Open main menu

Electrical Contacts β

Changes

Testing Procedures

17,139 bytes added, 19:54, 18 September 2014
no edit summary
The procedures and standards for testing electrical contacts described below are mostly concentrated on contact applications in electromechanical devices. Since the range of applications for electrical contacts is very broad, a complete description of all relevant test procedures would extend the scope of this chapter of the Data Book. Therefore we limited the content here to contact coatings and switching contacts for information and power engineering. Because of the ongoing miniaturization of electromechanical devices the testing for effects of corrosive influences by the environment play an important role. Special testing procedures, such as these for brazed, soldered, and welded contact joints are covered already in chapter 3.
The procedures and standards for testing electrical contacts described below are mostly concentrated on contact applications in electromechanical devices. Since the range of applications for electrical contacts is very broad, a complete description of all relevant test procedures would extend the scope of this chapter of the Data Book. Therefore we limited the content here to contact coatings and switching contacts for information and power engineering. Because of the ongoing miniaturization of electromechanical devices the testing for effects of corrosive influences by the environment play an important role. Special testing procedures, such as these for brazed, soldered, and welded contact joints are covered already in chapter 3 [[Manufacturing Technologies for Contact Parts|Manufacturing Technologies for Contact Parts ]] ==<!--13.1 -->Terms and Definitions==
Every technical device has to fulfill a series of requirements. Some of those which are important for agreement between contact manufacturer and user are part of DIN 40042 standard and described here in a summarized version:
==<!--13.2 -->Testing of Contact Surface Layers==
For applications at low switching loads contact layers with thicknesses in the range of just a few micrometers are widely used. For testing such thin layers the actual coating properties must be distinguished from the functional properties. Coating properties include, besides others, porosity, hardness, and ductility.
==<!--13.3 -->Test Procedures for the Communications Technology==
Testing of the contact behavior in the communications technology is usually performed on the actual devices such as for example in relays. Experience has shown that the interaction between all design and functional parameters such as contact forces, relative movement, and electrical loads, are determining the failure mode. Therefore only statistical performance tests on a larger number of switching devices lead to meaningful results.
 ==<!--13.4 -->Testing Procedures for Power Engineering==
The testing of electrical contacts for power engineering applications serves on the one hand the continuous quality assurance, on the other one the new and improvement development efforts for contact materials. To optimize the contact and switching performance contact materials and device designs have to complement each other. The success of such optimizing is proven through switching tests.
==<!--13.5 -->Corrosion Testing==
===<!--13.5.1 -->Definition of “Corrosion”===
The definition of corrosion can be found in DIN 500900 Part 1 as follows: Reaction of a metallic material with its environment, which produces a
During corrosive influences metal is dissolved. This metal loss can be uniformly spread out over a certain area or be limited to locally smaller spots. This process usually proceeds with constant speed up to the total material loss, or after certain reaction times a natural corrosion limiting surface layer can be formed (i.e. on aluminum).
===<!--13.5.2 -->Special Types of Corrosion===
*Contact corrosion: <br />Corrosion of a metal object after coming into physical contact with another metallic body. This can occur also on metallic impurities in alloys, on chemically and physically heterogeneous surfaces and on heterogeneous solutions on homogeneous surfaces, as well as through contacting a metal object by non-metallic materials through formation of corrosion compounds.<br />
 
*Hole corrosion (pitting corrosion): <br />Local narrowly limited corrosion growing by dissolving material in small pin holes or craters to a depth that can lead to holes all the way through the material.<br />
 
*Inter-crystalline corrosion: <br />Corrosion along the grain boundaries with the danger for the material to lose all its mechanical strength by decomposition (for example: at weld seams in austenitic stainless steels).<br />
 
*Selective corrosion: <br />Preferred corrosion in specific microstructure areas (for example: loss of zinc in brasses with formation of copper enrichments).<br />
 
*Air access corrosion: <br />Through differences in the amount of exposure to air or oxygen surface areas of a metal are becoming cathodes at the more exposed spots and therefore corrode less than those protected (for example: gap corrosion in screw or press connections).<br />
 
