Open main menu

Electrical Contacts β

Changes

Platinum Metal Based Materials

712 bytes removed, 10:24, 4 January 2023
no edit summary
The platinum group metals include the elements Pt, Pd, Rh, Ru, Ir, and Os ''(Table <xr id="tab:Properties_Production_Processes_and_Application_Forms_for_Platinum_Metals"/><!--(Tab. 2.6)''-->). For electrical contacts , platinum and palladium have practical significance as base alloy materials and ruthenium and iridium are used as alloying components. Pt and Pd have similar corrosion resistance as gold but because for the reason of their catalytical properties , they tend to polymerize adsorbed organic vapors on contact surfaces. During frictional movement between contact surfaces , the polymerized compounds known as “brown powder” are formed , which can lead to significantly a significant increase in contact resistance. Therefore Pt and Pd are typically used as alloys and not in their pure form for electrical contact applications.
Rhodium is not used as a solid contact material but is applied for example as a electroplated layer in sliding contact systems. Ruthenium is mostly used as an alloying component in the material PdRu15<figtable id="tab:Properties_Production_Processes_and_Application_Forms_for_Platinum_Metals"><caption>'''<!--Table 2. The metals osmium 6:-->Properties, Production Processes, and iridium have no practical applications in electrical contacts.Application Forms for Platinum Metals'''</caption>
Since Pd was for {| class="twocolortable" style="text-align: left; font-size: 12px"|-!Element !Properties!Processing!Forms of Application|-|Ru<br />Ruthenium|Dull grey to silvery white, very hard and brittle,<br />in the longest time rather stable presence of oxygen resistant to acids,<br />oxidizes during heating in price it was looked air|Vapor deposition, sputtering, powder metallurgy,<br />warm-forming only possible at 1200 – 1500°C|Powder; in sheet form, as coatings,<br />and as wire mostly as a substitute for the more expensive gold. This was followed by a steep increase alloying component|-|Rh<br />Rhodium |Almost silvery white, very hard and brittle, not soluble in the Pd price which caused a significant reduction acids,<br />oxidizes in its use in electrical contacts. Today air during red anneal|Electroplating, vapor deposition, sputtering,<br />after warm-forming at 800 – 1000°C cold working is possible|Coatings (2011electroplated) the , alloying component,<br />in limited form as sheet and wire|-|Pd price again is lower than that of gold.<br />Palladium|Dull white, resistant to most acids,<br />oxidizes at red anneal|Electroplating, vapor deposition,<br />sputtering, cold working|Sheet, strip, tubing, wire,<br />rivets, and coatings|-|Os<br />Osmium|Bluish white, hardest platinum metal,<br />very brittle, resistant against non-oxidizing acids,<br />oxidizes easily on air|Powder metallurgy|Powder, alloying component|-|Ir<br />Iridium|Almost silvery white, very hard and brittle,<br />acid resistant, oxidizes at red anneal|Vapor deposition, sputtering, powder metallurgy,<br />warm-forming possible at 1200 – 1500°C|Powder, alloying component,<br />in limited amounts as sheet|-|Pt<br />Platinum|Grey white, ductile, acid resistant except for aqua regia,<br />HBr, and HJ, oxidation resistant at red anneal|Electroplating, vapor deposition,<br />sputtering, cold working|Sheet, strip, tubing, wire, rivets, coatings|}</figtable>
Alloys of Pt with Ru, Ir, Ni, and W were widely used in electromechanical components in the telecommunication industry and in heavy duty automotive breaker points ''(Table 2.7)''. Today these components have been replaced in many applications by solid state technology and the usage of these materials is greatly reduced. Pd alloys however have a more significant importance. PdCu15 is widely used for example in automotive flasher relays. Because of their resistance to sulfide formation PdAg alloys are applied in various relay designs. The ability to thermally precipitation harden some
multi component alloys based on PdAgAuPt they find special usage in wear resistant sliding contact applications. Pd44Ag38Cu15PtAuZn is a standard alloy in this group.
Platinum and palladium alloys are mainly Rhodium is not used similar to the gold based materials in the form of welded wire and profile segments as a solid contact material but rarely is applied for example as a electroplated layer in sliding contact rivetssystems. Because of the high precious metal prices joining technologies are Ruthenium is mostly used that allow the most economic application of the contact alloy as an alloying component in the area where functionally needed. Because of their resistance to material transfer they are used for DC applications and due to their higher arc erosion resistance they are applied for medium electrical loads up to about 30W in relays and switches ''(Table 2PdRu15.10)''. Multi-component alloys based on Pd with higher hardness The metals osmium and wear resistance are mainly used as spring arms iridium have no practical applications in sliding contact systems and DC miniature motorselectrical contacts.
