Open main menu

Electrical Contacts β

Changes

Manufacturing Technologies for Contact Parts

3,833 bytes added, 13:49, 4 December 2013
no edit summary
===3.5.2 Stamping Tools===
For the design of stamping tools the latest CAD software systems are used.
Modern stamping tools usually employ a modular design with integrated
dimensional and functional controls ''(Fig. 3.21)''. Depending on the requirements
on the parts and the volumes they are built with steel or carbide (-steel) inserts
which are coated with a wear resistant material such as for example TiN for
longer life.
 
A special stamping process is precision stamping for contact parts made from
thin strip materials with thicknesses in the range of 0.05 – 2.5 mm. With high
capacity stamping technology up to 1400 strokes/min can be reached for high
volume parts. During the actual stamping operation frequently other processes
such as thread-forming, welding of contact segments and insertion and forming
of contacts from wire segments are integrated. Depending on the production
volumes these operations can also be performed in multiples.
 
The quality of the tools used for stamping, like progressive dies and stamp-forming
tools is important for the final precision and consistency of the parts. During high
speed stamping the tools are exposed to extreme mechanical stresses which must
be compensated for to ensure the highest precision over long production runs. With
such high quality progressive dies parts of high precision with a cutting width of less
than the material thickness and with strict quality requirements for the cutting surfaces
can be manufactured.
To ensure the highest demands on the surface quality of precision contact parts quite
often vanishing oils are used as tool lubricants. Cleaning and degreasing operations
can also be integrated into the stamping process. Additionally most stamping lines
are also equipped with test stations for a 100% dimensional and surface quality
control.
During the design of stamping tools for electrical contacts minimizing of process
scrap and the possibility to separate the precious metal containing scrap must be
considered.
 
Fig. 3.21:
Progressive die for stamped contact parts
 
 
===References===
 
Vinaricky, E. (Hrsg.): Elektrische Kontakte, Werkstoffe und Anwendungen.
Springer-Verlag, Heidelberg, Berlin 2002
 
Witter, G., J.; Horn, G.: Contact Design and Attachment in: Electrical Contacts.
Hrg.: Slade, P., G., Marcel Dekker, Inc.,New York, Basel, 1999
 
Mürrle, U: Löten und Schweißen elektrischer Kontakte. In: Werkstoffe für
elektrische Kontakte und ihre Anwendungen: Hrg.: Schröder K.-H. u. a.;
Expert-Verlag, Band 366, (1997), 146 - 175
 
Eisentraut, H.: Verbundwerkstoffe aus der Walze. Kaltwalzplattieren von
Mehrschichtverbundhalbzeugen, Metall 48 (1994) 95-99
 
Weik, G.: Kontaktprofile ganzheitliche Lösungen für elektrische
Kontaktsysteme, Metall 61 (2007) H. 6, 399 403
 
Jinduo, F; Guisheng, W.; Fushu, L.; Hongbing, Z.; Wenland, L.: Study on
Reliability of AuAg10/AgNi10/CuNi30 Micro Contacts,
th Proc. 24 Int. Conf.on Electr. Contacts, Saint Malo, France 2008, 206-209
 
Dorn, L.: Grundlagen der Löttechnik. in: Hartlöten Grundlagen und
Anwendungen. Hrsg.: Dorn, L. u.a., Expert-Verlag, Band 146 (1985) 15-40
 
Schreiner, H.: Güte der Lötung bzw. Schweißung von Kontaktstücken auf dem
Trägermetall - Prüfung und Beurteilung nach dem Beschalten im Prüfschalter.
Metall 30 (1976) 625 - 628
 
DVS-Merkblatt 2813: Widerstandsschweißen von elektrischen Kontakten,
Düsseldorf: DVS-Verlag 2009
 
Schneider, F.: Stöckel, D.: Schweißen in der Kontakttechnik.
Zts. für wirtschaftliche Fertigung 72, (1977) H. 4 u. 6
 
Haas, H.; Martin, W.; Tschirner, U.: Widerstandsschweißen in der
Elektrotechnik, VDE-Fachbericht 42 (1991) 113-121
 
Weik, G.: Widerstandsschweißen von Kontaktprofilen mit
Nachsetzwegmessung, VDE-Fachbericht 63 (2007) 165-174
 
Bolmerg, E.: Aufschweißtechnik von Kontakten in Hinblick auf ihre Anwendung.
VDE-Fachbericht 51 (1997) 103-109