2,316
edits
Changes
→Other Precipitation Hardening Copper Alloys
The cause for precipitation hardening of CuBe materials, is the rapidly diminishing solubility of beryllium in copper as temperature decreases. As thephase diagram for CuBe shows, 2.4 wt% of Be are soluble in Cu at 780°C (<figure xr id="fig:Phase diagram of copperberyllium with temperature ranges for brazing and annealing treatmentsPhase_diagram_of_copperberyllium_with_temperature_ranges_for_brazing_and_annealing_treatments"/><!--(Fig. 5.28)-->). In this temperature range, annealed CuBe alloys are homogeneous(solution annealing). The homogeneous state can be frozen through rapid cooling to room temperature (quenching). Through a subsequent annealing at 325°C, the desired precipitation hardening is achieved, which results in a significant increase in mechanical strength and electrical conductivity of CuBe (<xr id="tab: Phase diagram of copperberyllium with Physical_Properties_of_Selected_Copper_Beryllium_Alloys"/><!--(Tab. 5.17)-->). The final strength and hardness values depend on the annealing temperature ranges for brazing and annealing treatments[[Filetime, as well as on the initial degree of cold working (<xr id="tab:Phase diagram Mechanical Properties of copper beryllium with temperature rangesSelected Copper-Beryllium Alloys"/><!--(Table 5.jpg|right|thumb|Phase diagram of copper18)-- beryllium with temperature ranges for brazing > and annealing treatments]]<xr id="fig:Precipitation_hardening_of_CuBe2_at_325°C_after_different_cold_working"/>, <xr id="fig:Precipitation_hardening_of_CuBe2_(soft)_at_325°C"/>, <xr id="fig:Precipitation_hardening_of_CuBe2_(half hard)_at_different_annealing_temperatures"/figure>).
<xr iddiv class="fig:Precipitation hardening of CuBe2 (soft) at 325°Cmultiple-images"/> Fig. 5.30: Precipitation hardening of CuBe2 (soft) at 325°C
<xr figure id="fig:Precipitation hardening of CuBe2 (half hard) at different annealing temperaturesPhase_diagram_of_copperberyllium_with_temperature_ranges_for_brazing_and_annealing_treatments"/> Fig[[File:Phase diagram of copper beryllium with temperature ranges. 5.31: Precipitation hardening jpg|left|thumb|<caption>Phase diagram of CuBe2 (half hard) at different copper- beryllium with temperature ranges for brazing and annealing temperaturestreatments</caption>]]</divfigure>
</figure>
<figure id="fig:Precipitation hardening of CuBe2 Precipitation_hardening_of_CuBe2_(soft) at 325°C_at_325°C"> [[File:Precipitation hardening of CuBe2 (soft) at 325C.jpg|rightleft|thumb|<caption>Precipitation hardening of CuBe2 (soft) at 325°C</caption>]]
</figure>
<figure id="fig:Precipitation hardening of CuBe2 Precipitation_hardening_of_CuBe2_(half hard) at different annealing temperatures_at_different_annealing_temperatures"> [[File:Precipitation hardening of CuBe2 half hard.jpg|rightleft|thumb|<caption>Precipitation hardening of CuBe2 (half hard) at different annealing temperatures</caption>]]
</figure>
</div>
<div class="clear"></div>
<figtable id="tab:Physical_Properties_of_Selected_Copper_Beryllium_Alloys"><caption>'''<!--Table 5.1817: Mechanical -->Physical Properties of Selected Copper-Beryllium Alloys''' (2 Teile!)</caption>
