Open main menu

Electrical Contacts β

Changes

Other Naturally Hard Copper Alloys

4,020 bytes added, 10:16, 4 January 2023
Copper-Nickel-Tin Alloys
====<!--5.1.5.1 -->Copper-Nickel Alloys====
Copper and nickel are in their solid and liquid phase completely soluble in each other ''(<xr id="fig:Phase_diagram_of_copper-nickel_for_the_range_of_0-50_wt_nickel"/><!--(Fig. 5.21)''-->). Because of their very low electrical conductivity , they are mainly used as resistance alloys ''(<xr id="fig:Electrical_conductivity_of_copper-nickel_alloys_as_a_function_of_nickel_content"/><!--(Fig. 5.22)''-->). The work hardening and softening behavior of CuNi alloys and CuNi9Sn2 are shown in [[#figures6|(Figs. 3 – 7)]]<!--(Figs. 5.23 – 5.27)-->. Coppernickel alloys exhibit high corrosion resistance, good weldabilty, and the suitability for cladding to other materials. Because of these and their other properties (Tables <xr id="tab:Physical_ Properties_of_Selected_Copper_Nickel_Alloys"/><!--(Tab. 5.15 )--> and <xr id="tab:Mechanical_Properties_of_Selected_Copper_Nickel_Alloys"/><!--(Tab. 5.16)-->) they are, with and without additives of iron or manganese, widely used as good weldable backing layers on weld buttons and weld profiles (weld tapes).
====<!--5.1.5.2 -->Copper-Nickel-Tin Alloys====
Copper-Nickel- multi component alloys with 9 wt% Ni and 2 wt% Sn are used mainly as connector materials because of their suitable mechanical properties, their excellent relaxation behavior, and their high corrosion resistance. Other advantages include their high temperature stability and the good solderability , even after longer storage. They are also used as base materials for clad profiles and tapes.
Fig. 5.21: Phase diagram of copper<div class="multiple-nickel for the range of 0 – 50 wt% nickel[[File:Phase diagram of copper nickel.jpg|right|thumb|Phase diagram of copper-nickel for the range of 0 – 50 wt% nickel]]images">
Fig. 5.22<figure id="fig: Electrical conductivity of copperPhase_diagram_of_copper-nickel_for_the_range_of_0-nickel alloys as a function of nickel content50_wt_nickel">[[File:Electrical conductivity Phase diagram of copper nickel alloys.jpg|rightleft|thumb|Electrical conductivity <caption>Phase diagram of copper-nickel alloys as a function for the range of 0 – 50 wt% nickel content</caption>]]</figure>
'''Table 5<figure id="fig:Electrical_conductivity_of_copper-nickel_alloys_as_a_function_of_nickel_content">[[File:Electrical conductivity of copper nickel alloys.15: Physical Properties jpg|left|thumb|<caption>Electrical conductivity of Selected Coppercopper-Nickel Alloys''' nickel alloys as a function of nickel content</caption>]]</figure></div><div class="clear"></div>
2 Teile!
<figtable id="tab:Physical_ Properties_of_Selected_Copper_Nickel_Alloys"><caption>'''<!--Table 5.1615: Mechanical -->Physical Properties of Selected Copper-Nickel Alloys''' </caption>
{| class="twocolortable" style="text-align: left; font-size: 12px"|-!Material<br />Designation<br />EN UNS !Composition<br />[wt%]!Density<br />[g/cm<sup>3</sup>]!colspan="2 Teile" style="text-align:center"|Electrical<br />Conductivity !Electrical<br />Resistivity<br />[μΩ·cm]!Thermal<br />Conductivity<br />[W/(m·K)]!Coeff. of Linear<br />Thermal<br />Expansion<br />[10<sup>-6</sup>/K]!Modulus of<br />Elasticity<br />[GPa]!Softening Temperature<br />(approx. 10% loss in<br />strength)<br />[°C]!Melting<br />Temp Range<br />[°C]|-!!!![MS/m] ![% IACS]!!!!!!|-|CuNi25<br />CW350H<br />C71300|Ni 24 - 26<br />Mn 0.5<br />Zn 0.5<br />Fe 0.3<br />Cu Rest|8.94|3.0|5.2|33.3|29|15.5|147|ca. 500|1150 - 1210|-|CuNi9Sn2<br />CW351H<br />C72500|Ni 8.5 - 10.5<br />Sn 1.8 - 2.8<br />Mn 0.3<br />Fe 0.3<br />Cu Rest|8.89|6.4|11|15.6|50|16.5|140|ca. 480|1060 - 1120|-|CuNi10Fe1Mn<br />CW352H<br />C70600|Ni 9.0 - 11.0<br />Fe 1.0 - 2.0<br />Mn 0.5 - 1.0<br />Zn 0.5<br />Cu Rest|8.92|5.6|9|17.9|50|16.5|134|||-|CuNi30Mn1Fe<br />CW354H<br />C71500|Ni 30 - 32<br />Mn 0.5 - 1.5<br />Fe 0.4 - 1.0<br />Zn 0.5<br />Cu Rest|8.93|2.6|4|38.5|29|15.5|152||1180 - 1240|}</figtable>