==DEVELOP:ImageLIst=====BEGIN====Since Pd was for the longest time rather stable in price, it was seen as a substitute for the more expensive gold. This was followed by a steep increase in the Pd price, which caused a significant reduction in its use in electrical contacts. Today (Dec. 2021) the palladium price is around 2600 Euro/oz.
Alloys of Pt with Ru, Ir, Ni and W were widely used in electromechanical components in the telecommunication industry and in heavy duty automotive breaker points (<xr id="figtab:Physical Properties,_Production_Processes,_and_Application_Forms_for_Platinum of the Platinum Metals"an their Alloys/> Properties, Production Processes, and Application Forms for Platinum Metals ).
<xr figtable id="figtab:Physical_Properties_of_the_Platinum_Metals_and_their_AlloysPhysical Properties of the Platinum Metals an their Alloys"/> <caption>'''<!--Table 2.7:-->Physical Properties of the Platinum Metals and an their Alloys'''</caption>
<xr id{| class="twocolortable" style="figtext-align:Mechanical_Properties_of_the_Platinum_Metals_and_their_Alloysleft; font-size: 12px"|-!Material!Platin/Palladium<br/>Content<br/>[wt.%]!Density<br/>[g/cm<sup>3</sup>]!Melting Point or Range<br/>[°C]!Electrical<br/>Resistivity<br/>[µΩ*cm]!Electrical<br/>Conductivity<br/>[MS/m]!Thermal<br/>Conductivity<br/>[W/m*K]!Temp. Coefficient of the<br/>Electrical Resistance<br/>[10<sup>3</sup>/K]!modulus of<br/>Elasticity<br/>[Gpa]|-|Pt (99,95)| >99,95|21,5|1772|10,6|9,5|72|3,9|173|-|PtIr5|95|21,5|1774 - 1776|22,2|4,5|42||190|-|PtIr10|90|21,6|1780 - 1785|17,9|5,6|29Table |2,0|220|-|PtRu10|90|20,6|ca.1800|33,3|3,0||0,83|235|-|PtNi6|92|19,2|1670 - 1710|30|3,3||1,5|180|-|PtW5|95|21,3|1830 - 1860|43,4|2,3||0,7|185|-|Pd (99,95)| >99,95|12,0|1554|10,8|9,3|72|3,8|124|-|PdCu15|85|11,3|1370 - 1400|38,5|2,6|17|0,49|175|-|PdCu40|60|10,5|1200 - 1230|33,3|3,0|38|0,28|175|-|PdNi5|95|11,8: Mechanical Properties of the Platinum Metals and their Alloys|1455 - 1485|16,9|5,9||2,47|175|-|}</figtable>
<xr id="fig:Influence_of_1-20_atom%_of_different_additive_metals_on_the_electrical_resistivit_ p_of_platinum_(Degussa)"/>
Fig. 2.25: Influence of 1-20 atom% of different additive metals on the electrical resistivity p of platinum (Degussa)
Today these components have been replaced in many applications by solid state technology and the usage of these materials is greatly reduced. Pd alloys however have a more significant importance. PdCu15 is widely used, for example in automotive flasher relays. Because of their resistance to sulfide formation PdAg alloys are applied in various relay designs. With the ability to thermally precipitation harden some multi component alloys based on PdAgAuPt, they find special usage in wear resistant sliding contact applications. Pd44Ag38Cu15PtAuZn is a standard alloy in this group (<xr id="figtab:Mechanical_Properties_of_the_Platinum_Metals_and_their_Alloys"Influence_of_1/><!-20_atom%_of_different_additive_metals_on_the_electrical_resistivit_ p_of_platinum-(Tab 2.8)--> and <xr id="tab:Contact_and_Switching_Properties_of_the_Platinum_Metals_and_their_Alloys"/>Fig<!--(Tab. 2.26: Influence of 19)--22 atom% of different additive metals on the electrical resistivity p of palladium>).
