Ag matrix of Ag/C materials prevent contact tips from directly being welded or brazed, a graphite free bottom layer is required. This is achieved by either burning out (de-graphitizing) the graphite selectively on one side of the tips or by compound extrusion of a Ag/C billet covered with a fine silver shell.
+
Da sich Kontaktauflagen aus Silber-Grafit wegen der in der Ag-Matrix eingelagerten
 +
Grafitpartikel direkt weder schweißen noch löten lassen, ist für das
 +
Aufbringen der Auflagen auf Kontaktträger eine grafitfreie Unterschicht erforderlich.
 +
Diese kann durch einseitiges Ausbrennen des Grafits oder durch Verbundstrangpressen
 +
des Ag/C-Pressblockes mit Silber erzeugt werden.
  
Ag/C contact materials exhibit on the one hand an extremely high resistance to contact welding but on the other have a low arc erosion resistance. This is caused by the reaction of graphite with the oxygen in the surrounding atmosphere at the high temperatures created by the arcing. The weld resistance is especially high for materials with the graphite particle orientation parallel to the arcing contact surface. Since the contact surface after arcing consists of pure silver the contact resistance stays consistently low during the electrical life of the contact parts.
+
Ag/C-Werkstoffe weisen einerseits eine extrem hohe Verschweißresistenz, die
 +
von keiner anderen Werkstoffgruppe erreicht wird, andererseits jedoch eine
 +
geringe Abbrandfestigkeit auf. Dieses außergewöhnliche Schaltverhalten von
 +
Ag/C wird durch die Reaktion der Wirkkomponente Grafit mit der Umgebungsatmosphäre
 +
bei den infolge Lichtbogeneinwirkung auftretenden hohen Temperaturen
 +
bestimmt. Bei Ag/C-Werkstoffen mit einer Orientierung der Grafit-Partikel
 +
parallel zur Schaltfläche ist die Verschweißresistenz besonders hoch. Da die
 +
Schaltstückoberfläche nach Lichtbogeneinwirkung aus reinem Silber besteht,
 +
sind die Kontaktwiderstände während der Schaltstücklebensdauer
 +
gleichbleibend niedrig.
  
A disadvantage of the Ag/C materials is their rather high erosion rate. In materials with parallel graphite orientation this can be improved if part of the graphite is incorporated into the material in the form of fibers (GRAPHOR DF), <xr id="fig:Micro structure of Ag C DF"/><!--(Fig. 2.133)-->. The weld resistance is determined by the total content of graphite particles.
+
Ein Schwachpunkt von Ag/C-Kontaktwerkstoffen ist die geringe Abbrandfestigkeit.
 +
Bei Ag/C-Kontaktmaterial mit parallel zur Schaltfläche orientierten Grafit-
 +
Partikeln kann eine deutliche Verbesserung im Abbrandverhalten erreicht
 +
werden, wenn ein Teil des Grafits in Form von Fasern (GRAPHOR DF) in den
 +
Werkstoff eingebracht wird (<xr id="fig:Micro structure of Ag C DF"/><!--(Fig. 2.133)-->). Das Schweißverhalten wird dabei durch
 +
den Anteil an Grafit-Partikeln bestimmt.
  
Ag/C tips with vertical graphite particle orientation are produced in a specific sequence: Extrusion to rods, cutting of double thickness tips, burning out of graphite to a controlled layer thickness, and a second cutting to single tips. Such contact tips are especially well suited for applications which require both, a high weld resistance and a sufficiently high arc erosion resistance <xr id="tab:tab2.33"/><!--(Table 2.33)-->. For attachment of Ag/C tips welding and brazing techniques are applied.
+
Ag/C-Plättchen mit senkrechter Ausrichtung der Grafit-Partikel werden nach
 +
bestimmten Arbeitsschritten - Strangpressen, nachfolgendem Trennen zu
 +
Doppelplättchen, Ausbrennen des Grafits und zweitem Trennen zu Einzelplättchen
 +
- hergestellt (<xr id="tab:tab2.33"/><!--(Table 2.33)-->). Solche Plättchen mit Ag/C-Schaltfläche und gut löt- und schweißbarer Ag-Unterseite sind besonders geeignet für Anwendungen, die
 +
sowohl hohe Verschweißresistenz als auch eine ausreichend hohe Abbrandfestigkeit
 +
im Schaltbetrieb erfordern.
  
welding the actual process depends on the material's graphite orientation. For Ag/C tips with vertical graphite orientation the contacts are assembled with single tips. For parallel orientation a more economical attachment starting with contact material in strip or profile tape form is used in integrated stamping and welding operations with the tape fed into the weld station, cut off to tip form and then welded to the carrier material before forming the final contact assembly part. For special low energy welding the Ag/C profile tapes GRAPHOR D and DF can be pre-coated with a thin layer of high temperature brazing alloys such as CuAgP.
+
Als Verbindungsverfahren kommen Hartlöten und Schweißen in Frage. Beim
 +
Aufschweißen hängt der Fertigungsablauf von der Orientierung der Grafit-
 +
Partikel in der Ag-Matrix ab. Bei Ag/C-Werkstoffen mit einer Ausrichtung der
 +
Grafit-Partikel senkrecht zur Schaltfläche werden die Kontaktauflagen als
 +
Einzelteile weiterverarbeitet. Bei paralleler Ausrichtung ist die Verarbeitung
 +
besonders wirtschaftlich, da von Bandmaterial ausgegangen werden kann, aus
 +
dem in einer Arbeitsfolge Kontaktplättchen getrennt und unmittelbar danach
 +
aufgeschweißt werden. Um den Fügevorgang energiesparender zu gestalten,
 +
können die GRAPHOR D- und GRAPHOR DF-Profile auch mit einer dünnen
 +
Hartlotschicht versehen werden.
  
In a rather limited way, Ag/C with 2 3 wt% graphite can be produced in wire form and headed into contact rivet shape with low head deformation ratios.
+
In begrenztem Umfang können Ag/C-Werkstoffe mit 2-3 Massen-% Grafit auch
 +
zu Drähten und bei nur geringer Kaltumformung zu Kontaktnieten verarbeitet
 +
werden.
  
The main applications for Ag/C materials are protective switching devices such as miniature molded case circuit breakers, motor-protective circuit breakers, and fault current circuit breakers, where during short circuit failures highest resistance against welding is required <xr id="tab:tab2.34"/><!--(Table 2.34)-->. For higher currents the low arc erosion resistance of Ag/C is compensated by asymmetrical pairing with more erosion resistant materials such as Ag/Ni and Ag/W.
+
Haupteinsatzgebiet der Ag/C-Werkstoffe sind Schutzschalter, wie Leistungs-,
 +
Leitungsschutz-, Motorschutz- und Fehlerstromschutzschalter, in denen im
 +
Kurzschlussfall höchste Anforderungen an die Verschweißresistenz der
 +
Kontaktstücke gestellt werden (<xr id="tab:tab2.34"/><!--(Table 2.34)-->). Die geringe Abbrandfestigkeit des Ag/C wird
 +
dabei in unsymmetrischer Kontaktpaarung durch abbrandfeste Gegenkontakte
 +
aus Ag/Ni oder Ag/W kompensiert.
  
 
<div id="figures3">
 
<div id="figures3">
Line 1,555: Line 1,709:
  
 
<figtable id="tab:tab2.32">
 
<figtable id="tab:tab2.32">
<caption>'''<!--Table 2.32:-->Physical Properties of Silver–Graphite (GRAPHOR) Contact Materials'''</caption>
+
<caption>'''<!--Table 2.32:-->Physikalische Eigenschaften von Silber-Grafit (GRAPHOR)-Werkstoffen'''</caption>
  
 
{| class="twocolortable" style="text-align: left; font-size: 12px"
 
{| class="twocolortable" style="text-align: left; font-size: 12px"
Line 1,632: Line 1,786:
 
</figtable>
 
</figtable>
  
<nowiki>*)</nowiki> Graphite particles parallel to switching surface <br />
+
<nowiki>*)</nowiki> Grafit-Partikel parallel zur Schaltfläche <br />
<nowiki>**)</nowiki> Graphite content 3.8 wt%, Graphite particles and fibers parallel to switching surface
+
<nowiki>**)</nowiki> Grafitanteil 3,8 Massen-% Grafit-Partikel; Grafit-Fasern parallel zur Schaltfläche
  
  
 
<figtable id="tab:tab2.33">
 
<figtable id="tab:tab2.33">
<caption>'''<!--Table 2.33:-->Contact and Switching properties of Silver–Graphite (GRAPHOR) Contact Materials'''</caption>
+
<caption>'''<!--Table 2.33:-->Kontakt- und Schalteigenschaften von Silber-Grafit (GRAPHOR)-Werkstoffen'''</caption>
 
<table class="twocolortable">
 
<table class="twocolortable">
 
<tr><th><p class="s12">Material/</p><p class="s12">DODUCO-Designation</p></th><th><p class="s11">Properties</p></th></tr><tr><td><p class="s12">Ag/C</p><p class="s12">GRAPHOR</p></td><td><p class="s12">Highest resistance against welding during make operations at high currents,</p><p class="s12">High resistance against welding of closed contacts during short circuit,</p><p class="s12">Increase of weld resistance with higher graphite contents, Low contact resistance,</p><p class="s12">Low arc erosion resistance, especially during break operations, Higher arc erosion with increasing graphite contents, at the same time carbon build-up on switching chamber walls increases, GRAPHOR with vertical orientation has better arc erosion resistance, parallel orientation has better weld resistance,</p><p class="s12">Limited arc moving properties, therefore paired with other materials,</p><p class="s12">Limited formability,</p><p class="s12">Can be welded and brazed with decarbonized backing, GRAPHOR DF is optimized for arc erosion resistance and weld resistance</p></td></tr></table>
 
<tr><th><p class="s12">Material/</p><p class="s12">DODUCO-Designation</p></th><th><p class="s11">Properties</p></th></tr><tr><td><p class="s12">Ag/C</p><p class="s12">GRAPHOR</p></td><td><p class="s12">Highest resistance against welding during make operations at high currents,</p><p class="s12">High resistance against welding of closed contacts during short circuit,</p><p class="s12">Increase of weld resistance with higher graphite contents, Low contact resistance,</p><p class="s12">Low arc erosion resistance, especially during break operations, Higher arc erosion with increasing graphite contents, at the same time carbon build-up on switching chamber walls increases, GRAPHOR with vertical orientation has better arc erosion resistance, parallel orientation has better weld resistance,</p><p class="s12">Limited arc moving properties, therefore paired with other materials,</p><p class="s12">Limited formability,</p><p class="s12">Can be welded and brazed with decarbonized backing, GRAPHOR DF is optimized for arc erosion resistance and weld resistance</p></td></tr></table>
Line 1,644: Line 1,798:
  
 
<figtable id="tab:tab2.34">
 
<figtable id="tab:tab2.34">
<caption>'''<!--Table 2.34:-->Application Examples and Forms of Supply of Silver– Graphite (GRAPHOR) Contact Materials'''</caption>
+
<caption>'''<!--Table 2.34:-->Anwendungsbeispiele und Lieferformen von Silber-Grafit (GRAPHOR)-Werkstoffen'''</caption>
 
