Trägerwerkstoffe

From Electrical Contacts
Revision as of 12:09, 20 September 2014 by Teitscheid (talk | contribs) (temp edit)

Jump to: navigation, search

Die Zuverlässigkeit und Lebensdauer von Kontaktsystemen in Schaltgeräten sowie elektromechanischen und elektronischen Bauelementen hängen häufig nicht allein vom eingesetzten Kontaktwerkstoff ab. Auch die Wahl des geeigneten Trägerwerkstoffes spielt eine entscheidende Rolle.

Als Trägermaterialien haben Werkstoffe auf Kupferbasis die größte Bedeutung. Je nach Anwendung kommen auch Werkstoffe auf Nickelbasis oder Mehrschicht- Verbundwerkstoffe, z.B. Thermobimetalle zum Einsatz. Für spezielle Anwendungen in der Mittel- und Hochspannungstechnik sowie für Kontaktfedern und Schnappscheiben in der Informationstechnik werden Werkstoffe auf Eisenbasis berücksichtigt, die aber im Rahmen dieses Datenbuches nicht behandelt werden.

Die Anforderungen, die an die Trägerwerkstoffe gestellt werden, sind entsprechend ihres unterschiedlichen Einsatzes vielfältig. So werden von Kupferwerkstoffen, neben einer hohen elektrischen und thermischen Leitfähigkeit, gute Festigkeitseigenschaften auch bei erhöhten Temperaturen sowie eine ausreichend hohe Korrosionsbeständigkeit verlangt. Werden die Trägerwerkstoffe als Kontaktfedern eingesetzt, so muss der Werkstoff noch zusätzlich gute Federeigenschaften aufweisen. Daneben sind je nach Fertigungsprozess auch eine Reihe technologischer Eigenschaften, wie gute Warm- und Kaltumformbarkeit, spanende Formbarkeit, Stanzbarkeit, Schweiß- und Lötbarkeit sowie Galvanisierbarkeit, zu nennen.

Kupfer und Kupfer-Legierungen

Übersicht über Normen

Werkstoffe aus Kupfer und Kupferlegierungen, die für den Einsatz in der Elektrotechnik und Elektronik vorgesehen sind, werden i.d.R. in Normen festgelegt. Nach DIN genormte Werkstoffe werden durch Kurzzeichen und Werkstoffnummer beschrieben. In den europäischen Normen (EN) sind die Werkstoffe den aus ihnen hergestellten Produkten zugeordnet und ebenfalls durch Kurzzeichen und Werkstoffnummer gekennzeichnet. Zum Vergleich werden auch die Werkstoffbezeichnungen nach UNS (Unified Numbering System (USA)) angeführt Table 1.

Die für den Bereich elektrischer Kontakte wichtigen EN-Normen sowie entsprechende ASTM (American Society for Testing and Materials)-Normen für Walzflacherzeugnisse aus Kupfer und Kupferlegierungen sind:

Normbezeichnung Beschreibung
DIN EN 1652 Kupfer und Kupferlegierungen in Platten, Blechen, Bändern, Streifen und Ronden zur allgemeinen Verwendung
DIN EN 1654 Kupfer und Kupferlegierungen für Federn und Steckverbinder
DIN EN 1758 Kupfer und Kupferlegierungen als Bänder für Systemträger
ASTM B 103/B103M-10 Spec. for Phosphor Bronce Plate, Sheet, Strip, and Rolled Bar
ASTM B 36/B36M-95 Spec. for Brass Plate, Sheet, Strip, and Rolled Bar
ASTM B 122/B122M-08 Spec. for CuNiSn-, CuNiZn-, and CuNi-Alloy
ASTM B 465-09 Spec. for Copper-Iron-Alloy Plate, Sheet, and Strip
ASTM B 194-08 Standard Spec. for CuBe-Alloy Plate, Sheet, Strip and Rolled Bar
ASTM B 534-07 Sec. for CuCoBe-Alloy and CuNiBe-Alloy Plate, Sheet, Strip, and Rolled Bar

Die oben angeführten EN-Normen ersetzen teilweise oder vollständig die DIN-Normen: DIN 1777, DIN 17670, DIN 1751, DIN 1791

Reines Kupfer

Kupfer wird in der Elektrotechnik vor allem wegen seiner hohen elektrischen ) Leitfähigkeit[1] eingesetzt, die mit 58 MS/m nur wenig unter der des Silbers liegt. Weitere Vorzüge des Kupfers sind seine hohe Wärmeleitfähigkeit, Korrosionsbeständigkeit und seine gute Umformbarkeit. Das Verfestigungsverhalten von Cu-ETP ist in Figure 1 dargestellt. Die durch Kaltumformung erreichte Verfestigung kann durch eine nachfolgende Wärmebehandlung wieder aufgehoben werden. Dabei hängt das Erweichungsverhalten stark vom Zustand der Kaltumformung ab (Figure 2 und Figure 3).