Platinum and palladium alloys are mainly used similar to the gold based materials in the form of welded wire and profile segments but rarely as contact rivets. Due to the high precious metal prices, joining technologies are used, that allow the most economic application of the contact alloy in the area where functionally needed. For reason of their resistance to material transfer they are used for DC applications and due to their higher arc erosion resistance, they are applied for medium electrical loads up to about 30W in relays and switches (<xr id="fig:Phase_diagram_of_platinum-iridiumApplication_Examples_and_Form_of_Supply_for_Platinum_Metals_and_their_Alloys"/>Fig<!--(Table 2. 210)-->).27: Phase diagram of platinumMulti-iridiumcomponent alloys based on Pd with higher hardness and wear resistance are mainly used as spring arms in sliding contact systems and DC miniature motors.
<xr figtable id="figtab:Mechanical_Properties_of_the_Platinum_Metals_and_their_Alloys"Phase_diagram_of_platinum><caption>'''<!-nickel-Table 2.8:-->Mechanical Properties of the Platinum Metals and their Alloys'''</caption><table class="twocolortable"><tr><th rowspan="2">Material</th><th colspan="2">Tensile Strength [MPa]</th><th colspan="2">Elongation A [%]</th><th colspan="2">Vickers Hardness HV 1</th></tr><tr><th>soft</th><th>70% cold worket</th><th>soft</th><th>70% cold worket</th><th>soft</th><th>70% cold worket</th></tr><tr><td>Pt (99,95)</td><td>150</td><td>360</td><td>40</td><td>3</td><td>40</td><td>120</td></tr><tr><td>PtIr5</td><td>260</td><td>550</td><td>25</td><td>2</td><td>85</td><td>160</td></tr>Fig. <tr><td>PtIr10</td><td>340</td><td>570</td><td>24</td><td>2</td><td>105</td><td>210</td></tr><tr><td>PtRu10</td><td>650</td><td>1000</td><td>24</td><td>2</td><td>195</td><td>320</td></tr><tr><td>PtNi8</td><td>640</td><td>950</td><td>22</td><td>2</td><td>200</td><td>320</td></tr><tr><td>PtW5</td><td>530</td><td>860</td><td>21</td><td>2</td><td>150</td><td>270</td></tr><tr><td>Pd (99,95)</td><td>200</td><td>420</td><td>42</td><td>2</td><td>40</td><td>90</td></tr><tr><td>PdCu15</td><td>400</td><td>780</td><td>38</td><td>2</td><td>90</td><td>220</td></tr><tr><td>PdCu40</td><td>550</td><td>950</td><td>35</td><td>2</td><td>120</td><td>260</td></tr><tr><td>PdNi5</td><td>340</td><td>700</td><td>25</td><td>2.28: Phase diagram of platinum-nickel</td><td>95</td><td>200</td></tr><tr><td>Pd35AuAgPt</td><td></td><td></td><td></td><td></td><td></td><td>420*</td></tr><tr><td>Pd44Ag38Cu15 PtAuZn</td><td/><td/><td/><td/><td/><td>405*</td></tr><tr><td>Pd40Co40W20</td><td/><td/><td/><td/><td/><td>680*</td></tr></table></figtable>
<xr id="fig:Phase_diagram_of_platinum-tungsten"/>Fig. 2.29: Phase diagram of platinum-tungsten*maximum hardness
<xr figtable id="figtab:Contact_and_Switching_Properties_of_the_Platinum_Metals_and_their_Alloys"Phase_diagram_of_platinum-copper><table class="twocolortable"/>Fig. <caption> '''<!--Table 2.309: Phase diagram -->Contact and Switching Properties of palladiumthe Platinum Metals and their Alloys'''</caption><tr><th><p class="s11">Material</p></th><th><p class="s12">Properties<th colspan="2"></p></th></tr><tr><td><p class="s11">Pt</p></td><td><p class="s12">Very high corrosion resistance</p></td><td/></tr><tr><td><p class="s11">PtIr5 -copper10</p></td><td><p class="s12">Very high corrosion resistance, low contact resistance</p></td><td><p class="s12">High arc erosion resistance, high hardness</p></td></tr><tr><td><p class="s11">PtRu10</p></td><td><p class="s12">Very high corrosion resistance, low welding tendency</p></td><td><p class="s12">Low contact resistance, very</p><p class="s12">high hardness</p></td></tr><tr><td><p