<table class="twocolortable">
 
<table class="twocolortable">
 
<tr><th><p class="s12">Material/</p><p class="s12">DODUCO Designation</p></th><th><p class="s12">Application Examples</p></th><th><p class="s12">Form of Supply</p></th></tr><tr><td><p class="s12">Ag/C 98/2</p><p class="s12">GRAPHOR 2</p></td><td><p class="s12">Motor circuit breakers, paired with Ag/Ni</p></td><td><p class="s12">Contact tips, brazed and welded contact parts, some contact rivets</p></td></tr><tr><td><p class="s12">Ag/C 97/3</p><p class="s12">GRAPHOR 3</p><p class="s12">Ag/C 96/4</p><p class="s12">GRAPHOR 4</p><p class="s12">Ag/C 95/5</p><p class="s12">GRAPHOR 5</p><p class="s12">GRAPHOR 3D GRAPHOR 4D GRAPHOR DF</p></td><td><p class="s12">Circuit breakers, paired with Cu, Motor-protective circuit breakers, paired with Ag/Ni,</p><p class="s12">Fault current circuit breakers, paired with Ag/Ni, Ag/W, Ag/WC, Ag/SnO<span class="s45">2</span>, Ag/ZnO,</p><p class="s12">(Main) Power switches, paired with Ag/Ni, Ag/W</p></td><td><p class="s12">Contact tips, brazed and welded contact</p><p class="s12">parts, some contact rivets with</p><p class="s12">Ag/C97/3</p></td></tr><tr><td><p class="s12">Ag/C 97/3</p><p class="s12">GRAPHOR 3</p><p class="s12">Ag/C 96/4</p><p class="s12">GRAPHOR 4</p><p class="s12">Ag/C 95/5</p><p class="s12">GRAPHOR 5</p><p class="s12">GRAPHOR 3D GRAPHOR 4D GRAPHOR DF</p></td><td><p class="s12">Circuit breakers, paired with Cu, Motor-protective circuit breakers, paired with Ag/Ni,</p><p class="s12">Fault current circuit breakers, paired with Ag/Ni, Ag/W, Ag/WC, Ag/SnO<span class="s45">2</span>, Ag/ZnO,</p><p class="s12">(Main) Power switches, paired with Ag/Ni, Ag/W</p></td><td><p class="s12">Contact profiles (weld tapes), Contact tips, brazed and welded contact parts</p></td></tr><tr><td/><td/></tr></table>
 
<tr><th><p class="s12">Material/</p><p class="s12">DODUCO Designation</p></th><th><p class="s12">Application Examples</p></th><th><p class="s12">Form of Supply</p></th></tr><tr><td><p class="s12">Ag/C 98/2</p><p class="s12">GRAPHOR 2</p></td><td><p class="s12">Motor circuit breakers, paired with Ag/Ni</p></td><td><p class="s12">Contact tips, brazed and welded contact parts, some contact rivets</p></td></tr><tr><td><p class="s12">Ag/C 97/3</p><p class="s12">GRAPHOR 3</p><p class="s12">Ag/C 96/4</p><p class="s12">GRAPHOR 4</p><p class="s12">Ag/C 95/5</p><p class="s12">GRAPHOR 5</p><p class="s12">GRAPHOR 3D GRAPHOR 4D GRAPHOR DF</p></td><td><p class="s12">Circuit breakers, paired with Cu, Motor-protective circuit breakers, paired with Ag/Ni,</p><p class="s12">Fault current circuit breakers, paired with Ag/Ni, Ag/W, Ag/WC, Ag/SnO<span class="s45">2</span>, Ag/ZnO,</p><p class="s12">(Main) Power switches, paired with Ag/Ni, Ag/W</p></td><td><p class="s12">Contact tips, brazed and welded contact</p><p class="s12">parts, some contact rivets with</p><p class="s12">Ag/C97/3</p></td></tr><tr><td><p class="s12">Ag/C 97/3</p><p class="s12">GRAPHOR 3</p><p class="s12">Ag/C 96/4</p><p class="s12">GRAPHOR 4</p><p class="s12">Ag/C 95/5</p><p class="s12">GRAPHOR 5</p><p class="s12">GRAPHOR 3D GRAPHOR 4D GRAPHOR DF</p></td><td><p class="s12">Circuit breakers, paired with Cu, Motor-protective circuit breakers, paired with Ag/Ni,</p><p class="s12">Fault current circuit breakers, paired with Ag/Ni, Ag/W, Ag/WC, Ag/SnO<span class="s45">2</span>, Ag/ZnO,</p><p class="s12">(Main) Power switches, paired with Ag/Ni, Ag/W</p></td><td><p class="s12">Contact profiles (weld tapes), Contact tips, brazed and welded contact parts</p></td></tr><tr><td/><td/></tr></table>

Revision as of 12:01, 25 September 2014

Feinsilber

Feinsilber weist die höchste elektrische und thermische Leitfähigkeit aller Metalle auf. Es ist resistent gegen Oxidbildung. Nachteilig wirken sich die geringe Verschleißfestigkeit, niedrige Entfestigungstemperatur und vor allem die hohe Affinität des Silbers gegen Schwefel und Schwefel-Verbindungen aus. Durch Einwirkung schwefelhaltiger Verbindungen bilden sich bräunliche bis schwarze Deckschichten aus Silbersulfid, die zu einer Erhöhung des Kontaktwiderstandes und u.U. zum völligen Versagen des Schaltgerätes führen können, wenn diese nicht mechanisch, elektrisch oder thermisch zerstört werden. Weiterhin ist nachteilig zu bewerten, dass Kontaktstücke aus Feinsilber beim Einschalten von Überströmen stark zum Verschweißen neigen sowie bei Gleichstrombetrieb nur eine geringe Resistenz gegenüber Materialwanderung aufweisen. Silber kann in feuchter Atmosphäre in Berührung mit Kunststoffen unter Wirkung eines elektrischen Feldes kriechen (Silber-Migration) und dadurch Kurzschlüsse verursachen.

Einen Überblick über die gebräuchlichen Silber-Qualitäten gibt (Table 1). Silber in Pulverform dient vor allem als Ausgangsmaterial für die Herstellung von Silber- Verbundwerkstoffen. Je nach Herstellung werden Silber-Pulver mit unterschiedlichen Qualitätsmerkmalen gewonnen (Table 2). Weitere Angaben zu den verschiedenen Silber-Pulvern sind in Kap. Edelmetallpulver und -präparate enthalten.

Silber ist in Form von Halbzeugen gut warm- und kaltumformbar und lässt sich problemlos mit den üblichen Trägerwerkstoffen durch Plattieren verbinden. Als Fügeverfahren kommen vor allem das Widerstandsschweißen von Silber- Drähten und -Profilen sowie das Hartlöten zum Einsatz. Daneben werden vielfach auch mechanische Verfahren, wie das Einpressen von Drahtabschnitten und massiven oder plattierten Kontaktnieten angewandt.

Kontakte aus Feinsilber werden in unterschiedlichen Formen z.B. in Relais, Tastern, Geräte- und Hilfsstromschaltern bei Stromstärken < 2A eingesetzt (Table 6). Als galvanischer Überzug findet Silber zur Verringerung des Kontaktwiderstandes und zur Verbesserung der Lötbarkeit von Kontaktteilen verbreitet Anwendung.


Table 1: Überblick über die gebräuchlichsten Silber-Qualitäten

Bezeichnung

Zusammensetzung Ag (Mindestanteil)

Beimengungen

[ppm]

Hinweise für die Verwendung

Spektralreines

Silber

99.999

Cu < 3

Zn < 1

Si < 1

Ca < 2

Fe < 1

Mg < 1

Cd < 1

Bleche, Bänder, Stangen, Drähte für elektronische Bauelemente

Hochreines Silber, sauerstofffrei

99.995

Cu < 30

Zn < 2

Si < 5

Ca < 10

Fe < 3

Mg < 5

Cd < 3

Barren und Granalien für Legierungszwecke


Table 2: Qualitätsmerkmale verschieden hergestellter Silber-Pulver
Verunreinigungen Ag-Chem.* Ag-ES** Ag-V***
Cu ppm < 100 < 300 < 300
Fe ppm < 50 < 100 < 100
Ni ppm < 50 < 50 < 50
Cd ppm < 50
Zn ppm < 10
Na + K + Mg + Ca ppm < 80 < 50 < 50
Ag CI ppm < 500 < 500 < 500
NO3 ppm < 40 < 40
Nh4CI ppm < 30 < 30
Partikelverteilung (Siebanalyse)
> 100 μm % 0 0 0
< 100 bis > 63 μm % < 5 < 5 < 15
< 36 μm % < 80 < 90 < 75
Schüttdichte g/cm3 1.0 - 1.6 1.0 - 1.5 3 - 4
Stampfvolumen ml/100g 40 - 50 40 - 50 15 - 25
Press-/Sinterverhalten
Pressdichte g/cm3 5.6 - 6.5 5.6 - 6.3 6.5 - 8.5
Sinterdichte g/cm3 > 9 > 9.3 > 8
Volumenschrumpfung % > 34 > 35 > 0
Glühverlust % < 2 < 0.1 < 0.1

* hergestellt durch chemische Fällung
** hergestellt durch Elektrolyse
*** hergestellt durch Verdüsen einer Schmelze


Figure 1 Verfestigungsverhalten von Ag 99,95 durch Kaltumformung

Figure 2 Erweichungsverhalten von Ag 99,95 nach 1h Glühdauer und unterschiedlicher Kaltumformung


Figure 1: Verfestigungsverhalten von Ag 99,95 durch Kaltumformung
Figure 2: Erweichungsverhalten von Ag 99,95 nach 1h Glühdauer und unterschiedlicher Kaltumformung

Silber-Legierungen

Auf dem Schmelzwege hergestellte Silber-Legierungen finden in solchen Fällen Anwendung, in denen die physikalischen und kontaktspezifischen Eigenschaften von Feinsilber nicht ausreichen (Table 3). Durch die metallische Zusatzkomponente werden sowohl die mechanische Eigenschaften wie Härte und Festigkeit als auch typische Kontakteigenschaften wie Abbrandfestigkeit und Resistenz gegenüber Materialwanderung in Gleichstromkreisen erhöht (Table 4). Allerdings können durch Legierungsbildung andere Eigenschaften wie elektrische Leitfähigkeit und chemische Beständigkeit verschlechtert werden (Figure 3 und Figure 4).

Table 3: Physikalische Eigenschaften von Silber und Silberlegierungen
Werkstoff/
DODUCO-
Bezeichnung
Silber-Anteil
[wt%]
Dichte
[g/cm3]
Schmelzpunkt
bzw.-intervall
[°C]
Spez. elektr.

Widerstand
[μΩ·cm]

Elektrische

Leitfähigkeit
[MS/m]

Wärmeleitfähigkeit
[W/mK]
Temp. Koeff.d.el.