Die Reinheit des für elektrische Zwecke verwendeten technisch reinen, unlegierten Kupfers liegt je nach Kupfersorte bei > 99,90 bzw. 99,95 Massen-%. Die unterteilt in sauerstoffhaltige, sauerstofffreie und mit Phosphor desoxidierten Kupfersorten sind in DIN EN 1652 festgelegt (Table 1 und Table 2). Die physikalischen und mechanischen Eigenschaften einiger Reinkupfersorten sind in Table 3 and Table 4 aufgeführt. Demnach sind Cu-ETP, Cu-OF und Cu-HCP Kupfersorten, bei denen bestimmte Mindestwerte für die elektrische Leitfähigkeit garantiert werden.

Cu-ETP eignet sich wegen seines Sauerstoffanteils nicht zum Schweißen oder Hartlöten in reduzierender Atmosphäre (Gefahr der Wasserstoffkrankheit).

Cu-HCP, Cu-DLP und Cu-DHP sind sauerstofffreie, mit unterschiedlichen Phosphorgehalten desoxidierte Kupfersorten. Mit zunehmendem Phosphorgehalt sinkt die elektrische Leitfähigkeit. Cu-OF ist sowohl frei von Sauerstoff als auch von Desoxidationsmittel.


Table 1: Werkstoffbezeichnung einiger Reinkupfersorten
Werkstoffbezeichnung EN-KurzzeichenEN-NummerDIN-KurzzeichenDIN-NummerUNS
Cu-ETPCW004AE-Cu 582.0065C11000
Cu-OFCW008AOF-Cu2.0040C10200
Cu-HCPCW021ASE-Cu2.0070C10300
Cu-DLPCW023ASW-Cu2.0076C12000
Cu-DHPCW024AF-Cu2.0090C12200


Table 2: Zusammensetzung einiger Reinkupfersorten
Werkstoff Zusammensetzung Massenanteile [%]
EN Kurzzeichen Cu Bi O P Pb Sonstige
Cu-ETP >99.90 bis 0.0005 bis 0.040 bis 0.005 bis 0.03
Cu-OF >99.95 bis 0.0005 bis 0.005 bis 0.03
Cu-HCP >99.90 ca. 0.003
Cu-DLP >99.90 bis 0.005 0.005-0.013 bis 0.005 bis 0.03
Cu-DHP >99.90 0.015-0.040


Table 3: Physikalische Eigenschaften einiger Reinkupfersorten

Werkstoffbezeichnung

Dichte

Elektr.

Leitfähigkeit

Elektr. Widerstand

Wärmeleitfähigkei

Coeff. of

Lin. Ausdehnungskoeffizient

E-Moduls

of

Erweichungstemp.

(ca.10% Festigkeitsabfall)

Schmelztemperatur

EN-Kurzzeichen

[g/cm³][MS/m][% IACS][μΩ· cm][W/(m· K)] [10-6/K][GPa][°C][°C]

Cu-ETP

8.94

≥58

100

1.72

390

17.7

127

ca. 220

1083

Cu-OF

8.94

≥58

100

1.72

394

17.7

127

ca. 220

1083

Cu-HCP

8.94

≥54

93

1.85

380

17.7

127

ca. 220

1083

Cu-DLP

8.94

52

90

1.92

350

17.7

132

ca. 220

1083

Cu-DHP

8.94

≥46

80

2.17

310

17.6

132

ca. 220

1083


Table 4: Mechanische Eigenschaften einiger Reinkupfersorten

Werkstoff

Zustand

Zugfestigkeit

Rm

[MPa]

0,2% Dehngrenze Rp0,2

[MPa]

Bruchdehnung

A50

[ %]

Härte

HV

Cu-ETP
Cu-OF
Cu-HCP
Cu-DLP
Cu-DHP
R220220 - 260 ≤140≥3340 - 65
R240240 - 300 ≥180 ≥865 - 95
R290290 - 360≥250≥490 - 110
R360≥360≥320≥2 ≥110

Figure 1 Verfestigungsverhalten von Cu-ETP

Figure 2 Erweichungsverhalten von Cu-ETP nach 3h Glühdauer und einer Kaltumformung von 25%

Figure 3 Erweichungsverhalten von Cu-ETP nach 3h Glühdauer und einer Kaltumformung von 50%


Figure 1: Verfestigungsverhalten von Cu-ETP
Figure 2: Erweichungsverhalten von Cu-ETP nach 3h Glühdauer und einer Kaltumformung von 25%
Figure 3: Erweichungsverhalten von Cu-ETP nach 3h Glühdauer und einer Kaltumformung von 50%

Niedriglegierte Kupfer-Werkstoffe

Die niedriglegierten Kupferwerkstoffe kommen in ihren Eigenschaften dem reinen Kupfer am nächsten. Durch gezielte Zugabe kleiner Mengen von Legierungselementen gelingt es, die Festigkeit und vor allem die Erweichungstemperatur des Kupfers zu erhöhen, wobei die elektrische Leitfähigkeit nur wenig verringert wird (Figure 4). Als Legierungselemente kommen z.B. Silber, Eisen, Zinn, Zink, Nickel, Chrom, Zirkon, Silizium und Titan zum Einsatz. Der Anteil der zulegierten Komponente liegt meist deutlich unter 3 Massen-%. Zu dieser Werkstoffgruppe sind sowohl mischkristall- als auch ausscheidungshärtende Legierungen zu zählen. Auf die aushärtbaren Kupfer-Beryllium- und Kupfer-Chrom-Zirkon-Werkstoffe wird später eingegangen.