{| class="twocolortable" style="text-align: left; font-size: 12px"|-!Material<br />Designation<br />EN UNS !Composition<br />[wt%]!Density<br />[g/cm<sup>3</sup>]!colspan="2" style="text-align:center"|Electrical<br />Conductivity !Electrical<br />Resistivity<br />[μΩ·cm]!Thermal<br />Conductivity<br />[W/(m·K)]!Coeff. of Linear<br />Thermal<br />Expansion<br />[10<sup>-6</sup>/K]!Modulus of<br />Elasticity<br />[GPa]!Softening Temperature<br />(approx. 10% loss in<br />strength)<br />[°C]!Melting<br />Temp Range<br />[°C]|-! !!![MS/m] ![% IACS]!!!!!!|-|CuBe1.7<br />CW100C<br />C17000|Be 1.6 - 1.8<br />Co 0.3<br />Ni 0.3<br />Cu Rest|8.4|8 - 9[[#text-reference1|<sup>a</sup>]]<br />12 - 13[[#text-reference2|<sup>b</sup>]]<br />11[[#text-reference3|<sup>c</sup>]]|14 - 16<br />21 - 22<br />19|11 - 12.5[[#text-reference1|<sup>a</sup>]]<br />7.7 - 8.3[[#text-reference2|<sup>b</sup>]]9.1[[#text-reference3|<sup>c</sup>]]|110|17|125[[#text-reference1|<sup>a</sup>]]<br />[[#text-reference2|<sup>b</sup>]]|ca. 380|890 - 1000|-|CuBe2<br />CW101C<br />C17200|Be 1.8 - 2.1<br />Co 0.3<br />Ni 0.3<br />Cu Rest|8.3|8 - 9[[#text-reference1|<sup>a</sup>]]<br />12 - 13[[#text-reference2|<sup>b</sup>]]<br />11[[#text-reference3|<sup>c</sup>]]|14 - 16<br />21 - 22<br />19|11 - 12.5[[#text-reference1|<sup>a</sup>]]<br />7.7 - 8.3[[#text-reference2|<sup>b</sup>]]<br />9.1[[#text-reference3|<sup>c</sup>]]|110|17|125[[#text-reference1|<sup>a</sup>]]<br />135[[#text-reference2|<sup>b</sup>]]|ca. 380|870 - 980|-|CuCo2Be<br />CW104C<br />C17500|Co 2.0 - 2.8<br />Be 0.4 - 0.7<br />Ni 0.3<br />Cu Rest|8.8|11 - 14[[#text-reference1|<sup>a</sup>]]<br />25 - 27[[#text-reference2|<sup>b</sup>]]<br />27 - 34[[#text-reference3|<sup>c</sup>]]|19 - 24<br />43 - 47<br />47 - 59|7.1- 9.1[[#text-reference1|<sup>a</sup>]]<br />3.7 - 4.0[[#text-reference2|<sup>b</sup>]]<br />2.9[[#text-reference3|<sup>c</sup>]]|210|18|131[[#text-reference1|<sup>a</sup>]]<br />138[[#text-reference2|<sup>b</sup>]]|ca. 450|1030 - 1070|-|CuNi2Be<br />CW110C<br />C17510|Ni 1.4 - 2.2<br />Be 0.2 - 0.6<br />Co 0.3<br />Cu Rest|8.8|11 - 14[[#text-reference1|<sup>a</sup>]]<br />25 - 27[[#text-reference2|<sup>b</sup>]]<br />27 - 34[[#text-reference3|<sup>c</sup>]]|19 - 24<br />43 - 47<br />47 - 59|7.1 - 9.1[[#text-reference1|<sup>a</sup>]]<br />3.7 - 4.0[[#text-reference2|<sup>b</sup>]]<br />2 Other Precipitation Hardening Copper Alloys=.9[[#text-reference3|<sup>c</sup>]]|230|18|131[[#text-reference1|<sup>a</sup>]]<br />138[[#text-reference2|<sup>b</sup>]]|ca. 480|1060 - 1100|}<div id="text-reference1"><sub>a</sub> solution annealed, and cold rolled</div><div id="text-reference2"><sub>b</sub> solution annealed, cold rolled, and precipitation hardened</div><div id="text-reference3"><sub>c</sub> solution annealed, cold rolled, and precipitation hardened at mill (mill hardened)</div></figtable><br/><br/>
<figtable id====="tab:Mechanical Properties of Selected Copper-Beryllium Alloys"><caption>'''<!--Table 5.1.6.2.1 18:-->Mechanical Properties of Selected Copper-Chromium Beryllium Alloys====='''</caption>
=====<figure id="fig:Copper corner of the copper!--chromium phase diagram for up to 05.1.8 wt% chromium">Fig6. 52.32: Copper corner of the copper1--chromium phase diagram for up to 0.8 wt% chromium[[File:>Copper corner of the copper chromium phase diagram.jpg|right|thumb|Copper corner of the copper-chromium phase diagram for up to 0.8 wt% chromium]] </figure>Chromium Alloys=====