Widerstandes
[10-3/K]

E-Modul
[GPa]
Ag 99.95 10.5 961 1.67 60 419 4.1 80
AgNi 0,15
ARGODUR-Spezial
99.85 10.5 960 1.72 58 414 4.0 82
AgCu3 97 10.4 900 - 938 1.92 52 385 3.2 85
AgCu5 95 10.4 910 1.96 51 380 3.0 85
AgCu10 90 10.3 870 2.0 50 335 2.8 85
AgCu28 72 10.0 779 2.08 48 325 2.7 92
Ag98CuNi
ARGODUR 27
98 10.4 940 1.92 52 385 3.5 85
AgCu24,5Ni0,5 75 10.0 805 2.20 45 330 2.7 92
AgCd10 89 - 91 10.3 910 - 925 4.35 23 150 1.4 60
Ag99,5NiMg
ARGODUR 32
unvergütet
99.5 10.5 960 2.32 43 293 2.3 80
ARGODUR 32
vergütet
99.5 10.5 960 2.32 43 293 2.1 80

Figure 3 Einfluss von 1-10 Atom-% verschiedener Zusatzmetalle auf den spez. elektrischen Widerstand p von Silber

Figure 4 Spez. elektrischer Widerstand p von AgCu-Legierungen mit 0-20 Massen-% Cu im weichgeglühten und angelassenen Zustand a) geglüht und abgeschreckt b) bei 280°C angelassen

Figure 3: Einfluss von 1-10 Atom-% verschiedener Zusatzmetalle auf den spez. elektrischen Widerstand p von Silber
Figure 4: Spez. elektrischer Widerstand p von AgCu-Legierungen mit 0-20 Massen-% Cu im weichgeglühten und angelassenen Zustand a) geglüht und abgeschreckt b) bei 280°C angelassen

Feinkornsilber

Unter Feinkornsilber (ARGODUR-Spezial) versteht man eine Silberlegierung mit einem Zusatz von 0,15 Massen-% Nickel. Silber und Nickel sind im festen Zustand ineinander völlig unlöslich. Im flüssigen Silber lässt sich nur ein geringer Nickelanteil lösen, wie aus dem entsprechenden Zustandsdiagramm hervorgeht (Figure 7 ). Durch diesen Nickelzusatz, der sich beim Abkühlen der Schmelze feindispers in der Silbermatrix ausscheidet, gelingt es, die Neigung des Silbers zu ausgeprägter Grobkornbildung nach längerer Wärmeeinwirkung zu unterbinden (Figure 5 und Figure 6).

Figure 5: Grobkörniges Gefüge von Ag 99,97 nach 80% Kaltumformung und 1h Glühdauer bei 600°C
Figure 6: Feinkörniges Gefüge von AgNi0,15 nach 80% Kaltumformung und 1h Glühdauer bei 600°C
Figure 7: Zustandsdiagramm von Silber-Nickel

Feinkornsilber zeichnet sich durch eine ähnlich hohe chemische Beständigkeit wie Feinsilber aus. Gegenüber Silber weist es eine etwas höhere Härte und Festigkeit auf (Table 4). Die elektrische Leitfähigkeit wird durch den geringen Nickelzusatz nur geringfügig verschlechtert. Aufgrund seiner teilweise deutlich günstigeren Kontakteigenschaften hat bei schaltenden Kontakten Feinkornsilber das Feinsilber in vielen Anwendungsfällen abgelöst.

Hartsilber-Legierungen

Durch Kupfer als Legierungspartner werden die Festigkeitseigenschaften des Silbers deutlich erhöht. Die größte Bedeutung unter den binären AgCu-Legierungen hat der unter dem Namen Hartsilber bekannte Werkstoff AgCu3 erlangt, der sich hinsichtlich chemischer Resistenz noch ähnlich verhält wie Feinsilber. Verglichen mit Feinsilber und Feinkornsilber weist AgCu3 eine höhere Härte und Festigkeit sowie höhere Abbrandfestigkeit und mechanische Verschleißfestigkeit auf (Table 4).

Table 4: Festigkeitseigenschaften von Silber und Silberlegierungen

Werkstoff//

DODUCO-Bezeichnung

Festigkeitszustand

Zugfestigkeit

Rm [MPa]

Dehnung A [%] min.

Vickershärte

HV 10

Ag

R 200

R 250

R 300

R 360

200 - 250

250 - 300

300 - 360

> 360

30

8

3

2

30

60

80

90

AgNi 0,15

ARGODUR Special

R 220

R 270

R 320

R 360

220 - 270

270 - 320

320 - 360

> 360

25

6

2

1

40

70

85

100

AgCu3

R 250

R 330

R 400

R 470

250 - 330

330 - 400

400 - 470

> 470

25

4

2

1

45

90

115

120

AgCu5

R 270

R 350

R 460

R 550

270 - 350

350 - 460

460 - 550

> 550

20

4

2

1

55

90

115

135

AgCu10

R 280

R 370

R 470

R 570

280 - 370

370 - 470

470 - 570

> 570

15

3

2

1

60

95

130

150

AgCu28

R 300

R 380

R 500

R 650

300 - 380

380 - 500

500 - 650

> 650

10

3

2

1

90

120

140

160

Ag98CuNi

ARGODUR 27

R 250

R 310

R 400

R 450

250 - 310

310 - 400

400 - 450

> 450

20

5

2

1

50

85

110

120

AgCu24,5Ni0,5

R 300

R 600

300 - 380

> 600

10

1

105

180

AgCd10

R 200

R 280

R 400

R 450

200 - 280

280 - 400

400 - 450

> 450

15

3

2

1

36

75

100

115

Ag99,5NiMg

ARGODUR 32

Not heat treated

R 220

R 260

R 310

R 360

220

260

310

360

25

5

2

1

40

70

85

100

ARGODUR 32 Heat treated

R 400

400

2

130-170


Mit steigendem Kupferanteil nehmen einerseits Härte und Festigkeit der AgCu- Legierung zu, andererseits wird die Neigung zur Oxidbildung erhöht, was im Schaltbetrieb unter Lichtbogenbildung zu einem Anwachsen des Kontaktwiderstandes mit zunehmender Schaltspielzahl führt. Weiterhin wirken sich höhere Kupferanteile vorteilhaft auf Abbrand und Materialwanderung aus. In Sonderfällen, in denen optimale mechanische Eigenschaften erwünscht sind und gleichzeitig eine verminderte chemische Beständigkeit zugelassen werden kann, findet die eutektische Silber-Kupfer-Legierung (28 Massen-% Cu) Anwendung (Figure 8). AgCu10, auch als Münzsilber bezeichnet, wurde in vielen Anwendungen durch andere Silber-Legierungen ersetzt, während Sterlingsilber (AgCu7,5) seine Bedeutung bei Tafelgeschirr und Schmuck nie auf industrielle Anwendungen für elektrische Kontakte ausweiten konnte.

Neben den binären AgCu-Legierungen kommen auch ternäre AgCuNi- Legierungen zum Einsatz. Von dieser Werkstoffgruppe hat ARGODUR 27, eine Legierung mit 98 Massen-% Ag und Anteilen von Cu und Ni, neben AgCu3 die größte praktische Bedeutung erlangt. Dieser Werkstoff zeichnet sich durch hohe Oxidationsbeständigkeit und geringe Neigung zur Rekristallisation unter der Einwirkung hoher Temperaturen aus. Neben einer hohen mechanischen Verschleißfestigkeit weist die AgCuNi-Legierung auch eine erhöhte Abbrandfestigkeit auf. Die Legierung AgCu24,5Ni0,5 hat aufgrund ihrer geringen Neigung zur Materialwanderung bei Gleichstrombelastung vor allem in Nordamerika über lange Zeit breite Anwendung in der Automobiltechnik gefunden. Im Zuge der Miniaturisierung elektromechanischer Bauelemente und den damit verbundenen geringeren Kontaktkräften in Relais und Schaltern kommt diese Legierung wegen ihrer erhöhten Neigung zur Oxidbildung heute deutlich weniger zum Einsatz.

Die verwendeten Verbindungsverfahren entsprechen weitgehend denen, die auch bei Feinsilber angewandt werden.

Hartsilberlegierungen finden verbreitet Anwendung in vielen Wechsel- und Gleichstromschaltern für Informations- und Energietechnik bei Schaltströmen bis 10A, vereinzelt auch bei höheren Strömen (Table 6).

Dispersionsgehärtete Legierungen des Silbers mit 0,5 Massen-% MgO und NiO (ARGODUR 32) werden durch innere Oxidation hergestellt. Während sich die schmelztechnisch hergestellte Ausgangslegierung gut umformen lässt, ist der dispersionsgehärtete Werkstoff sehr spröde und kaum verformbar. Gegenüber Feinsilber und Hartsilber weist er eine wesentlich höhere Warmfestigkeit auf, so dass mit diesem dispersionsgehärteten Werkstoff auch Hartlötungen bei Temperaturen bis ca. 800°C ohne Einbuße an Härte und Festigkeit durchführbar sind. Aufgrund seiner günstigen Festigkeitseigenschaften und seiner hohen elektrischen Leitfähigkeit eignet sich ARGODUR 32 vor allem für thermisch und mechanisch hoch beanspruchte Kontaktfedern in Relais und Schützen in der Luft- und Raumfahrt.


Figure 8 Phase diagram of silver-copper

Figure 9 Phase diagram of silver-cadmium

Figure 10 Strain hardening of AgCu3 by cold working

Figure 11 Softening of AgCu3 after annealing for 1 hr after 80% cold working

Figure 12 Strain hardening of AgCu5 by cold working

Figure 13 Softening of AgCu5 after annealing for 1 hr after 80% cold working

Figure 14 Strain hardening of AgCu 10 by cold working

Figure 15 Softening of AgCu10 after annealing for 1 hr after 80% cold working

Figure 16 Strain hardening of AgCu28 by cold working

Figure 17 Softening of AgCu28 after annealing for 1 hr after 80% cold working

Figure 18 Strain hardening of AgNi0.15 by cold working

Figure 19 Softening of AgNi0.15 after annealing for 1 hr after 80% cold working

Figure 20 Strain hardening of ARGODUR 27 by cold working

Figure 21 Softening of ARGODUR 27 after annealing for 1 hr after 80% cold working

Figure 8: Phase diagram of silver-copper
Figure 9: Phase diagram of silver-cadmium
Figure 10: Strain hardening of AgCu3 by cold working
Figure 11: Softening of AgCu3 after annealing for 1 hr after 80% cold working
Figure 12: Strain hardening of AgCu5 by cold working
Figure 13: Softening of AgCu5 after annealing for 1 hr after 80% cold working
Figure 14: Strain hardening of AgCu 10 by cold working
Figure 15: Softening of AgCu10 after annealing for 1 hr after 80% cold working
Figure 16: Strain hardening of AgCu28 by cold working
Figure 17: Softening of AgCu28 after annealing for 1 hr after 80% cold working
Figure 18: Strain hardening of AgNiO15 by cold working
Figure 19: Softening of AgNiO15 after annealing
Figure 20: Strain hardening of ARGODUR 27 by cold working
Figure 21: Softening of ARGODUR 27 after annealing for 1 hr after 80% cold working