*Tension stress corrosion: <br />Crack formation of stress corrosion sensitive materials which are under mechanical pull stresses while exposed to corrosive media. Especially affected are zinc containing copper alloys (brasses) under the influence of ammonia or nitrates.<br />
 
*Oxygen corrosion: <br />Cathodic reaction in aqueous solutions forms reduced molecular, in water dissolved oxygen. Corrosion occurs when the electrochemical potential of the metal is below that of oxygen.<br />
 
*Hydrogen corrosion: <br />Cathodic reduction of H to H<sub>2</sub> (in acidic solutions) under conditions where the potential of the metal is less precious.<br />
 
*Fretting (frictional) corrosion: <br />Enrichment of oxide particles of non-precious metal (especially tinned) surfaces during relative movements at small ampliyudes (< 100 μm). They occur through transfer of oscillation ot thermal displacement energy because of the difference in thermal expansion of the two contacting metals. This effect can be especially detrimental in connectors with tin plated surfaces, such as for example in automotive applications.<br />
 
*Fatigue corrosion: <br />Fatigue fracture during repeated mechanical stresses in corrosive environments. This effect is often observed on brittle electroplated surface coatings that are exposed to repeated cycling between mechanical stresses and corrosive chemicals. Air access corrosion: Through differences in the amount of exposure to air or oxygen surface areas of a metal are becoming cathodes at the more exposed spots and therefore corrode less than those protected (for example: gap corrosion in screw or press connections).<br />
 
===<!--13.5.3-->Electrochemical Potentials===
 
Corrosion effects are mainly governed by the electrode potential of the respective metals. The electrochemical potential table provides a measure for corrosion resistance. Non-precious (corrosion prone) metals are characterized by a negative, precious (corrosion resistant) metals by a positive normal potential against hydrogen.
 
 
<figtable id="tab:Electrode Potential of Metals">
<caption>'''<!--Table 13.3:-->Electrode Potential of Metals'''</caption>
 
{| class="twocolortable" style="text-align: left; font-size: 12px"
|-
!Metal
!Reaction
!Potential [V]
|-
|Aluminum
|AI &rarr; AI<sup>+++</sup> +3e
| - 1.71
|-
|Zinc
|Zn &rarr; Zn<sup>++</sup> +2e
| - 0.76
|-
|Chromium
|Cr &rarr; Cr<sup>++</sup> +2e
| - 0.71
|-
|Iron
|Fe &rarr; Fe<sup>++</sup> +2e
| - 0.41
|-
|Cadmium
|Cd &rarr; Cd<sup>++</sup> +2e
| - 0.40
|-
|Indium
|In &rarr; In<sup>+++</sup> +3e
| - 0.34
|-
|Cobalt
|Co &rarr; Co<sup>++</sup> +2e
| - 0.27
|-
|Nickel
|Ni &rarr; Ni<sup>++</sup> +2e
| - 0.25
|-
|Tin
|Sn &rarr; Sn<sup>++</sup> +2e
| - 0.13
|-
|Lead
|Pd &rarr; Pd<sup>++</sup> +2e
| - 0.12
|-
|Hydrogen
|H2 &rarr; H2<sup>++</sup> +2e
| - 0.00
|-
|Copper
|Cu &rarr; Cu<sup>++</sup> +2e<br />Cu &rarr; Cu<sup>+</sup> +e
| + 0.34<br /> + 0.52
|-
|Silver
|Ag &rarr; Ag<sup>+</sup> +e
| + 0.80
|-
|Palladium
|Pd &rarr; Pd<sup>++</sup> +2e
| + 0.83
|-
|Platinum
|Pt &rarr; Pt<sup>++</sup> +2e
| + 1.20
|-
|Gold
|Au &rarr; Au<sup>+++</sup> +3e<br />Au &rarr; Au<sup>+</sup> +e
| + 1.42<br /> + 1.68
|}
</figtable>
 