Einfluss geringer Zusätze auf die elektrische Leitfähigkeit von Kupfer

Aus der großen Zahl der angebotenen niedriglegierten Kupferwerkstoffe können hier nur wenige herausgegriffen und ihre Eigenschaften aufgelistet werden (Table 5 und Table 6). Einige dieser Werkstoffe sind nicht in der EN enthalten.

Die niedriglegierten Kupferwerkstoffe CuAg0,1 und CuCd1 kommen vor allem als Fahrdrähte von Oberleitungen zum Einsatz, wo sie Dauerbelastungen bei erhöhten Temperaturen ohne Erweichung standhalten müssen.

Die Werkstoffe CuFe0,1 und CuSn0,15 zeichnen sich durch eine hohe elektrische Leitfähigkeit aus. Die Festigkeitswerte beider Werkstoffe sind zwar verhältnismäßig niedrig, bleiben jedoch bei kurzzeitiger Wämeeinwirkung bis ca. 400°C nahezu unverändert. Sie werden als Systemträger für Halbleiterbauelemente aber auch als Trägerteile für Festkontakte in Schaltgeräten der Energietechnik verwendet.

CuFe2P ist ein Kupferwerkstoff mit hoher elektrischer Leitfähigkeit und guter Kaltumformbarkeit. Bei einer Anlassbehandlung treten eisenreiche Ausscheidungen im " -Kupfer auf, die die mechanischen Eigenschaften nur wenig, die elektrische Leitfähigkeit jedoch deutlich verbessern. Neben dem Einsatz als Kontaktträgerwerkstoff in Schaltgeräten hat CuFe2P breite Anwendung in Steckverbindern der Kfz-Technik und als Systemträger in der Halbleitertechnik gefunden.

Der Werkstoff CuNi2Si weist eine hohe Festigkeit und sehr gute Biegbarkeit bei guter elektrischer Leitfähigkeit auf. Dieses Eigenschaftsspektrum wird durch eine gezielte, feinverteilte Ausscheidung von Nickel-Siliziden erreicht. CuNi2Si kommt in Form von Stanz-Biegeteilen in thermisch hoch beanspruchten elektromechanischen Bauelementen vor allem in der Kfz-Technik zum Einsatz.

CuSn1CrNiTi und CuCrSiTi sind Weiterentwicklungen von Kupferwerkstoffen im Ausscheidungssystem Cu-Cr-Ti mit feinverteilten intermetallischen Ausscheidungen. Zu dieser Gruppe ist auch der Werkstoff CuNi1Co1Si zu zählen, der ein Eigenschaftsprofil ähnlich dem der niedrig legierten CuBe-Legierungen erreicht.


Table 5: Physikalische Eigenschaften einiger niedriglegierter Kupferwerkstoffe
Werkstoff
Bezeichnung
EN UNS
Zusammensetzung Dichte
[g/cm3]
Elektr. Leitfähigkeit Elektr. Widerstand
[μΩ·cm]
Wärmeleitfähigkeit
[W/(m·K)]
Lin. Ausdehnungskoeff.
[10-6/K]
E-Modul
[GPa]
Erweichungstemperatur
(ca. 10% Festigkeitsabfall)
[°C]
Schmelzbereich
[°C]
[MS/m] [% IACS]
CuAg 0,1
CW 013A
Ag 0.08-0.12
Cu Rest
8.89 56 97 1.8 380 17.7 126 1082
CuFe0,1P
nicht genormt
C19210
Fe 0.05-0.015
P 0.025-0.04
Cu Rest
8.89 53 91 1.9 350 17.0 130 ca. 280 1080
CuSn0,15
CW117C
C14415
Sn 0.1-0.15
Zn 0.1
Cu Rest
8.93 51 88 2.0 350 18.0 130 ca. 280 1060
CuFe2P
CW107C
C19400
Fe 2.1-2.6
P 0.015-0.15
Zn 0.05-0.2
Cu Rest
8.91 37 64 2.7 260 17.6 125 ca. 380 1084 - 1090
CuNi2Si
CW111C
C70260
Ni 1.6-2.5
Si 0.4-0.8
Fe 0.2
Cu Rest
8.80 23 40 4.3 200 17.0 130 ca. 430
CuSn1CrNiTi
nicht genormt
C18090
Sn 0.6
Ni 0.4
Cr 0.3
Ti 0.3
Cu Rest
8.87 35 60 2.9 240 17.6 133 ca. 480 1025 - 1074
CuNi1Co1Si
nicht genormt
C70350
Ni 1.5
Co 1.1
Si 0.6
Cu Rest
8.82 29 50 3.4 200 17.6 131 ca. 400
CuCrSiTi
nicht genormt
C18070
Cr 0.3
Ti 0.1
Si 0.02
Cu Rest
8.88 45 78 2.2 310 18.0 138 ca. 430