Table 5: Contact and Switching Properties of Silver and Silver Alloys
Material Properties
Ag
AgNi0,15
ARGODUR-Special
Highest electrical and thermal conductivity, high affinity to sulfur (sulfide formation), low welding resistance, low contact resistance, very good formability Oxidation resistant at higher make currents, limited arc erosion resistance, tendency to material transfer in DC circuits, easy to braze and weld to carrier materials
Ag Alloys Increasing contact resistance with increasing

Cu content, compared to fine Ag higher arc erosion resistance and mechanical strength, lower tendency to material

Good formability, good brazing and welding properties


Table 6: Anwendungsbeispiele und Lieferformen von Silber und Silberlegierungen
Material Application Examples Form of Supply
Ag
AgNi0,15
ARGODUR-Spezial
AgCu3
AgNi98NiCu2
ARGODUR 27
AgCu24,5Ni0,5
Relays,
Micro switches,
Auxiliary current switches,
Control circuit devices,
Appliance switches,
Wiring devices (≤ 20A),
Main switches
Semi-finished Materials:
Strips, wires, contact profiles, clad contact strips, toplay profiles, seam- welded strips
Contact Parts:
Contact tips, solid and composite rivets, weld buttons; clad, welded and riveted contact parts
AgCu5
AgCu10
AgCu28
Special applications Semi-finished Materials:
Strips, wires, contact profiles, clad contact strips, seam-welded strips
Contact parts:
Contact tips, solid contact rivets, weld buttons; clad, welded and riveted contact parts
Ag99, 5NiOMgO
ARGODUR 32
Miniature relays, aerospace relays and contactors, erosion wire for injection nozzles Contact springs, contact carrier parts

Silber-Palladium-Legierungen

Durch Zulegieren von 30 Massen-% Pd wird neben den mechanischen Eigenschaften vor allem die Beständigkeit des Silbers gegenüber der Einwirkung von Schwefel und schwefelhaltigen Verbindungen entscheidend verbessert (??? und Table 8). Eine noch höhere Resistenz gegenüber Silber-Sulfid-Bildung weisen Legierungen mit 40-60 Massen-% Pd auf. Bei diesen Pd-Anteilen können sich allerdings die katalytischen Eigenschaften des Palladiums nachteilig auf das Kontaktwiderstandsverhalten auswirken. Auch die Verformbarkeit nimmt mit zunehmenden Pd-Gehalt ab.

AgPd-Legierungen sind hart, abbrandfest und weisen eine etwas geringere Neigung zur Materialwanderung bei Gleichstromlast auf (Table 9). Allerdings wird die elektrische Leitfähigkeit durch hohe Pd-Gehalte stark verringert. Die ternäre AgPd30Cu5-Legierung ermöglicht eine weitere Steigerung der Festigkeitswerte, was sich vor allem bei Gleitkontaktsystemen vorteilhaft auswirkt.

AgPd-Legierungen sind bei Pd-Gehalten bis 30 Massen-% gut plattierbar. Als Verbindungstechnik kommen üblicherweise das Aufschweißen von Drahtoder Profilabschnitten oder die Verwendung von Kontaktnieten in Frage.

AgPd-Legierungen kommen z.B. in Relais beim Schalten mittlerer bis höherer elektrischer Belastung ( <60V; <2A) zum Einsatz (Table 10). Aufgrund des hohen Palladiumpreises werden diese allerdings vielfach durch Mehrschichtwerkstoffe, z.B. AgNi0,15 oder Ag/Ni90/10 jeweils mit einer dünnen Au-Auflage, ersetzt. Ein breites Anwendungsfeld haben AgPd-Legierungen als verschleißfeste Gleitkontakte gefunden.


Figure 22 Phase diagram of silver-palladium

Figure 23 Strain hardening of AgPd30 by cold working

Figure 24 Strain hardening of AgPd50 by cold working

Figure 25 Strain hardening of AgPd30Cu5 by cold working

Figure 26 Softening of AgPd30, AgPd50, and AgPd30Cu5 after annealing of 1 hr after 80% cold working

Figure 22: Phase diagram of silver-palladium
Figure 23: Strain hardening of AgPd30 by cold working
Figure 24: Strain hardening of AgPd50 by cold working
Figure 25: Strain hardening of AgPd30Cu5 by cold working
Figure 26: Softening of AgPd30, AgPd50, and AgPd30Cu5 after annealing of 1 hr after 80% cold working


Table 7: Physical Properties of Silver-Palladium Alloys
Material Palladium Content
[wt%]
Density
[g/cm3]
Melting Point
or Range
[°C]
Electrical
Resistivity
[μΩ·cm]
Electrical
Conductivity
[MS/m]
Thermal
Conductivity
[W/m·K]
Temp. Coefficient of
the Electr. Resistance
[10-3/K]
AgPd30 30 10.9 1155 - 1220 14.7 6.8 60 0.4
AgPd40 40 11.1 1225 - 1285 20.8 4.8 46 0.36
AgPd50 50 11.2 1290 - 1340 32.3 3.1 34 0.23
AgPd60 60 11.4 1330 - 1385 41.7 2.4 29 0.12
AgPd30Cu5 30 10.8 1120 - 1165 15.6 6.4 28 0.37


Table 8: Festigkeitseigenschaften von Silber-Palladium-Legierungen

Material

Hardness

Condition

Tensile Strength

Rm[MPa]

Elongation A

[%]min.

Vickers Hardness

HV

AgPd30

R 320

R 570

320

570

38

3

65

145

AgPd40

R 350

R 630

350

630

38

2

72

165

AgPd50

R 340

R 630

340

630

35

2

78

185

AgPd60

R 430

R 700

430

700

30

2

85

195

AgPd30Cu5

R 410

R 620

410

620

40

2

90

190


Table 9: Kontakt- und Schalteigenschaften der Silber-Palladium-Legierungen
Material Properties
AgPd30-60 Corrosion resistant, tendency to Brown Powder formation increases with Pd content, low tendency to material transfer in DC circuits, high ductility Resistant against Ag2S formation, low contact resistance, increasing hardness with higher Pd content, AgPd30 has highest arc erosion resistance, easy to weld and clad
AgPd30Cu5 High mechanical wear resistance High Hardness


Table 10: Application Examples and Forms of Suppl for Silver-Palladium Alloys

Material

Application Examples

Form of Supply

AgPd 30-60

Switches, relays, push-buttons,

connectors, sliding contacts

Semi-finished Materials:

Wires, micro profiles (weld tapes), clad

contact strips, seam-welded strips

Contact Parts:

Solid and composite rivets, weld buttons;

clad and welded contact parts, stamped parts

AgPd30Cu5

Sliding contacts, slider tracks

Wire-formed parts, contact springs, solid

and clad stamped parts

Silber-Verbundwerkstoffe

Silber-Nickel (SINIDUR)-Werkstoffe

Da Silber und Nickel im festen Zustand ineinander unlöslich sind und im flüssigen Zustand nur eine geringe Löslichkeit von Nickel im Silber besteht, können Silber- Nickel-Werkstoffe mit höheren Ni-Anteilen nur nach pulvermetallurgischen Verfahren hergestellt werden. Durch das Strangpressen der gesinterten Ag/Ni- Blöcke zu Drähten, Bändern und Stangen sowie die nachfolgenden Verarbeitungsschritte z.B. Walzen oder Ziehen, werden die in der Ag-Matrix eingelagerten Nickelpartikel in Umformrichtung so ausgerichtet und gestreckt, dass im Gefügebild eine deutliche Faserstruktur zu erkennen ist (Figure 31 und Figure 32).

Die aufgrund der hohen Umformung beim Strangpressen erzeugte hohe Dichte von Ag/Ni-Werkstoffen wirkt sich vorteilhaft auf die Abbrandfestigkeit aus. Das typische Einsatzgebiet der Ag/Ni-Werkstoffe sind Schaltströme <100 A. Hierbei sind sie deutlich abbrandfester als Silber oder Silber-Legierungen. Weiterhin weisen sie bei Nickelanteilen <20 Massen-% niedrige und über die Schaltstücklebensdauer gleichbleibende Kontaktwiderstände und gute Lichtbogenlaufeigenschaften auf. Bei Gleichstrombetrieb zeichnen sich die Ag/Ni-Werkstoffe durch eine verhältnismäßig geringe flächenhafte Materialwanderung aus (Table 13 ).

Ag/Ni (SINIDUR)-Werkstoffe werden üblicherweise mit Nickelgehalten von 10-40 Massen-% hergestellt. SINIDUR 10 und SINIDUR 20, die am häufigsten eingesetzten Werkstoffe, weisen eine sehr gute Umform- und Plattierbarkeit auf (Figure 27 Figure 28 Figure 29 Figure 30). Sie können ohne zusätzliche Schweißhilfe sehr wirtschaftlich auf geeignete Trägerwerkstoffe geschweißt oder gelötet werden. Ag/Ni (SINIDUR)-Werkstoffe mit Nickel- Anteilen von 30-40 Massen-% kommen in Schaltgeräten zum Einsatz, in denen einerseits eine höhere Abbrandfestigkeit benötigt wird, andererseits erhöhte Kontaktwiderstände durch ausreichend hohe Kontaktkräfte kompensiert werden können.

Anwendungsschwerpunkte von Ag/Ni-Kontaktwerkstoffen sind z.B. Relais, Installationsschalter, Schalter für Hausgeräte, Thermostate, Hilfsstromschalter und kleinere Schütze mit Bemessungs-Betriebsströmen <20A (Table 14).

Table 11: Physikalische Eigenschaften von Silber-Nickel (SINIDUR) -Werkstoffen
Material/DODUCOSilver ContentDensityMelting PointElectricalResistivitypElectrical Resistivity (soft)
Designation[wt%][g/cm3][°C][µΩ·cm] [% IACS][MS/m]

Ag/Ni 90/10

SINIDUR 10

89 - 91

10.2 - 10.3

960

1.82 - 1.92

90 - 95

52 - 55

Ag/Ni 85/15

SINIDUR 15

84 - 86

10.1 - 10.2

960

1.89 - 2.0

86 - 91

50 - 53

Ag/Ni 80/20

SINIDUR 20

79 - 81

10.0 - 10.1

960

1.92 - 2.08

83 - 90

48 - 52

Ag/Ni 70/30

SINIDUR 30

69 - 71

9.8

960

2.44

71

41

Ag/Ni 60/40

SINIDUR 40

59 - 61

9.7

960

2.70

64

37


Table 12: Festigkeitseigenschaften von Silber-Nickel (SINIDUR)-Werkstoffen
Material/DODUCO-Designation Hardness Condition Tensile Strength Rm [Mpa] Elongation A (soft annealed) [%] min. Vickers Hardness HV 10
Ag/Ni 90/10
SINIDUR 10
soft
R 220
R 280
R 340
R 400
< 250
220 - 280
280 - 340
340 - 400
> 400
25
20
3
2
1
< 50
50 - 70
65 - 90
85 - 105
> 100
Ag/Ni 85/15
SINIDUR 15
soft
R 300
R 350
R 380
R 400
< 275
250 - 300
300 - 350
350 - 400
> 400
20
4
2
2
1
< 70
70 - 90
85 - 105
100 - 120
> 115
Ag/Ni 80/20
SINIDUR 20
soft
R 300
R 350
R 400
R 450
< 300
300 - 350
350 - 400
400 - 450
> 450
20
4
2
2
1
< 80
80 - 95
90 - 110
100 - 125
> 120
Ag/Ni 70/30
SINIDUR 30
R 330
R 420
R 470
R 530
330 - 420
420 - 470
470 - 530
> 530
8
2
1
1
80
100
115
135
Ag/Ni 60/40
SINIDUR 40
R 370
R 440
R 500
R 580
370 - 440
440 - 500
500 - 580
> 580
6
2
1
1
90
110
130
150