class="s11">PtNi8</p></td><td><p class="s12">Low material transfer tendency</p></td><td><p class="s12">Very high hardness</p></td></tr><tr><td><p class="s11">PtW5</p></td><td><p class="s12">Low material transfer tendency</p></td><td><p class="s12">High hardness</p></td></tr><tr><td><p class="s11">Pd</p></td><td><p class="s12">Strong tendency to “Brown Powder” formation</p></td><td><p class="s12">Less arc erosion resistant than Pt</p></td></tr><tr><td><p class="s11">PdCu15</p><p class="s11">PdCu40</p></td><td><p class="s12">Tendency to “Brown Powder” formation</p></td><td><p class="s12">Mostly resistant to material</p><p class="s12">transfer, high hardness</p></td></tr><tr><td><p class="s11">PdNi5</p></td><td><p class="s12">Strong tendency to “Brown Powder” formation</p></td><td><p class="s12">Low welding tendency</p></td></tr><tr><td><p class="s11">Pd44Ag38Cu15</p><p class="s11">PtAuZn</p></td><td><p class="s12">High mechanical wear resistance</p></td><td><p class="s12">Standard material for sliding</p><p class="s12">contact brushes</p></td></tr></table></figtable>
<xr id="fig:"Strain_hardening_of_Pt_by_cold_working"/>
Fig. 2.31: Strain hardening of Pt by cold working
<xr id="fig:"/>
Fig. 2.32: Softening of Pt after annealing for 0.5 hrs after 80% cold working
<xr figtable id="fig:Application_Examples_and_Form_of_Supply_for_Platinum_Metals_and_their_Alloys"><table class="twocolortable"/>Fig. <caption>'''<!--Table 2.3310: Strain hardening -->Application Examples and Form of Supply for Platinum Metals and their Alloys'''</caption><tr><th><p class="s11">Material</p></th><th><p class="s12">Application Examples</p></th><th><p class="s12">Forms of Supply</p></th></tr><tr><td><p class="s11">Pt (99,95)</p></td><td><p class="s12">Relays</p></td><td><p class="s12">Contact rivets, welded contact parts</p></td></tr><tr><td><p class="s11">PtIr5 by cold working</p><p class="s11">PtIr10</p><p class="s11">PtRu10</p><p class="s11">PtNi8</p><p class="s11">PtW5</p></td><td><p class="s12">Relays, sliding contact systems,</p><p class="s12">automotive ignition breaker points</p></td><td><p class="s12">'''Semi-finished Contact Materials''':</p><p class="s12">Wire, seam-welded contact profiles</p><p class="s12">'''Contact Parts:'''</p><p class="s12">Tips, wire-formed parts, solid and composite contact rivets, welded contact parts</p></td></tr><tr><td><p class="s11">Pd (99,95)</p><p class="s11">PdNi5</p></td><td><p class="s12">Relays</p></td><td><p class="s12">Micro-profiles (weld tapes), contact rivets, welded contact parts</p></td></tr><tr><td><p class="s11">PdCu15</p><p class="s11">PdCu40</p></td><td><p class="s12">Automotive flasher relays</p></td><td><p class="s12">Micro-profiles, composite contact rivets</p></td></tr><tr><td><p class="s11">Pd35AuAgPt</p><p class="s11">Pd44Ag38Cu15</p><p class="s11">PtAuZn</p><p class="s11">Pd40Co40W20</p></td><td><p class="s12">Potentiometers, slip rings, miniature</p><p class="s12">DC motors</p></td><td><p class="s12">Wire-formed parts, welded wire segments, multi-arm sliding contact brushes</p></td></tr></table></figtable>
<xr id="fig:"/>
Fig. 2.34: Softening of PtIr5 after annealing for 1 hr after different degrees of cold working
<xr iddiv class="fig:multiple-images"/>Fig. 2.35: Strain hardening of PtNi8 by cold working
<xr figure id="fig:Influence_of_1-20_atom%_of_different_additive_metals_on_the_electrical_resistivit_ p_of_platinum_(Degussa)"/>Fig[[File:Influence of platinum degussa. 2.36: Softening jpg|left|thumb|<caption>Influence of PtNi8 after annealing for 1 hr after 80- 20 atom% cold workingof different additive metals on the electrical resistivity p of platinum (Degussa)</caption>]]</figure>