Table 6: Mechanische Eigenschaften einiger niedriglegierter Kupferwerkstoffe
Werkstoff Zustand Zugfestigkeit Rm
[MPa]
0,2% Dehngrenze
Rp02
[MPa]
Bruchdehnung
A50
[%]
Vickershärte
HV
Biegeradius1)
min senkrecht zur
Walzrichtung
Biegeradius1)
min parallel zur
Walzrichtung
Federbiegegrenze
Limit σFB
[MPa]
Biegewechselfestigkeit
Limit σBW
[MPa]
CuAg0,10 R 200
R 360
200 - 250
360
120
320
> 40
> 3
40
90
0 x t
0.5 x t
0 x t
0.5 x t
240 120
CuFe0,1P R 300
R 360
R 420
300 - 380
360 - 440
420 - 500
> 260
> 300
> 350
> 10
> 3
> 2
80 - 110
110 - 130
120 - 150
0 x t
0.5 x t
1.5 x t
0 x t
0.5 x t
1.5 x t
250 160
CuSn0,15 R 250
R 300
R 360
R 420
250 - 320
300 - 370
360 - 430
420 - 490
> 200
> 250
> 300
> 350
> 9
> 4
> 3
> 2
60 - 90
85 - 110
105 - 130
120 - 140
0 x t
0 x t
0 x t
1 x t
0 x t
0 x t
0 x t
1 x t
250 160
CuFe2P R 370
R 420
R 470
R 520
370 - 430
420 - 480
470 - 530
520 - 580
> 300
> 380
> 430
> 470
> 6
> 4
> 4
> 3
115 - 135
130 - 150
140 - 160
150 - 170
0 x t
0.5 x t
0.5 x t
1 x t
0 x t
0.5 x t
0.5 x t
1 x t
340 200
CuNi2Si R 430
R 510
R 600
430 - 520
510 - 600
600 - 680
> 350
> 450
> 550
> 10
> 7
> 5
125 - 155
150 - 180
180 - 210
0 x t
0 x t
1 x t
0 x t
0 x t
1 x t
500 230
CuSn1CrNiTi R 450
R 540
R 620
450 - 550
540 - 620
620 - 700
> 350
> 450
> 520
> 9
> 6
> 3
130 - 170
160 - 200
180 - 220
0.5 x t
1 x t
3 x t
0.5 x t
2 x t
6 x t
530 250
CuNi1Co1Si R 800
R 850
> 800
> 850
> 760
> 830
> 4
> 1
> 260
> 275
0.5 x t
1.5 x t
1.5 x t
2.5 x t
CuCrSiTi R 400
R 460
R 530
400 - 480
460 - 540
530 - 610
> 300
> 370
> 460
> 8
> 5
> 2
120 - 150
140 - 170
150 - 190
0 x t
0.5 x t
1 x t
0 x t
0.5 x t
1 x t
400 220

1) t: Banddicke max 0,5 mm

Diese neueren Kupfer-Werkstoffe zeichnen sich durch eine Optimierung von Eigenschaften, wie elektrische Leitfähigkeit, Festigkeit und Relaxation aus, die der jeweiligen Anwendung angepasst sind. Typische Anwendungen sind Kontaktfedern für Relais, Schalter und Steckverbinder.

Naturharte Kupfer-Legierungen

Legierungen wie Messinge (CuZn), Zinnbronzen (CuSn) und Neusilber (CuNiZn), bei denen die gewünschte Festigkeit durch Kaltumformung erzeugt wird, werden als naturharte Legierungen bezeichnet. Zu dieser Gruppe sind auch die Silberbronzen mit Silbergehalten von 2 bis 6 Massen-% zu zählen.

siehe Artikel: Naturharte Kupfer-Legierungen

Sonstige naturharte Kupfer-Legierungen

siehe Artikel: Sonstige naturharte Kupfer-Legierungen

Aushärtbare Kupfer-Legierungen

Neben den naturharten Kupferwerkstoffen spielen aushärtbare Kupferlegierungen als Trägerwerkstoffe für elektrische Kontakte eine wichtige Rolle. Bei den aushärtbaren Legierungen können durch eine geeignete Wärmebehandlung fein verteilte Ausscheidungen einer zweiten Phase erzeugt werden, die die Festigkeit des Werkstoffes deutlich erhöhen.

