Open main menu

Electrical Contacts β

Changes

Other Naturally Hard Copper Alloys

643 bytes removed, 10:16, 4 January 2023
Copper-Nickel-Tin Alloys
====<!--5.1.5.1 -->Copper-Nickel Alloys====
Copper and nickel are in their solid and liquid phase completely soluble in each other (<xr id="fig:Phase diagram of copperPhase_diagram_of_copper-nickel_for_the_range_of_0-nickel for the range of 0 – 50 wt% nickel50_wt_nickel"/> <!--(Fig. 5.21)-->). Because of their very low electrical conductivity , they are mainly used as resistance alloys (<xr id="fig:Electrical conductivity of copperElectrical_conductivity_of_copper-nickel alloys as a function of nickel contentnickel_alloys_as_a_function_of_nickel_content"/> <!--(Fig. 5.22)-->). The work hardening and softening behavior of CuNi alloys and CuNi9Sn2 are shown in [[#figures6|(Figs. 3 – 7)]] <!--(Figs. 5.23 – 5.27)-->. Coppernickel alloys exhibit high corrosion resistance, good weldabilty, and the suitability for cladding to other materials. Because of these and their other properties (Tables <xr id="tab:Physical_ Properties_of_Selected_Copper_Nickel_Alloys"/><!--(Tab. 5.15 )--> and <xr id="tab:Mechanical_Properties_of_Selected_Copper_Nickel_Alloys"/><!--(Tab. 5.16)-->) they are, with and without additives of iron or manganese, widely used as good weldable backing layers on weld buttons and weld profiles (weld tapes).
====<!--5.1.5.2 -->Copper-Nickel-Tin Alloys====
Copper-Nickel- multi component alloys with 9 wt% Ni and 2 wt% Sn are used mainly as connector materials because of their suitable mechanical properties, their excellent relaxation behavior, and their high corrosion resistance. Other advantages include their high temperature stability and the good solderability , even after longer storage. They are also used as base materials for clad profiles and tapes. <xr id="fig:Phase diagram of copper-nickel for the range of 0 – 50 wt% nickel"/> Fig. 5.21: Phase diagram of copper-nickel for the range of 0 – 50 wt% nickel <xr id="fig:Electrical conductivity of copper-nickel alloys as a function of nickel content"/> Fig. 5.22: Electrical conductivity of copper-nickel alloys as a function of nickel content
<div class="multiple-images">
<figure id="fig:Phase diagram of copperPhase_diagram_of_copper-nickel for the range of 0 – 50 wt% nickelnickel_for_the_range_of_0-50_wt_nickel">
[[File:Phase diagram of copper nickel.jpg|left|thumb|<caption>Phase diagram of copper-nickel for the range of 0 – 50 wt% nickel</caption>]]
</figure>
<figure id="fig:Electrical conductivity of copperElectrical_conductivity_of_copper-nickel alloys as a function of nickel contentnickel_alloys_as_a_function_of_nickel_content">
[[File:Electrical conductivity of copper nickel alloys.jpg|left|thumb|<caption>Electrical conductivity of copper-nickel alloys as a function of nickel content</caption>]]
</figure>
 <figtable id="tab:tab5.15Physical_ Properties_of_Selected_Copper_Nickel_Alloys"><caption>'''<!--Table 5.15: -->Physical Properties of Selected Copper-Nickel Alloys''' </caption>
{| class="twocolortable" style="text-align: left; font-size: 12px"
!Composition<br />[wt%]
!Density<br />[g/cm<sup>3</sup>]
!colspan="2" style="text-align:center"|Electrical<br />Conductivity<br />[MS/m] [% IACS]
!Electrical<br />Resistivity<br />[μΩ·cm]
!Thermal<br />Conductivity<br />[W/(m·K)]
!Melting<br />Temp Range<br />[°C]
|-
|CuAg2<br />not standardized<br />!|Ag 2<br />Cu Rest<br />!|9.0!|49![MS/m] |85![% IACS]|2.0!|330!|17.5!|123!|ca. 330!|1050 - 1075!