<xr figure id="fig:Influence_of_1-20_atom%_of_different_additive_metals_on_the_electrical_resistivit_ p_of_platinum"/>Fig. 2.37[[File: Strain hardening Influence of PtW5 by cold working palladium.jpg|left|thumb|<xr id="fig:"/caption>Fig. 2.38: Softening Influence of PtW5 after annealing for 1hr after 801-22 atom% cold workingof different additive metals on the electrical resistivity p of palladium</caption>]]<xr id="fig:"/figure>Fig. 2.39: Strain hardening of Pd 99.99 by cold working
<xr figure id="fig:"/>Fig. 2.40: Strain hardening of PdCu15 by cold working <xr id="fig:"/>Fig. 2.41: Softening of PdCu15 after annealing for 0.5 hrs <xr id="fig:"/>Fig. 2.42: Strain hardening of PdCu40 by cold working <xr id="fig:"/>Fig. 2.43: Softening of PdCu40 after annealing for 0.5 hrs after 80% cold working <xr id="fig:"/>Fig. 2.44: Electrical resistivity p of PdCu alloys with and without an annealing step for forming an ordered phase <xr id="fig:"/>'''Table 2.9: Contact and Switching Properties of the Platinum Metals and their Alloys''' <xr id="fig:"/>'''Table 2.10: Application Examples and Form of Supply for Platinum Metals and their Alloys''' ===END====Table 2.6: Properties, Production Processes, and Application Forms for Platinum Metals<figtable id="fig:Properties,_Production_Processes,_and_Application_Forms_for_Platinum MetalsPhase_diagram_of_platinum-iridium">[[File:Properties production Phase diagram of platinum metalsiridium.jpg|left|thumb|<caption>Properties, Production Processes and Application Forms for Platinum Metals</caption>]]</figtable><figtable id="fig:Physical_Properties_of_the_Platinum_Metals_and_their_Alloys">Table 2Fig.7: Physical Properties of the Platinum Metals and their Alloys</figtable><figtable id="fig:Mechanical_Properties_of_the_Platinum_Metals_and_their_Alloys">'''Table 2.827: Mechanical Properties Phase diagram of the Platinum Metals and their Alloys''' <table border="1" cellspacing="0" style="borderplatinum-collapse:collapse"><tr>iridium<td/caption><td><p class="s11">soft</p></td><td><p class="s11">70% cold worket</p></td><td><p class="s11">soft</p></td><td><p class="s11">70% cold</p><p class="s11">worket</p></td><td><p class="s11">soft</p></td><td><p class="s11">70% cold</p><p class="s11">worket</p></td></tr><tr><td><p class="s11">Pt (99,95)</p></td><td><p class="s11">150</p></td><td><p class="s11">360</p></td><td><p class="s11">40</p></td><td><p class="s11">3</p></td><td><p class="s11">40</p></td><td><p class="s11">120</p></td></tr><tr><td><p class="s11">PtIr5</p></td><td><p class="s11">260</p></td><td><p class="s11">550</p></td><td><p class="s11">25</p></td><td><p class="s11">2</p></td><td><p class="s11">85</p></td><td><p class="s11">160</p></td></tr><tr><td><p class="s11">PtIr10</p></td><td><p class="s11">340</p></td><td><p class="s11">570</p></td><td><p class="s11">24</p></td><td><p class="s11">2</p></td><td><p class="s11">105</p></td><td><p class="s11">210</p></td></tr><tr><td><p class="s11">PtRu10</p></td><td><p class="s11">650</p></td><td><p class="s11">1000</p></td><td><p class="s11">24</p></td><td><p class="s11">2</p></td><td><p class="s11">195</p></td><td><p class="s11">320</p></td></tr><tr><td><p class="s11">PtNi8</p></td><td><p class="s11">640</p></td><td><p class="s11">950</p></td><td><p class="s11">22</p></td><td><p class="s11">2</p></td><td><p class="s11">200</p></td><td><p class="s11">320</p></td></tr><tr><td><p class="s11">PtW5</p></td><td><p class="s11">530</p></td><td><p class="s11">860</p></td><td><p class="s11">21</p></td><td><p class="s11">2</p></td><td><p class="s11">150</p></td><td><p class="s11">270</p></td></tr><tr><td><p class="s11">Pd (99,95)</p></td><td><p class="s11">200</p></td><td><p class="s11">420</p></td><td><p