Figure 27 Strain hardening of Ag/Ni 90/10 by cold working

Figure 28 Softening of Ag/Ni 90/10 after annealing for 1 hr after 80% cold working

Figure 29 Strain hardening of Ag/Ni 80/20 by cold working

Figure 30 Softening of Ag/Ni 80/20 after annealing for 1 hr after 80% cold working

Figure 31 Micro structure of Ag/Ni 90/10 a) perpendicular to the extrusion direction b) parallel to the extrusion direction

Figure 32 Micro structure of Ag/Ni 80/20 a) perpendicular to the extrusion direction b) parallel t o the extrusion direction


Figure 27: Strain hardening of Ag/Ni 90/10 by cold working
Figure 28: Softening of Ag/Ni 90/10 after annealing for 1 hr after 80% cold working
Figure 29: Strain hardening of Ag/Ni 80/20 by cold working
Figure 30: Softening of Ag/Ni 80/20 after annealing for 1 hr after 80% cold working
Figure 31: Micro structure of Ag/Ni 90/10 a) perpendicular to the extrusion direction b) parallel to the extrusion direction
Figure 32: Micro structure of Ag/Ni 80/20 a) perpendicular to the extrusion direction b) parallel to the extrusion direction


Table 13: Kontakt- und Schalteigenschaften von Silber-Nickel (SINIDUR)-Werkstoffen
Material/DODUCO-Designation Properties
Ag/Ni
SINIDUR
High arc erosion resistance at switching currents up to 100A,
Resistance against welding for starting current up to 100A,
low and over the electrical contact life nearly constant contact resistance for Ag/Ni 90/10 and Ag/Ni 80/20,
ow and spread-out material transfer under DC load,
non-conductive erosion residue on isolating components resulting in only minor change of the dielectric strength of switching devices,
good arc moving properties,
good arc extinguishing properties,
good or sufficient ductility depending on the Ni content,
easy to weld and braze


Table 14: Anwendungsbeispiele und Lieferformen von Silber-Nickel (SINIDUR)-Werkstoffen
Material Application Examples Switching or Nominal Current Form of Supply
Ag/Ni 90/10-80/20 Relays
Automotive Relays - Resistive load - Motor load
> 10A
> 10A
Semi-finisched Materials:
Wires, profiles,
clad strips,
Seam-welded strips,
Toplay strips
Contact Parts:
Contact tips, solid
and composite
rivets, Weld buttons,
clad, welded,
brazed, and riveted
contact parts
Ag/Ni 90/10, Ag/Ni 85/15-80/20 Auxiliary current switches ≤ 100A
Ag/Ni 90/10-80/20 Appliance switches ≤ 50A
Ag/Ni 90/10 Wiring devices ≤ 20A
Ag/Ni 90/10 Main switches, Automatic staircase illumination switches ≤ 100A
Ag/Ni 90/10-80/20 Control
Thermostats
> 10A
≤ 50A
Ag/Ni 90/10-80/20 Load switches ≤ 20A
Ag/Ni 90/10-80/20 Contactors circuit breakers ≤ 100A
Ag/Ni 90/10-80/20
paired with Ag/C 97/3-96/4
Motor protective circuit breakers ≤ 40A
Ag/Ni 80/20-60/40
paired with Ag/C 96/4-95/5
Fault current circuit breakers ≤ 100A Rods, Profiles,
Contact tips, Formed parts,
brazed and welded
contact parts
Ag/Ni 80/20-60/40
paired with Ag/C 96/4-95/5
Power switches > 100A

Silber-Metalloxid-Werkstoffe Ag/CdO, Ag/SnO2, Ag/ZnO

Die Familie der Silber-Metalloxid-Kontaktwerkstoffe umfasst die Werkstoffgruppen: Silber-Cadmiumoxid (DODURIT CdO), Silber-Zinnoxid (SISTADOX) und Silber-Zinkoxid (DODURIT ZnO). Aufgrund ihrer sehr guten Kontakt- und Schalteigenschaften, wie hohe Verschweißresistenz, niedriger Kontaktwiderstand und hohe Abbrandfestigkeit, haben Silber-Metalloxid-Werkstoffe eine herausragende Stellung in einem breiten Anwendungsbereich erlangt. Sie finden vor allem Einsatz in Schaltgeräten der Niederspannungs-Energietechnik, z.B. in Relais, Installations-, Geräte-, Motor- und Schutzschaltern (Table 21).

  • Silver-cadmium oxide (DODURIT CdO) materials

Silber-Cadmiumoxid (DODURIT CdO)-Werkstoffe mit 10-15 Massen-% CdO werden sowohl nach dem Verfahren der inneren Oxidation als auch auf pulvermetallurgischem Wege hergestellt Table 15().

Physikalische- und Festigkeitseigenschaften sowie Herstellungsverfahren und Lieferformen von stranggepressten Silber-Cadmiumoxid (DODURIT CdO)-Werkstoffen

Bei der Herstellung von Bändern und Drähten durch innere Oxidation wird von einer auf dem Schmelzwege erzeugten Legierung aus Silber und Cadmium ausgegangen. Unterzieht man eine solche homogene Legierung einer Glühbehandlung unterhalb ihres Schmelzpunktes in einer sauerstoffhaltigen Atmosphäre, so diffundiert der Sauerstoff von der Oberfläche in das Innere der Silber-Cadmium-Legierung ein und oxidiert das Cd zu CdO, das sich dabei mehr oder weniger feinkörnig in der Ag-Matrix ausscheidet. Die CdO-Ausscheidungen sind im Randbereich feinkörnig und werden in Richtung der Oxidationsfront grobkörniger (Figure 39).

Bei der Herstellung von Ag/CdO-Kontaktmaterial ist je nach Art des Halbzeugs der Prozessablauf der inneren Oxidation unterschiedlich. Bei Ag/CdO-Drähten wird das AgCd-Vormaterial vollständig durchoxidiert, auf das gewünschte Endmaß gezogen und z.B. zu Kontaktnieten weiterverarbeitet (Figure 33 und Figure 34). Dagegen wird bei Ag/CdO- Bändern die innere Oxidation einseitig nur bis zu einer bestimmten Tiefe ausgeführt (Figure 41). Die so erhaltenen Zweischichtbänder mit der inneroxidierten Ag/CdO-Kontaktschicht auf der Oberseite und der gut lötbaren AgCd-Unterseite (Bezeichnung: „ZH“) sind Ausgangsmaterial für die Herstellung von Kontaktprofilen und -auflagen.

Bei der pulvermetallurgischen Herstellung werden die nach verschiedenen Verfahren gewonnenen Pulvermischungen überwiegend durch Pressen, Sintern und Strangpressen zu Drähten und Bändern weiterverarbeitet. Durch den hohen Umformgrad beim Strangpressen wird eine gleichmäßige Verteilung der CdO-Partikel in der Ag-Matrix und eine hohe Dichte erreicht, die sich vorteilhaft auf die Kontakteigenschaften auswirken (Figure 40). Die für Bänder und Plättchen erforderliche gut löt- und schweißbare Unterseite wird durch Verbundstrangpressen oder Anplattieren einer Silberschicht nach oder vor dem Strangpressvorgang erzielt (Figure 42).

Bei größeren Kontaktauflagen in meist runder Form bietet das Verfahren der Einzelpresstechnik vielfach wirtschaftliche Vorteile. Dabei wird die Pulvermischung in eine Form gepresst, die der Endabmessung des Kontaktstückes entspricht. Nach dem Pressen und Sintern ist i.d.R. ein weiterer Nachpressvorgang erforderlich, um eine hohe Dichte des Werkstoffes zu erreichen.

Figure 33 Strain hardening of internally oxidized Ag/CdO 90/10 by cold working

Figure 34 Softening of internally oxidized Ag/CdO 90/10 after annealing for 1 hr after 40% cold working

Figure 35 Strain hardening of Ag/CdO 90/10 P by cold working

Figure 36 Softening of Ag/CdO 90/10 P after annealing for 1 hr after 40% cold working

Figure 37 Strain hardening of Ag/CdO 88/12 WP

Figure 38 Softening of Ag/CdO 88/12WP after annealing for 1 hr after different degrees of cold working

Figure 39 Micro structure of Ag/CdO 90/10 i.o. a) close to surface b) in center area

Figure 40 Micro structure of Ag/CdO 90/10 P: a) perpendicular to extrusion direction b) parallel to extrusion direction

Figure 41 Micro structure of Ag/CdO 90/10 ZH: 1) Ag/CdO layer 2) AgCd backing layer

Figure 42 Micro structure of AgCdO 88/12 WP: a) perpendicular to extrusion direction b) parallel to extrusion direction

Figure 33: Strain hardening of internally oxidized Ag/CdO 90/10 by cold working
Figure 34: Softening of internally oxidized Ag/CdO 90/10 after annealing for 1 hr after 40% cold working
Figure 35: Strain hardening of Ag/CdO 90/10 P by cold working
Figure 36: Softening of Ag/CdO 90/10 P after annealing for 1 hr after 40% cold working
Figure 37: Strain hardening of Ag/CdO 88/12 WP
Figure 38: Softening of Ag/CdO 88/12WP after annealing for 1 hr after different degrees of cold working
Figure 39: Micro structure of Ag/CdO 90/10 i.o. a) close to surface b) in center area
Figure 40: Micro structure of Ag/CdO 90/10 P: a) perpendicular to extrusion direction b) parallel to extrusion direction
Figure 41: Micro structure of Ag/CdO 90/10 ZH: 1) Ag/CdO layer 2) AgCd backing layer
Figure 42: Micro structure of AgCdO 88/12 WP: a) perpendicular to extrusion direction b) parallel to extrusion direction


  • Silber-Zinnoxid (SISTADOX)-Werkstoffe

Aufgrund der Toxizität des Cadmiums wurden in den letzten Jahren in vielen Anwendungsfällen die Ag/CdO-Werkstoffe durch Ag/SnO2-Werkstoffe mit 2-14 Massen-% SnO2 ersetzt. Diese Substitution wurde noch dadurch begünstigt, dass Ag/SnO2 -Werkstoffe häufig bessere Kontakt- und Schalteigenschaften, wie höhere Abbrandfestigkeit, erhöhte Verschweißresistenz und eine deutlich geringere Neigung zur Materialwanderung bei Gleichstrombetrieb aufweisen (Table 20). Durch spezielle Metalloxid-Zusätze und Fertigungsverfahren wurden Ag/SnO2- Werkstoffe für unterschiedliche Anwendungsfälle optimiert (Table 18 und Table 19).