As the phase diagram shows, copper-chromium has a similar hardening profile compared to CuBe (<div xr id="figures5fig:Copper corner of the copper-chromium phase diagram for up to 0.8 wt% chromium"/><!--(Fig. 5.32)-->). In the hardened stage CuCr has limitations to work hardening. Compared to copper it has a better temperature stability with good electrical conductivity. Hardness and electrical conductivity as a function of cold working and precipitation hardening conditions are illustrated in [[#figures8|(Figs. 6 – 9]]<!--Figs. 5.33-5.35-->and <xr id="figtab:Softening Physical Properties of precipitation hardened Other Precipitation Hardening Copper Alloys"/><!--(Tables 5.19)--> and subsequently cold worked CuCr1<xr id="tab:Mechanical Properties of Other Precipitation Hardening Copper Alloys"/> Fig<!--(Tab. 5.33: Softening of precipitation20)--hardened and subsequently cold worked CuCr1 after 4hrs annealing>).
<xr iddiv class="fig:Hardness of precipitation hardened CuCr 0.6multiple-images"/> Fig. 5.34 b: Hardness of precipitation hardened CuCr 0.6 as a function of annealing conditions
<xr figure id="fig:Electrical conductivity and hardness Copper corner of precipitation hardened CuCr the copper-chromium phase diagram for up to 0.68 wt% chromium"/> Fig[[File:Copper corner of the copper chromium phase diagram. 5.35: Electrical conductivity and hardness jpg|left|thumb|<caption>Copper corner of precipitation hardened CuCr the copper-chromium phase diagram for up to 0.6 after cold working8 wt% chromium</caption>]] </divfigure>
<figure id="fig:Softening of precipitation hardened and subsequently cold worked CuCr1">
[[File:Softening of precipitation hardened and subsequently cold worked CuCr1.jpg|rightleft|thumb|<caption>Softening of precipitation-hardened and subsequently cold worked CuCr1 after 4hrs annealing</caption>]]
</figure>
<figure id="fig:Electrical conductivity of precipitation hardened CuCr 0.6">
[[File:Electrical conductivity of precipitation hardened CuCr 0.6.jpg|rightleft|thumb|<caption>Electrical conductivity of precipitation hardened CuCr 0.6 as a function of annealing conditions</caption>]]
</figure>
<figure id="fig:Hardness of precipitation hardened CuCr 0.6">
[[File:Hardness of precipitation hardened CuCr 0.6.jpg|rightleft|thumb|<caption>Hardness of precipitation hardened CuCr 0.6 as a function of annealing conditions</caption>]]
</figure>
<figure id="fig:Electrical conductivity and hardness of precipitation hardened CuCr 0.6">
[[File:Electrical conductivity and hardness of precipitation hardened CuCr 0.6.jpg|rightleft|thumb|<caption>Electrical conductivity and hardness of precipitation hardened CuCr 0.6 after cold working</caption>]]
</figure>
</div>
<figtable id="tab:Physical Properties of Other Precipitation Hardening Copper Alloys"><caption>'''<!--Table 5.19: -->Physical Properties of Other Precipitation Hardening Copper Alloys''' (2 Teile!)</caption>
<table borderfigtable id="1" cellspacing="0" style="border-collapsetab:collapseMechanical Properties of Other Precipitation Hardening Copper Alloys"><trcaption>'''<td><p class="s16">Material</p></td><td><p class="s16">Hardness</p><p class="s16">Condi!