===13.5.4 Corrosion Testing===
 
The following pages describe test methods and procedures which are mainly related to the effects of environmental exposure of electrical contacts which are used in contact components for the telecommunication and information technology.
Corrosion products on the surface of electrical contacts can reduce the reliability of contact making significantly by, for example, higher contact
resistance, which will negatively affect the transmission of current and data signals. This can cause major problems in electromechanical contact
components used in the information processing technology. Causes for the formation of tarnish film on electrical contacts include for example the presence of corrosive gases such as H<sub>2</sub>S, SO<sub>2</sub>, NO<sub>x</sub>, O<sub>3</sub>, Cl<sub>2</sub>, and NH<sub>3</sub> <xr id="tab:Typical Corrosive Gas Concentrations (ppm) Near Industrial Facilities"/><!--(Tab. 13.4)--> in industrial environments.
 
 
<figtable id="tab:Typical Corrosive Gas Concentrations (ppm) Near Industrial Facilities">
<caption>'''<!--Table 13.4:-->Typical Corrosive Gas Concentrations (ppm) Near Industrial Facilities'''</caption>
 
{| class="twocolortable" style="text-align: left; font-size: 12px"
|-
!Industrial Atmosphere
!SO<sub>2</sub>
!H<sub>2</sub>S
!NO<sub>2</sub>
!CI<sub>2</sub>
!O<sub>3</sub>
!NH<sub>3</sub>
|-
|Median value<br />Extreme value
|0.04<br />0.22
|0.01<br />0.4
|0.1<br />1.0
|0.005<br />
|0.02<br />0.2-0.6
|0.2<br />0.2
|-
|Smell threshold<br />MAK-value[[#text-reference|<sup>1)</sup>]]<br />Life threatening
|0.18<br />2.0<br />400
|0.02<br />10.0<br />700
|0.1<br />5.0<br />200
|0.005<br />0.5<br />3
|0.02<br />0.1<br />
|5<br />50<br />5000
|}
</figtable>
<div id="text-reference">1)MAK-Value: maximum allowable concentration in the workplace</div>
Corrosion tests – also called environmental – on electrical contacts in natural environments must be critically evaluated, because they are the rather time consuming.
 
During different times of the year temperature and relative humidity changes as well as changes in the concentration of corrosive gases can have significant influences on the formation of corrosion products.
 
Therefore research and quality assurance efforts have centered for many years on developing test methods for electrical contacts which can predict in an accelerated time frame the corrosion behavior of electrical contacts in different corrosive atmospheres with reasonable accuracy.
 
Single components corrosive test atmospheres and testing with two gas exposures following each other provide only limited validity. Flowing gas test
atmospheres with four components have proven to be the most likely ones to realistically simulate long term natural corrosive gas exposure <xr id="tab:Typical Corrosive Gas Concentrations (ppm) Near Industrial Facilities"/><!--(Tab. 13.4)-->.
 
 
<figtable id="tab:Some Standardized Corrosion Tests for Electrical Contacts">
<caption>'''<!--Table 13.5:-->Some Standardized Corrosion Tests for Electrical Contacts'''</caption>
 