siehe Artikel: Aushärtbare Kupfer-Legierungen

Kenngrößen zur Bewertung der Eigenschaften von Kupfer-Legierungen

Für federnd beanspruchte Bauelemente stellen neben Festigkeit und elektrischer Leitfähigkeit vor allem die typischen Federeigenschaften, wie Federbiegegrenze und Biegewechselfestigkeit sowie die Biegbarkeit wichtige Kenngrößen dar. Bei höherer thermischer Beanspruchung wird das Verhalten der Federwerkstoffe durch Entfestigung und Relaxation bestimmt. Im folgenden sollen diese Kenngrößen kurz beschrieben werden.

siehe Artikel: Kenngrößen zur Bewertung der Eigenschaften von Kupfer-Legierungen

Vergleichende Bewertung der Kupfer-Werkstoffe

Die Auswahl des optimalen Kupferwerkstoffes aus der breiten Werkstoffpalette sollte sich am jeweiligen Anwendungsfall orientieren. Zweckmäßigerweise wird zunächst ein Anforderungsprofil erstellt, aus dem die erforderlichen Werkstoffeigenschaften abgeleitet werden können. Es gibt jedoch keinen Kupferwerkstoff, der alle Anforderungen gleich gut erfüllt. Es muss stets ein Kompromiss z.B. zwischen elektrischer Leitfähigkeit und Federeigenschaften gefunden werden.

Steht allein die Stromübertragung im Vordergrund und kann auf gute mechanische Eigenschaften weitgehend verzichtet werden, z.B. bei Trägerteilen für Festkontakte, so kommen je nach Höhe des Stromes Kupfer, niedriglegierte Kupferwerkstoffe z.B. CuSn0,15 oder aus Preisgründen Messing (CuZn30) als Werkstoff in Frage.

Bei Federelementen sind für die Wahl des Trägerwerkstoffes die Wechselbeziehungen zwischen elektrischer Leitfähigkeit und Biegewechselfestigkeit bzw. elektrischer Leitfähigkeit und Spannungsrelaxation von besonderem Interesse. Der erstere Fall tritt bei elektrisch hochbelasteten Relaisfedern auf. Hierbei spielt z.B. CuAg2 eine wichtige Rolle. Der zweite betrifft Trägerelemente, die unter mechanischer Dauerbelastung stehen, z.B. Steckverbinder. Die Federkraft muss über die gesamte Lebensdauer trotz erhöhter Umgebungstemperaturen und Stromerwärmung möglichst konstant sein. In diesem Fall muss die Relaxationsneigung der Kupferwerkstoffe, die zu einem allmählichen Abbau der Kontaktkraft führt, berücksichtigt werden. Daneben muss ein problemloser formgebender Fertigungsprozess gewährleistet sein, d.h. Biegeoperationen müssen auch bei hohen Festigkeitswerten durchführbar sein.

Die gestiegenen Anforderungen an die Federelemente für Steckverbinder vor allem beim Einsatz im Kfz, d.h. höhere Umgebungstemperatur, erhöhte Anforderungen an die Zuverlässigkeit und der Trend zur Miniaturisierung führten zu einem Generationswechsel bei den Werkstoffen, nämlich von CuZn30 und CuSn4 z.B. zu den CuNiSi-Legierungen. Diese CuNiSi-Legierungen und die neuen Kupfer-Hochleistungslegierungen wie CuNi1Co1 sind gegenüber den traditionellen Werkstoffen hinsichtlich Festigkeit, Relaxationsverhalten und elektrischer Leitfähigkeit deutlich verbessert.

Nickel und Nickel-Legierungen

Technisch reines Nickel

Technisch reines Nickel enhält üblicherweise 99,0 bis 99,8 Massen-% Ni und bis zu 1 Massen-% Co. Weitere Beimengungen sind Fe und Mn (Table 7 und Table 8). Verfestigungs- und Erweichungsverhalten von Nickel sind in den Bildern Figs. 5 – 6 dargestellt.

Bei den physikalischen Eigenschaften von Nickel ist vor allem der Elastizitätsmodul hervorzuheben, der nahezu doppelt so hoch ist wie der des Kupfers. Bei Temperaturen bis 345°C ist Nickel ferromagnetisch. Nickel zeichnet sich durch eine hohe Korrosionsbeständigkeit aus, ist sehr duktil und gut schweiß- und plattierbar. Es hat daher eine große Bedeutung als Basiswerkstoff für mehrschichtige Kontaktprofile. Eine weitere wichtige Funktion erfüllt Nickel bei dünnen Plattierungen, wo es als Zwischenschicht Diffusionsvorgänge zwischen kupferhaltigen Trägerwerkstoffen und Kontaktwerkstoffen auf Gold- und Palladiumbasis wirksam behindert.