class="s11">42</p></td><td><p class="s11">2</p></td><td><p class="s11">40</p></td><td><p class="s11">90</p></td></tr><tr><td><p class="s11">PdCu15</p></td><td><p class="s11">400</p></td><td><p class="s11">780</p></td><td><p class="s11">38</p></td><td><p class="s11">2</p></td><td><p class="s11">90</p></td><td><p class="s11">220</p></td></tr><tr><td><p class="s11">PdCu40</p></td><td><p class="s11">550</p></td><td><p class="s11">950</p></td><td><p class="s11">35</p></td><td><p class="s11">2</p></td><td><p class="s11">120</p></td><td><p class="s11">260</p></td></tr><tr><td><p class="s11">PdNi5</p><p class="s11">Pd35AuAgPt</p></td><td><p class="s11">340</p></td><td><p class="s11">700</p></td><td><p class="s11">25</p></td><td><p class="s11">2</p></td><td><p class="s11">95</p></td><td><p class="s11">200</p><p class="s11">420*</p></td></tr><tr><td><p class="s11">Pd44Ag38Cu15</p></td><td/><td/><td/><td/><td/><td><p class="s11">405*</p></td></tr><tr><td><p class="s11">PtAuZn</p><p class="s11">Pd40Co40W20</p></td><td/><td/><td/><td/><td/><td><p class="s11">680*</p></td></tr><tr><td><p class="s31">*maximum hardness</p></td><td/><td/><td/><td/><td/><td/></tr></table></figtable> <figure id="Influence_of_1-20_atom%_of_different_additive_metals_on_the_electrical_resistivit_ p_of_platinum_(Degussa)>[[File:Influence of platinum degussa.jpg|right|thumb|Influence of 1- 20 atom% of different additive metals on the electrical resistivity p of platinum (Degussa)]]
</figure>
<figure id="Influence_of_1fig:Phase_diagram_of_platinum-20_atom%_of_different_additive_metals_on_the_electrical_resistivit_ p_of_platinumnickel">[[File:Influence Phase diagram of palladiumplatinum nickel.jpg|rightleft|thumb|Influence <caption>Fig. 2.28:Phase diagram of 1platinum-22 atom% of different additive metals on the electrical resistivity p of palladiumnickel</caption>]]
</figure>
<figure id="fig:Phase_diagram_of_platinum-iridiumtungsten">Fig. 2.27: Phase diagram of platinum-iridium[[File:Phase diagram of platinum iridiumpalladium copper.jpg|rightleft|thumb|<caption>Fig. 2.29:Phase diagram of platinum-iridiumtungsten</caption>]]
</figure>
<figure id="fig:Phase_diagram_of_platinum-nickelcopper">Fig. 2.28: Phase diagram of platinum-nickel[[File:Phase diagram of platinum nickelpalladium copper2.jpg|rightleft|thumb|<caption>Fig. 2.30: Phase diagram of platinumpalladium-nickelcopper</caption>]]
</figure>
<figure id="Phase_diagram_of_platinum-tungstenfig:Strain_hardening_of_Pt_by_cold_working">Fig. 2.29: Phase diagram of platinum-tungsten[[File:Phase diagram Strain hardening of palladium copperPt by cold working.jpg|rightleft|thumb|Phase diagram <caption>Fig. 2.31: Strain hardening of platinum-tungstenPt by cold working</caption>]]
</figure>
<figure id="Phase_diagram_of_platinum-copperfig:Softening_of_Pt_after_annealing_for_0.5_hrs_after_80%_cold_working">Fig. 2.30: Phase diagram of palladium-copper[[File:Phase diagram Softening of palladium copper2Pt after annealing.jpg|rightleft|thumb|Phase diagram <caption>Fig. 2.32: Softening of palladium-copperPt after annealing for 0.5 hrs after 80% cold working</caption>]]
</figure>
<figure id="Strain_hardening_of_Pt_by_cold_workingfig:Strain_hardening_of_PtIr5_by_cold_working">Fig. 2.31: Strain hardening of Pt by cold working[[File:Strain hardening of Pt PtIr5 by cold working.jpg|rightleft|thumb|<caption>Fig. 2.33: Strain hardening of Pt PtIr5 by cold working</caption>]]
</figure>
<figure id="fig:Softening_of_PtIr5_after_annealing_for_1_hr_after_different degrees_of_cold_working">Fig. 2.32: Softening of Pt after annealing for 0.5 hrs after 80% cold working[[File:Softening of Pt PtIr5 after annealing.jpg|rightleft|thumb|<caption>Fig. 2.34: Softening of Pt PtIr5 after annealing for 0.5 hrs 1 hr after 80% different degrees of cold working</caption>]]