{| class="twocolortable" style="text-align: left; font-size: 12px"
|-
!Test Method
!Corrosive Gas
!Degree of <br />Severity 1 [ppb]
!Degree of <br />Severity 2 [ppb]
!Temperature [°C]
!Relative Humidity [%]
!Duration [d]
!Standard
|-
|1-component corrosive gas
|SO<sub>2</sub><br />H<sub>2</sub>S
|500<br />100
|10000<br />10000
|25 &plusmn; 1<br />25 &plusmn; 1
|75 &plusmn; 3<br />75 &plusmn; 3
|1, 4, 10 oder 21<br />1, 4, 10 oder 21
|DIN 40046 Part 36<br />DIN 40046 Part 37
|-
|2-component corrosive gas<br />(used sequential)
|SO<sub>2</sub><br />+ H<sub>2</sub>S
|500<br />100
|
|25 &plusmn; 1<br />
|75 &plusmn; 3<br />
|1, 4, 10 oder 21<br />
|EC 68-2-60 TTD
|-
|4-component mixed corrosive gas
|H<sub>2</sub>S<br />CI<sub>2</sub><br />NO<sub>2</sub><br />SO<sub>2</sub>
|
|10 &plusmn; 5<br />10 &plusmn; 5<br />200 &plusmn; 20<br />200 &plusmn; 20
|25 &plusmn; 1
|70 &plusmn; 3
|10
|IEC 68-2-60 Part 2,<br />Method 4
|-
|4-component mixed corrosive gas
|H<sub>2</sub>S<br />CI<sub>2</sub><br />NO<sub>2</sub><br />SO<sub>2</sub>
|
|10 &plusmn; 1,5<br />10 &plusmn; 1,5<br />200 &plusmn; 30<br />100 &plusmn; 15
|30 &plusmn; 1
|70 &plusmn; 2
|10
|Telcordia GR-63-Core Section 5.5<br />Indoor
|-
|4-component mixed corrosive gas
|H<sub>2</sub>S<br />CI<sub>2</sub><br />NO<sub>2</sub><br />SO<sub>2</sub>
|
|100 &plusmn; 15<br />20 &plusmn; 3<br />200 &plusmn; 30<br />200 &plusmn; 30
|30 &plusmn; 1
|70 &plusmn; 2
|4
|Telcordia GR-63-Core Section 5.5<br />Outdoor
|}
</figtable>
 
The differences in the corrosive gas concentrations and the test durations are dependent on the end application of the contact components and the
assessment of the exposure parameters.
Battelle (the Battelle Institute) has, for different applications, defined four climate classes which reflect the corrosion behavior of porous electroplated gold surfaces. Such gold layers are often used in connectors for the telecommunications and information technology <xr id="tab:Classification of Corrosion Effects According to Battelle"/><!--(Tab. 13.5)-->, <xr id="fig:Influence of the corrosive gas concentration for four classes"/><!--(Fig. 13.14)-->.
 
 
<figtable id="tab:Classification of Corrosion Effects According to Battelle">
<caption>'''<!--Table 13.5:-->Classification of Corrosion Effects According to Battelle'''</caption>
 
{| class="twocolortable" style="text-align: left; font-size: 12px"
|-
!Class
!Application
!Corrosion Effects
!H<sub>2</sub>S [ppb]
!CI<sub>2</sub> [ppb]
!NO<sub>2</sub> [ppb]
!Temporature [°C]
!Relative Humidity [%]
|-
|'''&#8544;'''
|Controlled office climate
|None
|
|
|
|
|
|-
|'''&#8545;'''
|Office climate
|Pore corrosion
|10 + 0/-4
|10 + 0/-2
|200 &plusmn; 25
|30 &plusmn; 2
|70 &plusmn; 2
|-
|'''&#8546;'''
|Moderate industrial climate
|Pore and creep corrosion
|100 &plusmn; 10
|20 &plusmn; 5
|200 &plusmn; 25
|30 &plusmn; 2
|75 &plusmn; 2
|-
|'''&#8547;'''
|Corrosive industrial climate
|Surface creep corrosion
|200 &plusmn; 10
|50 &plusmn; 5
|200 &plusmn; 25
|50 &plusmn; 2
|75 &plusmn; 2
|}
</figtable>
 
The dominant corrosion effects for thin gold coatings are pore corrosion and at higher gas concentrations creep corrosion from the base materials onto the coating starting at the boundary line between non-precious base metal and contact layer.
<figure id="fig:Influence of the corrosive gas concentration for four classes">
[[File:Influence of the corrosive gas concentration for four classes.jpg|right|thumb|Influence of the corrosive gas concentration for four classes (I–IV) on the contact resistance of a porous gold layer as a function of the exposure time (Battelle)]]
</figure>
The measurement of contact resistance allows an indirect classification of corrosion product layers. While the analysis of thicker corrosive product layers in the range of 0.1 – 1 μm can be performed by classic methods such as SEM and X-ray microprobe, thinner layers of 10 – 100 nm require the use of ionoptical analysis equipment.
 