Figure 5 Verfestigungsverhalten von techn. reinem Nickel durch Kaltumformung

Figure 6 Erweichungsverhalten von techn. reinem Nickel nach 3h Glühdauer und einer Kaltumformung von 50%

Strain hardening of technical pure nickel by cold working
Erweichungsverhalten von techn. reinem Nickel nach 3h Glühdauer und einer Kaltumformung von 50%

Nickel-Legierungen

NiCu30Fe ist wegen seiner geringen elektrischen Leitfähigkeit neben Ni und den CuNi-Legierungen der meist verwendete Werkstoff für gut schweißbare Kontaktunterlagen. Durch Zusätze von Fe (ca. 1 bis 2 Massen-%) sowie Mn und Co (jeweils 0,5 bis 1 Massen-%) kann die Festigkeit der binären NiCu30- Legierung gesteigert werden.

Die Festigkeitswerte von NiCu30Fe liegen deutlich über denen kupferreicher CuNi-Legierungen (Figs. 7 – 8). Aufgrund der guten Federeigenschaften und hohen Warmfestigkeit kommt NiCu30Fe vor allem für thermisch beanspruchte Federn zum Einsatz.

Figure 7 Verfestigungsverhalten von NiCu30Fe durch Kaltumformung

Figure 8 Erweichungsverhalten von NiCu30Fe nach 0,5 h Glühdauer und einer Kaltumformung von 80%

Verfestigungsverhalten von NiCu30Fe durch Kaltumformung
Erweichungsverhalten von NiCu30Fe nach 0,5 h Glühdauer und einer Kaltumformung von 80%


Table 7: Physikalische Eigenschaften von Nickel und Nickellegierungen
Material
Designation
WST-Nr.
EN UNS
Composition
[wt%]
Density
[g/cm3]
Electrical
Conductivity
Electrical
Resistivity
[μΩ·cm]
Thermal
Conductivity
[W/(m·K)]
Coeff. of Linear
Thermal
Expansion
[10-6/K]
Modulus of
Elasticity
[GPa]
Softening Temperature
(approx. 10% loss in
strength)
[°C]
Melting
Temp Range
[°C]
[MS/m] [% IACS]
Ni 99,2
2.4066
17740
N02200

Mn < 0.35
Cu < 0.25
Si < 0.25
Fe < 0.4
C < 0.01
Ni > 99.2
8.9 11 19 9.0 70,5 13.0 207 ca. 450 1140
NiCu30Fe
2.4360
17743
N04400
Cu 28 - 34
Fe 1 - 2.5
Ni Rest
Be 1.85 - 2.05
8.8 2.1 3.6 48.0 22 14.0 185 ca. 420 1300 - 1350
NiBe2

N03360
Ti 0.4 - 0.6
Ni Rest
8.3 5.0a 8.6 0.2a 48 14.4 210 1380

asolution annealed, and hardened


Table 8: Mechanical Properties of Nickel and Nickel Alloys
Material Hardness
Condition
Tensile Strength Rm
[MPa]
0,2% Yield Strength
Rp02
[MPa]
Elongation
A50
[%]
Vickers
Hardness
HV
Spring Bending
Limit σFB
[MPa]
Fatigue
Strength σBW
[MPa]
Ni99,2 R 380 ≥ 380 ≥ 100 ≥ 40 ≥ 100
NiCu30Fe R 400
R 700
400 - 600
700 - 850
≥ 160
≥ 600
≥ 30
≥ 4
95 - 125
200 - 240
NiBe2 R 700a
R 1300a
R 1500b
R 1900b
R 1800c
≥ 700
≥ 1300
≥ 1500
≥ 1900
≥ 1800
≥ 300
≥ 1200
≥ 1100
≥ 1750
≥ 1700
≥ 30
≥ 1
≥ 12
≥ 1
≥ 5
≥ 170
≥ 370
≥ 450
≥ 520
≥ 500




≥ 1400




≥ 400

asolution annealed, and cold rolled
bsolution annealed, cold rolled, and precipitation hardened
csolution annealed, cold rolled, and precipitation hardened at mill (mill hardened)

Nickel-Beryllium Alloys

Because of decreasing solubility of beryllium in nickel with decreasing temperature NiBe can be precipitation hardened similar to CuBe Figure 9. The maximum soluble amount of Be in Ni is 2.7 wt% at the eutectic temperature of 1150°C. to achieve a high hardness by precipitation hardening NiBe, similar to CuBe, is annealed at 970 - 1030°C and rapidly quenched to room temperature. Soft annealed material is easily cold formed and after stamping and forming an hardening anneal is performed at 480 to 500°C for 1 to 2 hours.

Phase diagram of nickel-beryllium

Commercial nickel-beryllium alloys contain 2 wt% Be. Compared to CuBe2 the NiBe2 materials have a significantly higher modulus of elasticity but a much lower electrical conductivity. The mechanical strength is higher than that of CuBe2 Figure 10, the spring bending force limit can exceed values of over 1400 MPa and the fatigue strength reaches approximately 400 MPa.

Precipitation hardening of NiBe2 (soft) at 480°C

A further advantage of NiBe2 is its high temperature stability. Cold worked and subsequently precipitation hardened NiBe2 can withstand sustained temperatures of 400 - 650°C, depending on ist pre-treatment.