Die Herstellung von Silber-Zinnoxid auf dem Wege der inneren Oxidation ist grundsätzlich möglich. Bei Silber-Zinn-Legierungen mit >5 Massen-% Sn bilden sich jedoch bei oxidierender Glühung in oberflächennahen Bereichen Deckschichten, die eine weitere Diffusion des Sauerstoffs ins Innere des Werkstoffes verhindern. Die Herstellung von Werkstoffen mit höheren Oxidgehalten ist nur durch Zusätze von Indium oder Wismut möglich. Solche nach dem klassischen Verfahren der inneren Oxidation hergestellten Ag/SnO2-Werkstoffe sind sehr spröde und weisen höhere Kontaktwiderstände auf, was z.B. bei Dauerstromführung in Motorschaltern zu hohen Übertemperaturen führen kann. Ihr Einsatz beschränkt sich daher weitgehend auf Relais. Für diesen Anwendungsfall ist es erforderlich, einen hinreichend duktilen Werkstoff mit feinkörnigen SnO2-Einlagerungen herzustellen (SISTADOX TOS F) (Figure 70). Dies gelingt durch Optimierung des Prozessverlaufs bei der inneren Oxidation und wiederholte Arbeitsschritte beim Strangpressen. Durch Anbringen einer Silberschicht lassen sich auch Bänder und Profile mit einer löt- und schweißbaren Unterschicht herstellen (SISTADOX WTOS F) (Figure 72). Aufgrund ihrer geringen Neigung zur Materialwanderung in Gleichstromkreisen und ihrer erhöhten Abbrandfestigkeit kommen diese Werkstoffe z.B. in Kfz-Relais zum Einsatz (Table 21).

Bei der Herstellung von Silber-Zinnoxid (SISTADOX)-Werkstoffen spielt die Pulvermetallurgie eine wesentliche Rolle. Neben SnO2 wird meist noch ein geringer Anteil (<1 Massen-%) eines oder mehrerer Metalloxide z.B. WO3, MoO3, CuO und/oder Bi2O3 zugemischt, die im Schaltbetrieb an der Grenzfläche zwischen Silberschmelze und Oxidpartikel wirksam sind. Diese Additive fördern einerseits die Benetzung und erhöhen die Viskosität der Silberschmelze, andererseits beeinflussen sie wesentlich die mechanischen und Schalteigenschaften der Ag/SnO2 -Werkstoffe (Table 16 (Table 2.26 als PDF herunterladen: File:Physical Mechanical properties.pdf )).


Physical and Mechanical Properties as well as Manufacturing Processes and Forms of Supply of Extruded Silver-Tin Oxide (SISTADOX) Contact Materials

Für die Herstellung der Pulvermischung werden verschiedene Verfahren angewandt, aus denen sich spezifische Vorteile im Schaltverhalten ergeben (). Einige dieser Verfahren werden im Folgenden kurz beschrieben:

a) Pulvermischung aus Einzelpulvern
Bei diesem klassischen Verfahren der Pulvermetallurgie werden alle, in den Werkstoff eingebrachten Komponenten, einschließlich der Zusätze, als Einzelpulver miteinander vermischt. Das Mischen der Pulver erfolgt üblicherweise trocken in Mischern unterschiedlicher Bauart.
b) Pulvermischung auf Basis dotierter Oxide
Für den Einbau von Zusatzoxiden in das Zinnoxid hat sich das Reaktions-Sprüh-Verfahren (RSV) als vorteilhaft erwiesen. Bei diesem Verfahren wird von einer wässrigen Lösung ausgegangen, in der Zinn sowie die als Zusätze verwendeten Metalle in Form chemischer Verbindungen vorliegen. Diese wässrige Lösung wird unter hohem Druck in einer heißen Reaktionskammer verdüst. Durch die schlagartige Verdampfung des Wassers entsteht aus jedem einzelnen Tröpfchen zunächst ein Salzkristall und hieraus durch Oxidation ein Zinnoxid-Partikel, in dem die Zusatzmetalle in oxidierter Form gleichmäßig verteilt vorliegen. Das so erhaltene „dotierte“ Zinnoxidpulver wird anschließend mit Silberpulver vermischt.
c) Pulvermischung auf Basis beschichteter Oxidpulver
Nach diesem Verfahren wird Zinnoxidpulver mit niedrigschmelzenden Zusätzen, z.B. Ag2 MoO4 , vermischt und anschließend einer Glühbehandlung ausgesetzt. Dabei überzieht sich die Zinnoxid-Oberfläche mit einer dünnen Schicht.
d) Pulvermischung auf Basis inneroxidierter Legierungspulver
Dieses Verfahren schließt sowohl Arbeitsschritte der Pulvermetallurgie als auch der inneren Oxidation ein. Ausgegangen wird dabei von einer Silber-Metall-Legierung, die geschmolzen und anschließend zu feinkörnigem Pulver verdüst wird. Dieses Legierungspulver wird in sauerstoffhaltiger Atmosphäre geglüht, wobei sich das im Silber gelöste Zinn sowie weitere Zusatzmetalle als Oxidpartikel ausscheiden.
e) Pulvermischung auf Basis nasschemisch gefällter Verbundpulvern
In eine Suspension von Metalloxiden, z.B. SnO2 werden eine Silbersalzlösung

zusammen mit einem Fällungsmittel eingeleitet. In einer chemischen Fällreaktion scheidet sich Silber bzw. Silberoxid ab. Die suspensierten Metalloxidpartikel wirken dabei als Kristallisationskeime.

Die Weiterverarbeitung der nach den verschiedenen Verfahren hergestellten Pulvermischungen erfolgt auf übliche Art durch Sintern und Strangpressen. Aus den so erhaltenen Halbzeugen, wie Bändern, Profilen und Drähten werden dann Kontaktauflagen oder -niete gefertigt. Zur Erzeugung einer lötund schweißbaren Kontaktunterseite aus Feinsilber werden die gleichen Verfahren angewandt, wie bei Ag/CdO beschrieben (Table 17).

Große, speziell geformte oder runde Ag/SnO2-Kontaktauflagen können aus wirtschaftlichen Gründen, wie bei Ag/CdO, nach dem Verfahren der Einzelpresstechnik hergestellt werden.

Figure 43 Strain hardening of Ag/SnO2 92/8 PE by cold working

Figure 44 Softening of Ag/SnO2 92/8 PE after annealing for 1 hr after 40% cold working

Figure 45 Strain hardening of Ag/SnO2 88/12 PE by cold working

Figure 46 Softening of Ag/SnO2 88/12 PE after annealing for 1 hr after 40% cold working

Figure 47 Strain hardening of oxidized Ag/SnO2 88/12 PW4 by cold working

Figure 48 Softening of Ag/SnO2 88/12 PW4 after annealing for 1 hr after 30% cold working

Figure 49 Strain hardening of Ag/SnO2 98/2 PX by cold working

Figure 50 Softening of Ag/SnO2 98/2 PX after annealing for 1 hr after 80% cold working

Figure 51 Strain hardening of Ag/SnO2 92/8 PX by cold working

Figure 52 Softening of Ag/SnO2 92/8 PX after annealing for 1 hr after 40% cold working

Figure 53 Strain hardening of internally oxidized Ag/SnO2 88/12 TOS F by cold working

Figure 54 Softening of Ag/SnO2 88/12 TOS F after annealing for 1 hr after 30% cold working

Figure 55 Strain hardening of internally oxidized Ag/SnO2 88/12P by cold working

Figure 56 Softening of Ag/SnO2 88/12P after annealing for 1 hr after 40% cold working

Figure 57 Strain hardening of Ag/SnO2 88/12 WPC by cold working

Figure 58 Softening of Ag/SnO2 88/12 WPC after annealing for 1 hr after different degrees of cold working

Figure 59 Strain hardening of Ag/SnO2 86/14 WPC by cold working

Figure 60 Softening of Ag/SnO2 86/14 WPC after annealing for 1 hr after different degrees of cold working

Figure 61 Strain hardening of Ag/SnO2 88/12 WPD by cold working

Figure 62 Softening of Ag/SnO2 88/12 WPD after annealing for 1 hr after different degrees of cold working

Figure 63 Softening of Ag/SnO2 88/12 WPX after annealing for 1 hr after different degrees of cold working

Figure 64 Strain hardening of Ag/SnO2 88/12 WPX by cold working

Figure 65 Micro structure of Ag/SnO2 92/8 PE: a) perpendicular to extrusion direction b) parallel to extrusion direction

Figure 66 Micro structure of Ag/SnO2 88/12 PE: a) perpendicular to extrusion direction b) parallel to extrusion direction

Figure 67 Micro structure of Ag/SnO2 88/12 PW: a) perpendicular to extrusion direction b) parallel to extrusion direction

Figure 68 Micro structure of Ag/SnO2 98/2 PX: a) perpendicular to extrusion direction b) parallel to extrusion direction

Figure 69 Micro structure of Ag/SnO2 92/8 PX: a) perpendicular to extrusion direction b) parallel to extrusion direction

Figure 70 Micro structure of Ag/SnO2 88/12 TOS F: a) perpendicular to extrusion direction b) parallel to extrusion direction

Figure 71 Micro structure of Ag/SnO2 86/14 WPC: a) perpendicular to extrusion direction b) parallel to extrusion direction, 1) AgSnO2 contact layer, 2) Ag backing layer

Figure 72 Micro structure of Ag/SnO2 92/8 WTOS F: a) perpendicular to extrusion direction b) parallel to extrusion direction,1) AgSnO2 contact layer, 2) Ag backing layer

Figure 73 Micro structure of Ag/SnO2 88/12 WPD: parallel to extrusion direction 1) AgSnO2 contact layer, 2) Ag backing layer

Figure 74 Micro structure of Ag/SnO2 88/12 WPX:parallel to extrusion direction 1) AgSnO2 contact layer, 2) Ag backing layer

Figure 75 Micro structure of Ag/SnO2 86/14 WPX: a) perpendicular to extrusion direction b) parallel to extrusion direction, 1) AgSnO2 contact layer, 2) Ag backing layer