</figure>
<figure id="fig:Strain_hardening_of_PtNi8_by_cold_working">Fig. 2.33: Strain hardening of PtIr5 by cold working[[File:Strain hardening of PtIr5 PtNi8 by cold working.jpg|rightleft|thumb|<caption>Fig. 2.35: Strain hardening of PtIr5 PtNi8 by cold working</caption>]]
</figure>
<figure id="fig:Softening_of_PtNi8_after_annealing_for_1_hr_after_80%_cold_working">Fig. 2.34: Softening of PtIr5 after annealing for 1 hr after different degrees of cold working[[File:Softening of PtIr5 PtNi8 after annealing.jpg|rightleft|thumb|<caption>Fig. 2.36: Softening of PtIr5 PtNi8 after annealing for 1 hr after different degrees of 80% cold working</caption>]]
</figure>
<figure id="fig:Strain_hardening_of_PtW5_by_cold_working">Fig. 2.35: Strain hardening of PtNi8 by cold working[[File:Strain hardening of PtNi8 PtW5 by cold working.jpg|rightleft|thumb|Strain hardening of PtNi8 by cold working]] <figure id=""caption>Fig. 2.3637: Softening Strain hardening of PtNi8 after annealing for 1 hr after 80% cold working[[File:Softening of PtNi8 after annealing.jpg|right|thumb|Softening of PtNi8 after annealing for 1 hr after 80% PtW5 by cold working</caption>]]
</figure>
<figure id="fig:Softening_of_PtW5_after_annealing_for_1_hr_after_80%_cold_working">Fig. 2.37: Strain hardening of PtW5 by cold working[[File:Strain hardening Softening of PtW5 by cold workingafter annealing.jpg|rightleft|thumb|Strain hardening <caption>Fig. 2.38: Softening of PtW5 by after annealing for 1 hr after 80% cold working</caption>]]
</figure>
<figure id="fig:Strain_hardening_of_Pd_99.99_by_cold_working">Fig. 2.38: Softening of PtW5 after annealing for 1hr after 80% cold working[[File:Softening Strain hardening of PtW5 after annealingPd-99 99by cold working.jpg|rightleft|thumb|Softening <caption>Fig. 2.39: Strain hardening of PtW5 after annealing for 1hr after 80% Pd 99.99 by cold working</caption>]]
</figure>
<figure id="fig:Strain_hardening_of_PdCu15_by_cold_working">Fig. 2.39: Strain hardening of Pd 99.99 by cold working[[File:Strain hardening of Pd-99 99by PdCu15 by cold working.jpg|rightleft|thumb|<caption>Fig. 2.40: Strain hardening of Pd 99.99 PdCu15 by cold working</caption>]]
</figure>
<figure id="">Fig. 2.40: Strain hardening of PdCu15 by cold working[[Filefig:Strain hardening of PdCu15 by cold workingSoftening_of_PdCu15_after_annealing_for_0.jpg|right|thumb|Strain hardening of PdCu15 by cold working]]</figure><figure id="5_hrs">Fig. 2.41: Softening of PdCu15 after annealing for 0.5 hrs[[File:Softening of PdCu15 after annealing.jpg|rightleft|thumb|<caption>Softening of PdCu15 after annealing for 0.5 hrs</caption>]]
</figure>
<figure id="fig:Strain_hardening_of_PdCu40_by_cold_working">Fig. 2.42: Strain hardening of PdCu40 by cold working[[File:Strain hardening of PdCu40 by cold working.jpg|rightleft|thumb|<caption>Strain hardening of PdCu40 by cold working</caption>]]
</figure>
<figure id="">Fig. 2.43fig: Softening of PdCu40 after annealing for 0Softening_of_PdCu40_after_annealing_for_0.5 hrs after 805_hrs_after_80% cold working_cold_working">[[File:Softening of PdCu40 after annealing.jpg|rightleft|thumb|<caption>Softening of PdCu40 after annealing for 0.5 hrs after 80% cold working</caption>]]
</figure>
<figure id="fig:Electrical_resistivity_p_of_PdCu_alloys">Fig. 2.44: Electrical resistivity p of PdCu alloys with and without an annealing step for forming an ordered phase[[File:Electrical resistivity p of PdCu alloys.jpg|rightleft|thumb|<caption>Electrical resistivity p of PdCu alloys with and without an annealing step for forming an ordered phase</caption>]]