--Table 5.20:-- tion</p></td><td><p class="s16">Tensile</p><p class="s16">Strength R<span class="s18">m</span></p><p class="s16">[MPa]</p></td><td><p class="s16">0,2% Yield</p><p class="s16">Strength R<span class="s18">p02</span></p><p class="s16">[MPa]</p></td><td><p class="s16">Elongation</p><p class="s16">A50</p><p class="s16">[%]</p></td><td><p class="s16">Vickers</p><p class="s16">Hardness</p><p class="s16">HV</p></td><td><p class="s16">Spring Bending</p><p class="s16">Limit <span class="s19">F</span><span class="s18">FB </span>[MPa]</p></td></tr><tr><td><p class="s16">CuCr</p></td><td><p class="s16">R 230<span class="s18">a</span></p><p class="s16">R 400<span class="s18">a </span>R 450<span class="s18">b </span>R 550<span class="s18">b</span></p></td><td><p class="s33">><span class="s16"> 230</span></p><p class="s33">><span class="s16"> 400</span></p><p class="s33">><span class="s16"> 450</span></p><p class="s33">><span class="s16"> 550</span></p></td><td><p class="s33">><span class="s16"> 80</span></p><p class="s33">><span class="s16"> 295</span></p><p class="s33">><span class="s16"> 325</span></p><p class="s33">><span class="s16"> 440</span></p></td><td><p class="s16">30</p><p class="s16">10</p><p class="s16">10</p><p class="s16">8</p></td><td><p class="s33">><span class="s16"> 55</span></p><p class="s33">><span class="s16"> 120</span></p><p class="s33">><span class="s16"> 130</span></p><p class="s33">><span class="s16"> 150</span></p></td><td><p class="s16">350</p></td></tr><tr><td><p class="s16">CuZr</p></td><td><p class="s16">R 260<span class="s18">a</span></p><p class="s16">R 370<span class="s18">a </span>R 400<span class="s18">b </span>R 420<span class="s18">b</span></p></td><td><p class="s33">><span class="s16"> 260</span></p><p class="s33">><span class="s16"> 370</span></p><p class="s33">><span class="s16"> 400</span></p><p class="s33">><span class="s16"> 420</span></p></td><td><p class="s33">><span class="s16"> 100</span></p><p class="s33">><span class="s16"> 270</span></p><p class="s33">><span class="s16"> 280</span></p><p class="s33">><span class="s16"> 400</span></p></td><td><p class="s16">35</p><p class="s16">12</p><p class="s16">12</p><p class="s16">10</p></td><td><p class="s33">><span class="s16"> 55</span></p><p class="s33">><span class="s16"> 100</span></p><p class="s33">><span class="s16"> 105</span></p><p class="s33">><span class="s16"> 115</span></p></td><td><p class="s16">280</p></td></tr><tr><td><p class="s16">CuCr1Zr</p></td><td><p class="s16">R 200<span class="s18">a</span></p><p class="s16">R 400<span class="s18">b</span></p><p class="s16">R 450<span class="s18">b</span></p></td><td><p class="s33">><span class="s16"> 200</span></p><p class="s33">><span class="s16"> 400</span></p><p class="s33">><span class="s16"> 450</span></p></td><td><p class="s33">><span class="s16"> 60</span></p><p class="s33">><span class="s16"> 210</span></p><p class="s33">><span class="s16"> 360</span></p></td><td><p class="s16">30</p><p class="s16">12</p><p class="s16">10</p></td><td><p class="s33">><span class="s16"> 70</span></p><p class="s33">><span class="s16"> 140</span></p><p class="s33">><span class="s16"> 155</span></p></td><td><p class="s16">420</p></td></tr>Mechanical Properties of Other Precipitation Hardening Copper Alloys'''</tablecaption>
<table class="twocolortable"><tr><th><p class="s16">Material</p></th><th><p class="s16">Hardness</p><p class="s16">Condi- tion</p></th><th><p class="s16">Tensile</p><p class="s16">Strength R<span class="s18">m</span></p><p class="s16">[MPa]</p></th><th><p class=5.1.6."s16">0,2.2 Copper-Zirconium Alloys% Yield</p><p class="s16">Strength R<span class="s18">p02</span></p><p class="s16">[MPa]</p></th><th><p class="s16">Elongation</p><p class="s16">A50</p><p class="s16">[%]</p></th><th><p class="s16">Vickers</p><p class="s16">Hardness</p><p class="s16">HV</p></th><th><p