==References==
 
Vinaricky, E. (Hrsg.): Elektrische Kontakte, Werkstoffe und Anwendungen. Springer-Verlag, Berlin, Heidelberg, New York 2002
 
Nobel, F.J.; Ostrow, B.D.; Thomson, D.W.: Porosity Testing of Gold Deposits. Plating 52 (1965) 1001-1008
 
Bedetti, F.V.; Chiarenzelli, R.V.: Porosity Testing of Electroplated Gold. Plating 53 (1966) 305-308
 
Antler, M.: Gold-plated Contacts: Effect of Substrate Roughness on Reliability. Plating 56 (1969) 1139-1144
 
Huck, M.; Mayer, U.: Korrosionsbeständigkeit und Werkstoffeigenschaften galvanischer Legierungsniederschläge für die Elektroindustrie. Metalloberfläche 10, (1984) 427-434
 
Wund, K.; Schnabl, R.: Gold und seine Legierungen in der Galvanotechnik. Galvanotechnik 77(2) (1986) 312-324
 
DIN EN ISO 6507: Metallic materials - Vickers hardness test - Part 1: Test method
 
DIN ISO 4516: Metallic and other inorganic coating - Vickers and Knoop hardness test
 
Dengel, D.: Wichtige Gesichtspunkte für die Härtemessung nach Vickers und nach Knoop im Bereich der Kleinlast und Mikrolast.
 
Z. Werkstofftechnik 4 (1973) 292-298
 
Schnabl, R.: Herstellverfahren und Prüfungen für Kontaktschichten in der Nachrichtentechnik. Buchreihe „Kontakt & Studium“, Bd. 366: Werkstoffe für elektrische Kontakte und ihre Anwendungen, Expert-Verlag, Renningen,Bd
 
366, (1997) 279-310
 
Bogenschütz, A.F.; Jostan, J.L.; Mussinger, W.: Galvanische
 
Korrosionsschutzschichten für elektronische Anwendungen. Metalloberfläche
34 (1980) 45-53, 93-136, 163-168, 187-194 (mit J. Ruf), 229-235, 261-269
 
Huck, M.: Kontaktzuverlässigkeit von Steckverbindern. Metall 37 (1983) H.7,
 
685-690
 
Kaspar, F.: Drahtbonden zur Kontaktierung auf elektronischen Baugruppen, 13
 
Werkstoffen und Beschichtungen. VDE-Fachbericht 55, (1999) 97-103
 
Weiser,J.: Prüfverfahren in der Informationstechnik. In Vinaricky, E. (Hrsg.): Elektrische Kontakte, Werkstoffe und Anwendungen. Springer Verlag, Berlin, Heidelberg, New York (2002) 600 - 609
 
I Data Book I Testing Procedures I
 
Schäfer, E.: Zuverlässigkeit, Verfügbarkeit und Sicherheit in der Elektronik, Vogel-Verlag, (1979)
 
Siepmann, R.: Elektronische Lastnachbildung, Siemens Comp., (1990) 28
 
Johler, W.: Untere und obere Einsatzgrenzen von Signalrelais. VDE-Fachbericht 63 (2007) 31-40
 
IEC/EN 61810-2: Electromechanical elementary relays - Part 2: Reliability
 
IEC/EN 61810-7: Electromechanical elementary relays - Part 7: Test and measurement procedures
 
Braumann, P.; Koffler, A.: Einfluss von Herstellungsverfahren, Metalloxidgehalt und Wirkzusätzen auf das Schaltverhalten von AgSnO2 in Relais (1).
VDE-Fachbericht 59 (2003) 133-142
Braumann, P.; Koffler, A.: Einfluss von Herstellungsverfahren, Metalloxidgehalt und Wirkzusätzen auf das Schaltverhalten von AgSnO2 in Relais (2).
VDE-Fachbericht 61 (2005) 149-154
 
Schöpf, Th.: Silber/Zinnoxid und andere Silber/Metalloxidwerkstoffe in
 
Netzrelais. VDE-Fachbericht 51 (1997) 41-50
 
Behrens, V.; Honig, Th.; Kraus, A.; Michal, R.: Schalteigenschaften von verschiedenen Silber/Zinnoxid-Werkstoffen in Kfz-Relais.
 