Fig. 5.23: Strain hardening of copper-nickel alloys as a function of nickel content[[File:Strain hardening of copper nickel alloys as function.jpg|right|thumb|Strain hardening of copper-nickel alloys as a function of nickel content]]
Fig. <figtable id="tab:Mechanical_Properties_of_Selected_Copper_Nickel_Alloys"><caption>'''<!--Table 5.2416: Strain hardening -->Mechanical Properties of CuNi25 by cold workingSelected Copper-Nickel Alloys'''</caption>
Fig. 5.25{| class="twocolortable" style="text-align: left; font-size: Softening of 12px"|-!Material!Hardness<br />Condition!Tensile Strength R<sub>m</sub><br />[MPa]!0,2% Yield Strength<br />R<sub>p02</sub><br />[MPa]!Elongation<br />A<sub>50</sub><br />[%]!Vickers<br />Hardness<br />HV!Bend Radius<sup>1)</sup><br />perpendicular to<br />rolling direction!Bend Radius<sup>1)</sup><br />parallel to<br />rolling direction!Spring Bending<br />Limit σ<sub>FB</sub><br />[MPa]!Spring Fatigue<br />Limit σ<sub>BW</sub><br />[MPa]|-|CuNi25 after |R 290|&ge; 290|100|30|70 - 100|||||-|CuNi9Sn2|R 340<br />R 380<br />R 450<br />R 500<br />R 560|340 - 410<br />380 - 470<br />450 - 530<br />500 - 580<br />560 - 650|&le; 250<br />&ge; 200<br />&ge; 370<br />&ge; 450<br />&ge; 520|20<br />8<br />4<br />2|75 - 110<br />100 - 150<br />140 - 170<br />160 - 190<br />180 - 210|0 x t<br />0 x t<br />0 x t<br />1 x t|0 x t<br />0 x t<br />0 x t<br />2 x t|520|250|-|CuNi10Fe1Mn|R 300<br />R 320|&ge; 300<br />&ge; 320|&le; 100<br />&le; 200|20|70 - 120<br />&ge; 100|||||-|CuNi30Mn1Fe|R 350<br />R 410|350 - 420<br />&ge; 410|&le; 120<br />&le; 300|35|80 - 120<br />&ge; 110|||||}</figtable><sup>1 hr annealing after 50% cold working)</sup> t: Strip thickness max. 0.5 mm
Fig. 5.26: Strain hardening of CuNi9Sn2 by cold working (Wieland)<div id="figures6" class="multiple-images">
Fig<figure id="fig:Strain hardening of copper-nickel alloys as a function of nickel content"> [[File:Strain hardening of copper nickel alloys as function. 5jpg|left|thumb|<caption>Strain hardening of copper-nickel alloys as a function of nickel content</caption>]]</figure> <figure id="fig:Strain hardening of CuNi25 by cold working"> [[File:Strain hardening of CuNi25 by cold working.jpg|left|thumb|<caption>Strain hardening of CuNi25 by cold working</caption>]]</figure> <figure id="fig:Softening of CuNi25 after 1 hr annealing after 50% cold working">[[File:Softening of CuNi25 after annealing after 50.jpg|left|thumb|<caption>Softening of CuNi25 after 1 hr annealing after 50% cold working</caption>]]</figure> <figure id="fig:Strain hardening of CuNi9Sn2 by cold working (Wieland)">[[File:Strain hardening of CuNi9Sn2 by cold working.27jpg|left|thumb|<caption>Strain hardening of CuNi9Sn2 by cold working (Wieland)</caption>]]</figure> <figure id="fig: Softening of CuNi9Sn2 after 1 hr annealing after 60% cold working (Wieland)">[[File:Softening of CuNi9Sn2 after annealing Wieland.jpg|left|thumb|<caption>Softening of CuNi9Sn2 after 1 hr annealing after 60% cold working (Wieland)</caption>]]</figure></div><div class="clear"></div>
==References==
[[Contact Carrier Materials#References|References]]
 
[[de:Sonstige_naturharte_Kupfer-Legierungen]]