Figure 43: Strain hardening of Ag/SnO2 92/8 PE by cold working
Figure 44: Softening of Ag/SnO2 92/8 PE after annealing for 1 hr after 40% cold working
Figure 45: Strain hardening of Ag/SnO2 88/12 PE by cold working
Figure 46: Softening of Ag/SnO2 88/12 PE after annealing for 1 hr after 40% cold working
Figure 47: Strain hardening of oxidized Ag/SnO2 88/12 PW4 by cold working
Figure 48: Softening of Ag/SnO2 88/12 PW4 after annealing for 1 hr after 30% cold working
Figure 49: Strain hardening of Ag/SnO2 98/2 PX by cold working
Figure 50: Softening of Ag/SnO2 98/2 PX after annealing for 1 hr after 80% cold working
Figure 51: Strain hardening of Ag/SnO2 92/8 PX by cold working
Figure 52: Softening of Ag/SnO2 92/8 PX after annealing for 1 hr after 40% cold working
Figure 53: Strain hardening of internally oxidized Ag/SnO2 88/12 TOS F by cold working
Figure 54: Softening of Ag/SnO2 88/12 TOS F after annealing for 1 hr after 30% cold working
Figure 55: Strain hardening of internally oxidized Ag/SnO2 88/12P by cold working
Figure 56: Softening of Ag/SnO288/12P after annealing for 1 hr after 40% cold working
Figure 57: Strain hardening of Ag/SnO2 88/12 WPC by cold working
Figure 58: Softening of Ag/SnO2 88/12 WPC after annealing for 1 hr after different degrees of cold working
Figure 59: Strain hardening of Ag/SnO2 86/14 WPC by cold working
Figure 60: Softening of Ag/SnO2 86/14 WPC after annealing for 1 hr after different degrees of cold working
Figure 61: Strain hardening of Ag/SnO2 88/12 WPD by cold working
Figure 62: Softening of Ag/SnO2 88/12 WPD after annealing for 1 hr after different degrees of cold working
Figure 63: Softening of Ag/SnO2 88/12 WPX after annealing for 1 hr after different degrees of cold working
Figure 64: Strain hardening of Ag/SnO2 88/12 WPX by cold working
Figure 65: Micro structure of Ag/SnO2 92/8 PE: a) perpendicular to extrusion direction b) parallel to extrusion direction
Figure 66: Micro structure of Ag/SnO2 88/12 PE: a) perpendicular to extrusion direction b) parallel to extrusion direction
Figure 67: Micro structure of Ag/SnO2 88/12 PW: a) perpendicular to extrusion direction b) parallel to extrusion direction
Figure 68: Micro structure of Ag/SnO2 98/2 PX: a) perpendicular to extrusion direction b) parallel to extrusion direction
Figure 69: Micro structure of Ag/SnO2 92/8 PX: a) perpendicular to extrusion direction b) parallel to extrusion direction
Figure 70: Micro structure of Ag/SnO2 88/12 TOS F: a) perpendicular to extrusion direction b) parallel to extrusion direction
Figure 71: Micro structure of Ag/SnO2 86/14 WPC: a) perpendicular to extrusion direction b) parallel to extrusion direction, 1) AgSnO2 contact layer, 2) Ag backing layer
Figure 72: Micro structure of Ag/SnO2 92/8 WTOS F: a) perpendicular to extrusion direction b) parallel to extrusion direction,1) AgSnO2 contact layer, 2) Ag backing layer
Figure 73: Micro structure of Ag/SnO2 88/12 WPD: parallel to extrusion direction 1) AgSnO2 contact layer, 2) Ag backing layer
Figure 74: Micro structure of Ag/SnO2 88/12 WPX:parallel to extrusion direction 1) AgSnO2 contact layer, 2) Ag backing layer
Figure 75: Micro structure of Ag/SnO2 86/14 WPX: a) perpendicular to extrusion direction b) parallel to extrusion direction, 1) AgSnO2 contact layer, 2) Ag backing layer


Table 17: Physikalische Eigenschaften von pulvermetallurgisch in Einzelpresstechnik hergestellten Silber-Metalloxid-Werkstoffen mit Silber-Rücken

Material/

DODUCO- Designation

Additives

Density

[ g/cm3]

Electrical

Resistivity

S ·cm]

Electrical

Conductivity

Vickers

Hardness

HV 10.

[%IACS]

[MS/m]

AgCdO 90/10EP

DODURIT CdO 10EP

10.1

2.08

83

48

60

AgCdO 85/15 EP DODURIT CdO 15EP

9.9

2.27

76

44

65

AgSnO² 90/10 EPX SISTADOX 10EPX

CuO and

Bi² O³

9.8

2.22

78

45

55

AgSnO² 88/12EPX SISTADOX 12EPX

CuO and

Bi² O³

9.6

2.63

66

38

60

Form of Support: formed parts, stamped parts, contact tips
  • Silver–zinc oxide (DODURIT ZnO) materials

Silver zinc oxide (DODURIT ZnO) contact materials with mostly 6 - 10 wt% oxide content including other small metal oxides are produced exclusively by powder metallurgy (Figs. 76 – 81),. Adding Ag2WO4 in the process b) as described in the preceding chapter on Ag/SnO2 has proven most effective for applications in AC relays, wiring devices, and appliance controls. Just like with the other Ag metal oxide materials, semi-finished materials in strip and wire form are used to manufacture contact tips and rivets. Because of their high resistance against welding and arc erosion Ag/ZnO materials present an economic alternative to Cd free Ag-tin oxide contact materials Table 20 and Table 21.


Table 18: Physikalische- und Festigkeitseigenschaften sowie Herstellungsverfahren und Lieferformen von stranggepressten Silber-Zinkoxid (DODURIT ZnO)-Werkstoffen
Material/
DODUCO-
Designation
Silver Content
[wt%]
Additives Density
[g/cm3]
Electrical
Resistivity
[μΩ·cm]
Electrical
Conductivity
[% IACS] [MS/m]
Vickers
Hardness
Hv1
Tensile
Strength
[MPa]
Elongation
(soft annealed)
A[%]min.
Manufacturing
Process
Form of
Supply
Ag/ZnO 92/8P
DODURIT ZnO 8P
91 - 93 9.8 2.22 78 45 60 - 95 220 - 350 25 Powder Metallurgy
a) indiv. powders
1
Ag/ZnO 94/6PW25
DODURIT ZnO 6PW25
93 - 95 Ag2WO4 9.7 2.0 86 50 60 - 100 200 - 320 30 Powder Metallurgy
c) coated
1
Ag/ZnO 92/8PW25
DODURIT ZnO 8PW25
91 - 93 Ag2WO4 9.6 2.08 83 48 65 - 105 230 - 340 25 Powder Metallurgy
c) coated
1
Ag/ZnO 90/10PW25
DODURIT ZnO 10PW25
89 - 91 Ag2WO4 9.6 2.17 79 46 65 - 100 230 - 350 20 Powder Metallurgy
c) coated
1
Ag/ZnO 92/8WP
DODURIT ZnO 8WP
91 - 93 9.8 2.0 86 50 60 - 95 Powder Metallurgy
with Ag backing a) individ.
2
AgZnO 94/6WPW25
DODURIT ZnO 6WPW25
93 - 95 Ag2WO4 9.7 2.0 86 50 60 - 95 Powder Metallurgy
c) coated
2
Ag/ZnO 92/8WPW25
DODURIT ZnO 8WPW25
91 - 93 Ag2WO4 9.6 2.08 83 48 65 - 105 Powder Metallurgy
c) coated
2
Ag/ZnO 90/10WPW25
DODURIT ZnO 10WPW25
89 - 91 Ag2WO4 9.6 2.7 79 46 65 - 110 Powder Metallurgy
c) coated
2

1 = Wires, Rods, Contact rivets, 2 = Strips, Profiles, Contact tips


Figure 76 Strain hardening of Ag/ZnO 92/8 PW25 by cold working

Figure 77 Softening of Ag/ZnO 92/8 PW25 after annealing for 1 hr after 30% cold working

Figure 78 Strain hardening of Ag/ZnO 92/8 WPW25 by cold working

Figure 79 Softening of Ag/ZnO 92/8 WPW25 after annealing for 1hr after different degrees of cold working

Figure 80 Micro structure of Ag/ZnO 92/8 Pw25: a) perpendicular to extrusion direction b) parallel to extrusion direction

Figure 81 Micro structure of Ag/ZnO 92/8 WPW25:a) perpendicular to extrusion direction b) parallel to extrusion direction, 1) Ag/ZnO contact layer, 2) Ag backing layer

Figure 76: Strain hardening of Ag/ZnO 92/8 PW25 by cold working
Figure 77: Softening of Ag/ZnO 92/8 PW25 after annealing for 1 hr after 30% cold working
Figure 78: Strain hardening of Ag/ZnO 92/8 WPW25 by cold working
Figure 79: Softening of Ag/ZnO 92/8 WPW25 after annealing for 1hr after different degrees of cold working
Figure 80: Micro structure of Ag/ZnO 92/8 Pw25: a) perpendicular to extrusion direction b) parallel to extrusion direction
Figure 81: Micro structure of Ag/ZnO 92/8 WPW25:a) perpendicular to extrusion direction b) parallel to extrusion direction, 1) Ag/ZnO contact layer, 2) Ag backing layer


Table 19: Optimierung der Silber-Zinnoxid-Werkstoffe hinsichtlich Schalteigenschaften und Umformungsverhalten

Material/

Material Group

Special Properties

Ag/SnO2 PE

Especially suitable for automotive relays

(lamp loads)

Good formability (contact rivets)

Ag/SnO2 98/2 PX/PC

Especially good heat resistance

Easily riveted, can be directly welded

Ag/SnO2 TOS F

Especially suited for high inductive

DC loads

Very good formability (contact rivets)

Ag/SnO2 WPC

For AC-3 and AC-4 applications in motor

switches (contactors)

Ag/SnO2 WPD

Especially suited for severe loads (AC-4)

and high switching currents

Ag/SnO2 WPX

For standard motor loads (AC-3) and

Resistive loads (AC-1), DC loads (DC-5)

Ag/SnO2 WTOSF

Especially suitable for high inductive DC

loads


Table 20: Kontakt- und Schalteigenschaften von Silber-Metalloxid-Werkstoffen
Material/DODUCO-Designation Properties
Ag/CdO
DODURIT CdO
High resistance against welding during current on switching for currents up to
5kA especially for powder metallurgical materials,

Weld resistance increases with higher oxide contents,
Low and stable contact resistance over the life of the device and good
temperature rise properties,
High arc erosion resistance and contact life at switching currents
of 100A – 5kA,
Very good arc moving properties for materials produced by internal oxidation,
Good arc extinguishing properties,
Formability better than the one of Ag/SnO2 and Ag/ZnO materials,
Use of Ag/CdO in automotive components is prohibited because of Cd toxicity,
Prohibition of use in consumer products and appliances in EU.

Ag/SnO2
SISTADOX
Environmentally friendly materials,

Very high resistance against welding during current on switching,
Weld resistance increases with higher oxide contents,
Low and stable contact resistance over the life of the device and good
temperature rise properties through use of special additives,
High arc erosion resistance and contact life,
Very low and flat material transfer during DC load switching,
Good arc moving and very good arc extinguishing properties

Ag/ZnO
DODURIT ZnO
Environmentally friendly materials,

High resistance against welding during current on switching
(capacitor contactors),
Low and stable contact resistance through special oxide additives,
Very high arc erosion resistance at high switching currents,
Less favorable than Ag/SnO2 for electrical life and material transfer,
With Ag2WO4 additive especially suitable for AC relays


Table 21: Anwendungsbeispiele von Silber-Metalloxid-Werkstoffen

Material

Application Examples

Ag/CdO

Micro switches, Network relays, Wiring devices, Appliance switches, Main switches, contactors, Small (main) power switches

Ag/SnO2

Micro switches, Network relays, Automotive relays, Appliance switches,

Main switches, contactors, Fault current protection relays (paired against

Ag/C), (Main) Power switches

Ag/ZnO

Wiring devices, AC relays, Appliance switches, Motor-protective circuit

breakers (paired with Ag/Ni or Ag/C), Fault current circuit breakers paired againct Ag/C, (Main) Power switches

Silber-Grafit (GRAPHOR)-Werkstoffe

Ag/C (GRAPHOR)-Kontaktwerkstoffe werden üblicherweise mit Grafitgehalten von 2-5 Massen-% auf pulvermetallurgischem Wege hergestellt (Table 22). Die früher übliche Herstellung von Ag/C-Plättchen nach dem Verfahren der Einzelpresstechnik , d.h. durch Mischen von Silber- und Grafit-Pulver, Pressen, Sintern und Nachpressen, wurde seit langem in Europa durch das Strangpressen abgelöst, hat jedoch für spezielle Kontaktformen, z.B. trapezförmige Auflagen, und kostenkritische Anwendungen in den USA und in anderen Regionen eine gewisse Bedeutung.