</figure>
<figtable id="">'''Table 2.9: Contact and Switching Properties of the Platinum Metals and their Alloys'''<table border="1" cellspacing="0" style="border-collapse:collapse"><tr><td><p class="s11">Material</p></td><td><p class="s12">Properties</p></td></tr><tr><td><p class="s11">Pt</p></td><td><p class="s12">Very high corrosion resistance</p></td><td/></tr><tr><td><p class="s11">PtIr5 - 10</p></td><td><p class="s12">Very high corrosion resistance, low contact resistance</p></td><td><p class="s12">High arc erosion resistance, high hardness</p></td></tr><tr><td><p class="s11">PtRu10</p></td><td><p class="s12">Very high corrosion resistance, low welding tendency</p></td><td><p class="s12">Low contact resistance, very</p><p class="s12">high hardness</p></td></tr><tr><td><p class="s11">PtNi8</p></td><td><p class="s12">Low material transfer tendency</p></td><td><p class="s12">Very high hardness</p></td></tr><tr><td><p class="s11">PtW5</p></td><td><p class="s12">Low material transfer tendency</p></td><td><p class="s12">High hardness</p></td></tr><tr><td><p class="s11">Pd</p></td><td><p class="s12">Strong tendency to “Brown Powder” formation</p></td><td><p class="s12">Less arc erosion resistant than Pt</p></td></tr><tr><td><p class="s11">PdCu15</p><p class="s11">PdCu40</p></td><td><p class="s12">Tendency to “Brown Powder” formation</p></td><td><p class="s12">Mostly resistant to material</p><p class="s12">transfer, high hardness</p></td></tr><tr><td><p class="s11">PdNi5</p></td><td><p class="s12">Strong tendency to “Brown Powder” formation</p></td><td><p class="s12">Low welding tendency</p></td></tr><tr><td><p class="s11">Pd44Ag38Cu15</p><p class="s11">PtAuZn</p></td><td><p class="s12">High mechanical wear resistance</p></td><td><p class="s12">Standard material for sliding</p><p class="s12">contact brushes</p></td></tr></tablediv></figtable> <figtable id="">'''Table 2.10: Application Examples and Form of Supply for Platinum Metals and their Alloys'''<table border="1" cellspacing="0" style="border-collapse:collapse"><tr><td><p class="s11">Material</p></td><td><p class="s12">Application Examples</p></td><td><p class="s12">Forms of Supply</p></td></tr><tr><td><p class="s11">Pt (99,95)</p></td><td><p class="s12">Relays</p></td><td><p class="s12">Contact rivets, welded contact parts</p></td></tr><tr><td><p class="s11">PtIr5</p><p class="s11">PtIr10</p><p class="s11">PtRu10</p><p class="s11">PtNi8</p><p class="s11">PtW5</p></td><td><p class="s12">Relays, sliding contact systems,</p><p class="s12">automotive ignition breaker points</p></td><td><p class="s12">Semi-finished Contact Materials:</p><p class="s12">Wire, seam-welded contact profiles</p><p class="s12">Contact Parts:</p><p class="s12">Tips, wire-formed parts, solid and composite contact rivets, welded contact parts</p></td></tr><tr><td><p class="s11">Pd (99,95)</p><p class="s11">PdNi5</p></td><td><p class="s12">Relays</p></td><td><p class="s12">Micro-profiles (weld tapes), contact rivets, welded contact parts</p></td></tr><tr><td><p class="s11">PdCu15</p><p class="s11">PdCu40</p></td><td><p class="s12">Automotive flasher relays</p></td><td><p div class="s12clear">Micro-profiles, composite contact rivets</p></td></tr><tr><td><p class="s11">Pd35AuAgPt</p><p class="s11">Pd44Ag38Cu15</p><p class="s11">PtAuZn</p><p class="s11">Pd40Co40W20</p></td><td><p class="s12">Potentiometers, slip rings, miniature</p><p class="s12">DC motors</p></td><td><p class="s12">Wire-formed parts, welded wire segments, multi-arm sliding contact brushes</p></td></tr></table></figtablediv>
==References==
[[Contact Materials for Electrical Engineering#References|References]]
 
[[de:Werkstoffe_aus_Platin-Metallen]]