Similar to CuBe materials, NiBe alloys are available in mill hardened in various conditions or also already precipitation hardened at the manufacturer.

Nickel-beryllium alloys are recommended for mechanically and thermally highly stressed spring components. For some applications their ferro-magnetic properties can also be advantageous.

Triple-Layer Carrier Materials

Manufacturing of triple-layer carrier materials is usually performed by cold rollcladding. The three materials cover each other completely. The advantage of this composite material group is that the different mechanical and physical properties of the individual components can be combined with each other.

Depending on the intended application the following layer systems are utilized:

  • Conduflex N
    CuSn6 - Cu - CuSn6

The high electrical and thermal conductivity as well as the current carrying capacity of copper is combined with the spring properties of the tin bronze. Conduflex N strips are used in a thickness range of 0.1 – 1,5 mm in a maximum width of 140 mm.

  • Cu - FeNi36 (Invar) - Cu

The high electrical conductivity and ductility of copperis combined with the low coefficient of thermal conductivity of the Invar alloy. The dimensionsional range is 0.2 – 1.8 mm in thickness with a maximum width of 140 mm.

  • Cu – Fe or Steel – Cu

The high electrical conductivity and good arc mobility properties of copper are combined with the mechanical strength and magnetic properties of iron or steel. The thickness and width range of material strips are the same of the ones for Cu – Invar – Cu system.

The thickness ratios of the components can be selected according to the application requirements. The two outer layers usually have the same thickness.

Thermostatic Bimetals

Thermostatic bimetals are composite materials consisting of two or three layers of materials with different coefficients of thermal expansion. They are usually bonded together by cladding. If such a material part is heated either directly through current flow or indirectly through heat conduction or radiation, the different expansion between the active (strong expansion) and passive (low expansion) layer causes bending of the component part.

Directional or force effects on the free end of the thermostatic bimetal part is then used as a trigger or control mechanism in thermostats, protective switches, or in control circuits. Depending on the required function of the thermostatic bimetal component different design shapes are used:

  • Straight or U-shaped strips for nearly linear motion
  • Circular discs for small linear motions with high force
  • Spirals and filament spring shapes for circular motion
  • Stamped and formed parts for special designs and applications

The wide variety of thermostatic bimetal types is specified mostly through DIN 1715 and/or applicable ASTM standards Table 9. The different types have varying material compositions for the active and passive side of the materials. The mostly used alloys are iron-nickel and manganese-copper-nickel. Mainly used in circuit protection switches (i.e. circuit breakers) some thermo-bimetals include an intermediate layer of copper or nickel which allows to design parts with a closely controlled electrical resistance.


Table 9: Partial Selection from the Wide Range of Available Thermo-Bimetals
Designation
DIN 1715
Designation
ASTM
Specific Thermal Deflection
[106/K]
Sprecific
Electrical
Resistance k [μΩ·m]
Typical
Application Range [°C]
Application
Limit [°C]
Composition
TB 20110

TB 1577A

TB1170A


TM 2
TM 8

TM 1

TM 3
TM 4
21.1
15.3
15.5
14.2
11.7
10.6
8.5
1.12
1.41
0.79
0.78
0.70
0.71
0.66
- 70 – + 260
- 70 – + 260
- 70 – + 370
- 70 – + 370
- 70 – + 425
- 70 – + 480
- 70 – + 425
350
350
450
450
480
540
540
Two components
TB 1517
TB 1511


TB 1303

TB 1109


TM 28
TM 26
TM 25
TM 24

14.9
14.9
14.3
13.9
13.2
13.1
12.3
11.5
0.17
0.11
0.15
0.08
0.03
0.05
0.03
0.09
- 70 – + 260
- 70 – + 260
- 70 – + 315
- 70 – + 315
- 70 – + 260
- 70 – + 315
- 70 – + 315
- 70 – + 380
400
400
350
350
300
350
350
400
Three components with Cu intermediale layer
TB 1555
TB 1435


TB 1425





TM 17
TM 15

TM 13
TM 11
TM 9
15.0
14.8
14.2
14.1
14.0
13.6
12.8
10.7
0.55
0.40
0.66
0.50
0.25
0.33
0.25
0.17
- 70 – + 260
- 70 – + 260
- 70 – + 370
- 70 – + 370
- 70 – + 260
- 70 – + 370
- 70 – + 370
- 70 – + 370
450
450
480
480
450
480
480
480
Three components with Ni intermediale layer

Design Formulas

For the design and calculation of the most important thermostatic-bimetal parts formulas are given in Table 10. The necessary properties can be extracted for the most common materials from Table 9. The values given are valid only for a temperature range up to approximately 150°C. For higher temperatures data can be obtained from the materials manufacturer.