|-
|CuAg2Cd1,5CuNi25<br />not standardizedCW350H<br />C71300|Ag 2Ni 24 - 26<br />Mn 0.5<br />Cd1,Zn 0.5<br />Fe 0.3<br />Cu Rest|98.94|3.0|435.2|33.3|29|15.5|147|ca. 500|1150 - 1210|-|74CuNi9Sn2<br />CW351H<br />C72500|Ni 8.5 - 10.5<br />Sn 1.8 - 2.8<br />Mn 0.3<br />Fe 0.3<br />Cu Rest|8.89|6.4|11|15.6|26050|1716.85|121140|ca. 350480|1060 - 1120|-|970 CuNi10Fe1Mn<br />CW352H<br />C70600|Ni 9.0 - 11.0<br />Fe 1.0 - 2.0<br />Mn 0.5 - 10551.0<br />Zn 0.5<br />Cu Rest|8.92|5.6|9|17.9|50|16.5|134||
|-
|CuAg6CuNi30Mn1Fe<br />not standardizedCW354H<br />C71500|Ag 6Ni 30 - 32<br />Mn 0.5 - 1.5<br />Fe 0.4 - 1.0<br />Zn 0.5<br />Cu Rest|98.293|382.6|664|238.45|27029|1715.5|120152
|
|960 1180 - 10501240
|}
</figtable>
<figtable id="tab:tab5.16Mechanical_Properties_of_Selected_Copper_Nickel_Alloys"><caption>'''<!--Table 5.16: -->Mechanical Properties of Selected Copper-Nickel Alloys''' </caption>
{| class="twocolortable" style="text-align: left; font-size: 12px"
!Spring Fatigue<br />Limit σ<sub>BW</sub><br />[MPa]
|-
|CuAg2CuNi25|R 280<br />R 380<br />R 450<br />R 550290|280 - 380<br />380 - 460<br />450 - 570<br />&ge; 550290|&le; 180<br />&ge; 300<br />&ge; 420<br />&ge; 500100|30<br />6<br />3<br />1|50 70 - 110<br />100 - 140<br />130 - 165<br />&ge; 160|0 x t<br />0 x t<br />1 x t|0 x t<br />0 x t<br />1 x t|400|190
|-
|CuAg2Cd1,5CuNi9Sn2|R 300340<br />R 380<br />R 480450<br />R 600500<br />R 560|300 340 - 410<br />380- 470<br />380 450 - 490530<br />480 500 - 620580<br />&ge; 600560 - 650|&le; 190250<br />&ge; 200<br />&ge; 310370<br />&ge; 440450<br />&ge; 550520|3020<br />8<br />34<br />12|55 75 - 110<br />100 - 145150<br />130 140 - 170<br />&ge; 160- 190<br />180 - 210|0 x t<br />0 x t<br />0 x t<br />1 x t|0 x t<br />0 x t<br />1 0 x t<br />2 x t|440520|220250
|-
|CuAg6CuNi10Fe1Mn|R 320300<br />R 400320|&ge; 300<br />R 500&ge; 320|&le; 100<br />R 650&le; 200|20|320 70 - 400120<br />400 &ge; 100|||||- 510|CuNi30Mn1Fe|R 350<br />500 R 410|350 - 660420<br />&ge; 650410|&le; 210120<br />&gele; 330<br />&ge; 460<br />&ge; 610300|30<br />6<br />3<br />135|70 80 - 120<br />110 - 150<br />145 - 175<br />&ge; 175110|0 x t<br />0 x t<br />1 x t|0 x t<br />0 x t<br />1 x t|460|230
|}
</figtable>
<sup>1)</sup> t: Strip thickness max. 0.5 mm
<xr id="fig:Strain hardening of copper-nickel alloys as a function of nickel content"/> Fig. 5.23: Strain hardening of copper-nickel alloys as a function of nickel content <xr id="fig:Strain hardening of CuNi25 by cold working"/> Fig. 5.24: Strain hardening of CuNi25 by cold working <xr div id="fig:Softening of CuNi25 after 1 hr annealing after 50% cold workingfigures6"/> Fig. 5.25: Softening of CuNi25 after 1 hr annealing after 50% cold working <xr id="fig:Strain hardening of CuNi9Sn2 by cold working (Wieland)"/> Fig. 5.26: Strain hardening of CuNi9Sn2 by cold working (Wieland) <xr id="fig:Softening of CuNi9Sn2 after 1 hr annealing after 60% cold working (Wieland)"/> Fig. 5.27: Softening of CuNi9Sn2 after 1 hr annealing after 60% cold working (Wieland) <div class="multiple-images">
<figure id="fig:Strain hardening of copper-nickel alloys as a function of nickel content">
[[File:Strain hardening of copper nickel alloys as function.jpg|left|thumb|<caption>Strain hardening of copper-nickel alloys as a function of nickel content</caption>]]
</figure>
==References==
[[Contact Carrier Materials#References|References]]
 
[[de:Sonstige_naturharte_Kupfer-Legierungen]]