class="s16">Spring Bending</p><p class="s16">Limit <span class="s19">F</span><span class="s18">FB </span>[MPa]</p></th></tr><tr><td><p class="s16">CuCr</p></td><td><p class="s16">R 230<span class="s18">a</span></p><p class="s16">R 400<span class="s18">a </span>R 450<span class="s18">b </span>R 550<span class="s18">b</span></p></td><td><p class="s33">><span class="s16"> 230</span></p><p class="s33">><span class="s16"> 400</span></p><p class="s33">><span class="s16"> 450</span></p><p class="s33">><span class="s16"> 550</span></p></td><td><p class="s33">><span class="s16"> 80</span></p><p class="s33">><span class="s16"> 295</span></p><p class="s33">><span class="s16"> 325</span></p><p class="s33">><span class="s16"> 440</span></p></td><td><p class="s16">30</p><p class="s16">10</p><p class="s16">10</p><p class="s16">8</p></td><td><p class="s33">><span class="s16"> 55</span></p><p class="s33">><span class="s16"> 120</span></p><p class="s33">><span class="s16"> 130</span></p><p class="s33">><span class="s16"> 150</span></p></td><td><p class="s16">350</p></td></tr><tr><td><p class="s16">CuZr</p></td><td><p class="s16">R 260<span class="s18">a</span></p><p class="s16">R 370<span class="s18">a </span>R 400<span class="s18">b </span>R 420<span class="s18">b</span></p></td><td><p class="s33">><span class="s16"> 260</span></p><p class="s33">><span class="s16"> 370</span></p><p class="s33">><span class="s16"> 400</span></p><p class="s33">><span class="s16"> 420</span></p></td><td><p class="s33">><span class="s16"> 100</span></p><p class="s33">><span class="s16"> 270</span></p><p class="s33">><span class="s16"> 280</span></p><p class="s33">><span class="s16"> 400</span></p></td><td><p class="s16">35</p><p class="s16">12</p><p class="s16">12</p><p class="s16">10</p></td><td><p class="s33">><span class="s16"> 55</span></p><p class="s33">><span class="s16"> 100</span></p><p class="s33">><span class="s16"> 105</span></p><p class="s33">><span class="s16"> 115</span></p></td><td><p class="s16">280</p></td></tr><tr><td><p class="s16">CuCr1Zr</p></td><td><p class="s16">R 200<span class="s18">a</span></p><p class="s16">R 400<span class="s18">b</span></p><p class="s16">R 450<span class="s18">b</span></p></td><td><p class="s33">><span class="s16"> 200</span></p><p class="s33">><span class="s16"> 400</span></p><p class="s33">><span class="s16"> 450</span></p></td><td><p class="s33">><span class="s16"> 60</span></p><p class="s33">><span class="s16"> 210</span></p><p class="s33">><span class="s16"> 360</span></p></td><td><p class="s16">30</p><p class="s16">12</p><p class="s16">10</p></td><td><p class="s33">><span class="s16"> 70</span></p><p class="s33">><span class="s16"> 140</span></p><p class="s33">><span class="s16"> 155</span></p></td><td><p class="s16">420</p></td></tr></table></figtable>
The solubility of Zirconium in copper is 0.15 wt% Zr at the eutectic temperature of 980°C (<xr id====="fig:Copper corner of the copper zirconium for up to 0.5-wt zirconium"/><!--(Fig.15.6.236)-->).3 Copper-Chromiumzirconium materials have a similar properties spectrum, compared to the one for copper-chromium materials. At room temperature the mechanical properties of copper-Zirconium Alloys=====zirconium are less suitable than those of copper chromium, its temperature stability is however at least the same.
==References==
[[Contact Carrier Materials#References|References]]
[[de:Aushärtbare_Kupfer-Legierungen]]