Table 10: Design Formulas for Thermostatic Bimetal Components
Shape of the Thermostatic Bimetal Deflection Mechanical Action Force Thermal Action Force
Cantilevered strip
Contilevered strip.jpg
A =
<pre>  \frac {\alpha \Delta TL^2}{s} P =
<pre>  \frac {cA Bs^3}{L^3} P =
<pre>  \frac {b \Delta T Bs^3}{L}
Dual supported strip
Dual supported strip.jpg
A =
<pre>  \frac {\alpha \Delta T L^2}{4s} P =
<pre>  \frac {16c AB s^3}{L^3} P =
<pre>  \frac {4b \Delta TB s^2}{L}
U-shaped element
U shaped element.jpg
A =
<pre>  \frac {\alpha \Delta T L^2}{2s} P =
<pre>  \frac {4c AB s^3}{L^3} P =
<pre>  \frac {2b \Delta TB s^2}{L}
Spiral
Spiral.jpg
A =
<pre>  \frac {\alpha \Delta T}{s} (f^2 - e^2 + 4 r^2 + 2 e f + 2 \pi r f)
Helical spring
Helical spring.jpg
\alpha =
<pre>  \frac {\alpha_{1} \Delta TL}{s} P =
<pre>  \frac {c_{1} \alpha Bs^3}{L \cdot r} P =
<pre>  \frac {b_{1} \Delta TBs^2}{r}
Disc
Disc.jpg
A =
<pre>  \frac {\alpha \Delta T (D^2 - d^2)}{5s} P =
<pre>  \frac {16c A s^3}{D^2 - d^2} P = 3,2 b \Delta T s^2
Reversed strip
Reversed strip.jpg
A =
<pre>  \frac {\alpha \Delta T}{s} (y^2 - 2xy - x^2) P =
<pre>  \frac {c ABs^2}{L^3} P =
<pre>  \frac {b \Delta T Bs^2}{L^3} (y^2 - 2xy - x^2)
Reversed U-shaped element
Reserved u shaped element.jpg
A =
<pre>  \frac {\alpha \Delta T}{s} [f^2 + 4 r^2 + 2 \pi r f - (e^2 - 2ex^2 - x^2) + 2f (e - x)]
A Deflection in mm B Width in mm a_{1} = \frac {360}{\pi} \cdot a
\alpha Turn angle in ° D,d Diameter in mm
P Force in N r Radius in mm b_{1} =  \frac {2}{3} \cdot b
\Delta T Temperature difference in K a Specific therm. Deflection in 1/K
s Thickness in mm b=ac Thermal action force constant N/(mm^2 \cdot K) c_{1} =    \frac {\pi}{540} \cdot c
L Free moving length in mm c Mechan. action force constant in N/mm^2

Stress Force Limitations

For all calculations according to the formulas in Table 10 one should check if the thermally or mechanically induced stress forces stay below the allowed bending force limit. The following formulas are applicable for calculating the allowable load (Force Pmax or momentum Mmax):


Single side fixed strip P_{max} <
   \frac {\sigma Bs^2}{6L}
Both sides fixed strip P_{max} <
   \frac {\sigma Bs^2}{1,5L}
Spiral or filament M_{max} <
   \frac {\sigma Bs^2}{6}
Disc P_{max} <
   \frac {2 \sigma s^2}{3}

\sigma = bending stress

Kommentare

  1. Als Einheiten für die Kennzeichnung der elektrischen Leitfähigkeit sind MS/m and m/Ω.mm2 gebräuchlich. Häufig erfolgt auch die Angabe in % IACS ( International Annealed Copper Standard), wobei 100% IACS der Leitfähigkeit von Kupfer mit 58 MS/m entspricht. Für die Bezeichnung von Festigkeitszuständen gelten die Einheiten N/mm2 und MPa.

    1 MS/m entspricht 1 m/Ωmm2
    1 MPa entspricht 1 N/mm2

Referenzen

ASM Handbuch Volume 2, 10th Edition: Properties and Selection of Nonferrous

Alloys and Special Purpose Materials, ASM International, Cleveland OH, USA 1990

Wieland-Kupferwerkstoffe. Wieland-Werke AG, Ulm 1999

Rau, G.: Metallische Verbundwerkstoffe. Werkstofftechnische

Verlagsgesellschaft, Karlsruhe 1977

Kayser, O., Pawlek, F., Reichel, K.: Die Beeinflussung der Leitfähigkeit reinsten

Kupfers durch Beimengungen. Metall 8 (1954) 532-537

Dies, K.: Kupfer und Kupferlegierungen in der Technik. Springer-Verlag, Berlin, Heidelberg, New York, 1967

Gerlach,U.; Kreye, H.: Gefüge und mechanische Eigenschaften der Legierung

CuNi9Sn2. Metall 32 (1978) 1112-1115

Beryvac, Firmenschrift Vakuumschmelze GmbH, Hanau 1974

Beryvac 520, Firmenschrift Vacuumschmelze GmbH, Hanau 1975

Kupfer-Beryllium, Firmenschrift Brush Wellman

Kreye, H.; Nöcker, H.; Terlinde, G.: Schrumpfung und Verzug beim Aushärten von Kupfer-Beryllium-Legierungen. Metall 29 (1975) 1118-1121