Das Strangpressen gesinterter Ag/C-Blöcke ist das dominierende Fertigungsverfahren für Ag/C-Halbzeuge (). Durch das Strangpressen wird eine hohe Verdichtung des Werkstoffes und eine zeilenförmige Ausrichtung der Grafitpartikel in Pressrichtung erreicht ((Figs. 86 – 89)). Je nach Art des Strangpressens, als Band oder in Stangenform, sind die Grafitpartikel im fertigen Kontaktstück senkrecht (GRAPHOR) oder parallel (GRAPHOR D) zur Schaltfläche angeordnet (Figure 87 und Figure 88).

Da sich Kontaktauflagen aus Silber-Grafit wegen der in der Ag-Matrix eingelagerten Grafitpartikel direkt weder schweißen noch löten lassen, ist für das Aufbringen der Auflagen auf Kontaktträger eine grafitfreie Unterschicht erforderlich. Diese kann durch einseitiges Ausbrennen des Grafits oder durch Verbundstrangpressen des Ag/C-Pressblockes mit Silber erzeugt werden.

Ag/C-Werkstoffe weisen einerseits eine extrem hohe Verschweißresistenz, die von keiner anderen Werkstoffgruppe erreicht wird, andererseits jedoch eine geringe Abbrandfestigkeit auf. Dieses außergewöhnliche Schaltverhalten von Ag/C wird durch die Reaktion der Wirkkomponente Grafit mit der Umgebungsatmosphäre bei den infolge Lichtbogeneinwirkung auftretenden hohen Temperaturen bestimmt. Bei Ag/C-Werkstoffen mit einer Orientierung der Grafit-Partikel parallel zur Schaltfläche ist die Verschweißresistenz besonders hoch. Da die Schaltstückoberfläche nach Lichtbogeneinwirkung aus reinem Silber besteht, sind die Kontaktwiderstände während der Schaltstücklebensdauer gleichbleibend niedrig.

Ein Schwachpunkt von Ag/C-Kontaktwerkstoffen ist die geringe Abbrandfestigkeit. Bei Ag/C-Kontaktmaterial mit parallel zur Schaltfläche orientierten Grafit- Partikeln kann eine deutliche Verbesserung im Abbrandverhalten erreicht werden, wenn ein Teil des Grafits in Form von Fasern (GRAPHOR DF) in den Werkstoff eingebracht wird (Figure 89). Das Schweißverhalten wird dabei durch den Anteil an Grafit-Partikeln bestimmt.

Ag/C-Plättchen mit senkrechter Ausrichtung der Grafit-Partikel werden nach bestimmten Arbeitsschritten - Strangpressen, nachfolgendem Trennen zu Doppelplättchen, Ausbrennen des Grafits und zweitem Trennen zu Einzelplättchen - hergestellt (Table 23). Solche Plättchen mit Ag/C-Schaltfläche und gut löt- und schweißbarer Ag-Unterseite sind besonders geeignet für Anwendungen, die sowohl hohe Verschweißresistenz als auch eine ausreichend hohe Abbrandfestigkeit im Schaltbetrieb erfordern.

Als Verbindungsverfahren kommen Hartlöten und Schweißen in Frage. Beim Aufschweißen hängt der Fertigungsablauf von der Orientierung der Grafit- Partikel in der Ag-Matrix ab. Bei Ag/C-Werkstoffen mit einer Ausrichtung der Grafit-Partikel senkrecht zur Schaltfläche werden die Kontaktauflagen als Einzelteile weiterverarbeitet. Bei paralleler Ausrichtung ist die Verarbeitung besonders wirtschaftlich, da von Bandmaterial ausgegangen werden kann, aus dem in einer Arbeitsfolge Kontaktplättchen getrennt und unmittelbar danach aufgeschweißt werden. Um den Fügevorgang energiesparender zu gestalten, können die GRAPHOR D- und GRAPHOR DF-Profile auch mit einer dünnen Hartlotschicht versehen werden.

In begrenztem Umfang können Ag/C-Werkstoffe mit 2-3 Massen-% Grafit auch zu Drähten und bei nur geringer Kaltumformung zu Kontaktnieten verarbeitet werden.

Haupteinsatzgebiet der Ag/C-Werkstoffe sind Schutzschalter, wie Leistungs-, Leitungsschutz-, Motorschutz- und Fehlerstromschutzschalter, in denen im Kurzschlussfall höchste Anforderungen an die Verschweißresistenz der Kontaktstücke gestellt werden (Table 24). Die geringe Abbrandfestigkeit des Ag/C wird dabei in unsymmetrischer Kontaktpaarung durch abbrandfeste Gegenkontakte aus Ag/Ni oder Ag/W kompensiert.

Figure 82 Strain hardening of Ag/C 96/4 D by cold working

Figure 83 Softening of Ag/C 96/4 D after annealing

Figure 84 Strain hardening of Ag/C DF by cold working

Figure 85 Softening of Ag/C DF after annealing

Figure 86 Micro structure of Ag/C 97/3: a) perpendicular to extrusion direction b) parallel to extrusion direction, 1) Ag/C contact layer, 2) Ag backing layer

Figure 87 Micro structure of Ag/C 95/5: a) perpendicular to extrusion direction b) parallel to extrusion direction, 1) Ag/C contact layer, 2) Ag backing layer

Figure 88 Micro structure of Ag/C 96/4 D: a) perpendicular to extrusion direction b) parallel to extrusion direction, 1) Ag/C contact layer, 2) Ag backing layer

Figure 89 Micro structure of Ag/C DF: a) perpendicular to extrusion direction b) parallel to extrusion direction, 1) Ag/C contact layer, 2) Ag/Ni 90/10 backing layer

Figure 82: Strain hardening of Ag/C 96/4 D by cold working
Figure 83: Softening of Ag/C 96/4 D after annealing
Figure 84: Strain hardening of Ag/C DF by cold working
Figure 85: Softening of Ag/C DF after annealing
Figure 86: Micro structure of Ag/C 97/3: a) perpendicular to extrusion direction b) parallel to extrusion direction, 1) Ag/C contact layer, 2) Ag backing layer
Figure 87: Micro structure of Ag/C 95/5: a) perpendicular to extrusion direction b) parallel to extrusion direction, 1) Ag/C contact layer, 2) Ag backing layer
Figure 88: Micro structure of Ag/C 96/4 D: a) perpendicular to extrusion direction b) parallel to extrusion direction, 1) Ag/C contact layer, 2) Ag backing layer
Figure 89: Micro structure of Ag/C DF: a) perpendicular to extrusion direction b) parallel to extrusion direction, 1) Ag/C contact layer, 2) Ag/Ni 90/10 backing layer
Table 22: Physikalische Eigenschaften von Silber-Grafit (GRAPHOR)-Werkstoffen
Material/
DODUCO-
Designation
Silver Content
[wt%]
Density
[g/cm3]
Melting Point
[°C]
Electrical Resistivity
[μΩ·cm]
Electrical
Conductivity
[% IACS] [MS/m]
Vickers-Hardnes
HV10
42 - 45
Ag/C 98/2
GRAPHOR 2
97.5 - 98.5 9.5 960 1.85 - 1.92 90 - 93 48 - 50 42 - 44
Ag/C 97/3
GRAPHOR 3
96.5 - 97.5 9.1 960 1.92 - 2.0 86 - 90 45 - 48 41 - 43
Ag/C 96/4
GRAPHOR 4
95.5 - 96.5 8.7 960 2.04 - 2.13 81 - 84 42 - 46 40 - 42
Ag/C 95/5
GRAPHOR 5
94.5 - 95.5 8.5 960 2.12 - 2.22 78 - 81 40 - 44 40 - 60
Ag/C 97/3D
GRAPHOR 3D*)
96.5 - 97.5 9.1 - 9.3 960 1.92 - 2.08 83 - 90 45 - 50 35 - 55
Ag/C 96/4D
GRAPHOR 4D*)
95.5 - 96.5 8.8 - 9.0 960 2.04 - 2.22 78 - 84 43 - 47 35 - 60
AgCDF
GRAPHOR DF**)
95.7 - 96.7 8.7 - 8.9 960 2.27 - 2.50 69 - 76 40 - 44

*) Grafit-Partikel parallel zur Schaltfläche
**) Grafitanteil 3,8 Massen-% Grafit-Partikel; Grafit-Fasern parallel zur Schaltfläche


Table 23: Kontakt- und Schalteigenschaften von Silber-Grafit (GRAPHOR)-Werkstoffen

Material/

DODUCO-Designation

Properties

Ag/C

GRAPHOR

Highest resistance against welding during make operations at high currents,

High resistance against welding of closed contacts during short circuit,

Increase of weld resistance with higher graphite contents, Low contact resistance,

Low arc erosion resistance, especially during break operations, Higher arc erosion with increasing graphite contents, at the same time carbon build-up on switching chamber walls increases, GRAPHOR with vertical orientation has better arc erosion resistance, parallel orientation has better weld resistance,

Limited arc moving properties, therefore paired with other materials,

Limited formability,

Can be welded and brazed with decarbonized backing, GRAPHOR DF is optimized for arc erosion resistance and weld resistance


Table 24: Anwendungsbeispiele und Lieferformen von Silber-Grafit (GRAPHOR)-Werkstoffen

Material/

DODUCO Designation

Application Examples

Form of Supply

Ag/C 98/2

GRAPHOR 2

Motor circuit breakers, paired with Ag/Ni

Contact tips, brazed and welded contact parts, some contact rivets

Ag/C 97/3

GRAPHOR 3

Ag/C 96/4

GRAPHOR 4

Ag/C 95/5

GRAPHOR 5

GRAPHOR 3D GRAPHOR 4D GRAPHOR DF

Circuit breakers, paired with Cu, Motor-protective circuit breakers, paired with Ag/Ni,

Fault current circuit breakers, paired with Ag/Ni, Ag/W, Ag/WC, Ag/SnO2, Ag/ZnO,

(Main) Power switches, paired with Ag/Ni, Ag/W

Contact tips, brazed and welded contact

parts, some contact rivets with

Ag/C97/3

Ag/C 97/3

GRAPHOR 3

Ag/C 96/4

GRAPHOR 4

Ag/C 95/5

GRAPHOR 5

GRAPHOR 3D GRAPHOR 4D GRAPHOR DF

Circuit breakers, paired with Cu, Motor-protective circuit breakers, paired with Ag/Ni,

Fault current circuit breakers, paired with Ag/Ni, Ag/W, Ag/WC, Ag/SnO2, Ag/ZnO,

(Main) Power switches, paired with Ag/Ni, Ag/W

Contact profiles (weld tapes), Contact tips, brazed and welded contact parts

Referenzen

Referenzen