VDE-Fachbericht 51 (1997) 51-57
 
Braumann, P.: Prüfung der elektrischen Lebensdauer von Kfz-Relais. VDE-Fachbericht 55 (1999) 49-59
 
Schröder, K.-H.: Prüfverfahren in der Energietechnik. In Vinaricky, E. (Hrsg.): Elektrische Kontakte, Werkstoffe und Anwendungen. Springer-Verlag, Berlin, Heidelberg, New York (2002) 609-633
 
IEC/EN 60947-4-1: Low-voltage switchgear and controlgear - Part 4-1: Contactors and motor-starters-Electromechanical contactors and motor starters
 
IEC/EN 60947-5-1: Low-voltage switchgear and controlgear - Part 5-1: Control circuit devices and switching elements- Electromechanical control circuit devices
 
IEC/EN 60947-2: Low-voltage switchgear and controlgear - Part 2: Circuitbreakers
 
UL 489: „Molded Case Circuit Breakers, Molded Case Switches and Circuit Breaker enclosures“
 
Braumann, P.; Koffler, A.; Schröder, K.-H.: Analysis of Interrelation Between Mechanical and Eletrical Phenomena During Making Operations of Contacts: Proc. 17th Int. Conf. on Electrical Contacts, Nagoya, Japan, 1994
 
Braumann, P.; Koffler, A.: The Importance of Characterizing the Make and Break Operations to Allow Effective Contact Material Development. 19. ITK Nürnberg, VDE-Verlag, Berlin, Offenbach, (1998) 325-333
 
EN ISO 8044: Corrosion of metals and alloys - Basic terms and definitions. Berlin, Beuth-Verlag 1999
 
Abbott, W.H.: Contact Corrosion. in Slade, P.: Electrical Contacts, Principles and Applications: Marcel Dekker, Inc., New York, Basel, (1999) 113 - 154
 
Slade, P.: Introduction to Contact Tarnishing and Corrosion. in Slade, P.: Electrical Contacts, Principles and Applications: Marcel Dekker, Inc., New York, Basel, (1999) 89 - 112
 
Cosack, U.: Survey of Corrosion Tests with Pollutant Gases and their Relevance for Contact Material. Proc. of the 13th Intern. Conf. on Electr. Contacts, Lausanne, Switzerland, (1986) 316-325
 
Schnabl, R.; Paulsen, R.: Korrosionserscheinungen an Edelmetallen und
 
Trägerwerkstoffen. Metall 7 (1987) 696-701
 
Abbott, W.H.: The Development and Performance Characteristics of Flowing Mixed Gas Test Environments. IEEE Transactions on Components, Hybrids, and Manufacturing Technology, Vol. 2, No. 1, (1988) 22-35
 
Hienomen, R.; Rakkolainen, J.; Saarinen, T.; Aberg, M.: Nordic Project on Corrosion in Electronics. A Comparative Study on Field and Laboratory Test Results of Various Electronic Contacts. Proc. 14th Int. Conf. on Electric Contacts, Paris, (1988) 271-275
 
Leygraf, Ch.: Indoor Athmosperic Corrosion. VDE-Fachbericht 63 (2007) 39-52
 
ASTM Designation B 845-97: Standard Guide for Mixed Flowing Gas (MFG) Tests for Electrical Contacts, 1997
 
IEC Standard 68-2-60, Environmental Testing Part 2: Tests Flowing-Mixed Gas
 
Corrosion Test, 1995
 
Telcordia GR-63-CORE Issue 2, Section 5.5 : Airborne Contaminants Test
 
Methods, Nov. 2000
 
[[de:Prüfverfahren]]