Open main menu

Electrical Contacts β

Edelmetallpulver und -präparate

Revision as of 22:58, 18 September 2014 by Teitscheid (talk | contribs) (temp edit)

(diff) ← Older revision | Approved revision (diff) | Latest revision (diff) | Newer revision → (diff)

Contents

Edelmetallpulver

Edelmetallpulver kommen als Ausgangsprodukte für zahlreiche technische Anwendungen oder auch für medizinische und dekorative Zwecke zum Einsatz. Dazu zählen z.B. die Herstellung von Silber-Verbundwerkstoffen für elektrische Kontakte (Ag/Ni, Ag/Metalloxid, Ag/C, Ag/W u. a.), Katalysatoren, Elektroden oder Dentalprodukte. Darüber hinaus sind Edelmetalle in Pulverform Grundbestandteile für Präparate, Leitlacke und -klebstoffe.

Edelmetallpulver bestehen aus kleinen Partikeln von ca. 1 - 100 μm Durchmesser, die durch Kornform, -größe und -größenverteilung charakterisiert sind. Entsprechend dem gewählten Herstellungsverfahren weisen die Silber-Partikel eine unterschiedliche Morphologie auf, z.B. kugelig, kristallin oder dentritisch. Je kleiner der Partikeldurchmesser ist, um so größer ist die spezifische Oberfläche der Pulver.

Die scheinbare Dichte (Schütt- und Klopfdichte) der Pulver ist aufgrund der Zwischenräume zwischen den Partikeln niedrig, verglichen mit der Dichte erschmolzener Edelmetalle. Sie variiert in einem weiten Bereich von ca. 3 0,5 - 6 g/cm3, abhängig von der Morphologie der Partikel und ihrer Neigung zur Agglomeratbildung. Edelmetallpulver lassen sich pressen und sintern; ein gewisser Porenanteil bleibt jedoch erhalten.

 
Verschiedene Formen von Silber-Pulvern a) kugelig; b) abgerundete Kristallagglomerate


Edelmetallpulver werden nach verschiedenen Verfahren, z.B. durch Elektrolyse, Verdüsen aus der Schmelze, chemische Fällung oder durch Zementation mit unedleren Metallen, hergestellt. Je nach Herstellungsverfahren weisen Silber- Pulver unterschiedliche Eigenschaften auf (Table 1 und Qualitätsmerkmale verschieden hergestellter Silber-Pulver). So erhält man beim Verdüsen aus der Schmelze ein Pulver mit hoher Klopfdichte, das sich aus kugeligen Partikeln zusammensetzt. Durch Elektrolyse von Silbersalzlösungen entstehen im allgemeinen unregelmäßige, dentritische bis kristalline Formen. Bei chemischen Prozessen können sehr feine Pulver mit großen spezifischen Oberflächen erzeugt werden. Figure 1 zeigt exemplarisch REM-Aufnahmen von verdüstem Silber-Pulver mit kugeliger Kornform (a) und zementiertem Pulver aus abgerundeten Kristallagglomeraten (b).


Table 1: verschiedene Typen von Silber-Pulvern

Powder type

GE

GN1

ES

V

Manufacturing Process

chemical

chemical

electrolytic

atomized

Particle shape

agglomerated

agglomerated

dentritic

spherical

Avg. particle diameter

(median) [µm]

10 - 15

20 - 40

-

32 - 60

Medium particle size

(FSS - Fisher Sub Sieve Size) [µm]

-

-

4.0 - 6.0

-

Tap density

(DIN/ISO 3953) [g/cm3]

0.7 - 1.1

2.0 - 2.5

2.0 - 3.0

4.0 - 6.7

Specific surface area

(B.E.T.) [m2/g]

0.5 - 0.9

-

-

-

Edelmetallpräparate

Während früher Glas, Porzellan und Keramik vor allem für dekorative Zwecke mit Gold oder Platin überzogen wurden, dienen Edelmetalle bereits seit Jahren in weit größerem Masse dazu, verschiedene nichtmetallische Werkstoffe, wie Keramik, Glas oder Kunststoff elektrisch leitend zu machen. Zur Aufbringung auf das Grundmaterial wird das Edelmetall in feinpulveriger Form in einem organischen Träger dispergiert, der Lackbindemittel und spezielle Lösungsmittel enthält. Solche Präparate können über Siebdruck, Tampondruck, Spritztechnik, Tauchen oder mit einem Pinsel aufgetragen werden.

Edelmetall-Einbrennpräparate

Die in flüssiger oder pastenartiger Form vorliegenden Einbrennpräparate haben in der Elektrotechnik und Elektronik, insbesondere in der Dickschichttechnik ein breites Anwendungsfeld gefunden Table 2. Als edelmetallhaltiger Füllstoff wird wegen seiner hohen elektrischen Leitfähigkeit meist Silber eingesetzt. Nach dem Einbrennen, das in oxidierender Atmosphäre bei Temperaturen zwischen 400°C bis 850°C erfolgt, entsteht eine festhaftende, hochleitende Schicht. Bei der Verarbeitung im Siebdruckverfahren können beliebige Leiterbahnen aufgebracht werden Figure 2. Auf diese Weise entstehen Strompfade mit guten elektrischen Eigenschaften und hoher Temperaturbeständigkeit.

 
Solar cell with print pattern of ARGONOR N920


Table 2: Flüssige Silber-Präparate zum Einbrennen (ARGONOR)

Preparation

Substrate

Material

Application by

Firing Temperature [°C]

Properties

Silver Content [wt%]

Argonor N92

glass, ceramics

paint brush, spray gun

530 - 650

Viscosity

500 – 1.000 mPa·s, good solderability

65

Argonor

glass,

ceramics

screen

printing

530 - 650

Viscosity

10 – 15.000 mPa·s, good solderability

65

Conductive Paints and Adhesives

Conductive paints are precious metal preparations in liquid or paste form. They contain the metal filler material, fine silver particles as conductive pigments mostly in flake form, a paint compound on artificial resin basis, and an organic solvent Table 3. The solvent evaporates during drying in air or by aging at slightly elevated temperatures. This allows the silver particles to connect metallically and form conductive paths Figure 3.

Conductive adhesives are used mostly for mechanical bonding with low thermal impact. As the adhesive components high-polymer organic substances such as epoxy resins and mixed polymers are mostly used. They are made electrically filler materials such as flake shaped silver powders (70 – 80 wt%). Silver based conductive adhesives are available as single or two component adhesive systems. Both types are hardening without the application of pressure.


Table 3: Silver Paints, Conductive Pastes, and Conductive Adhesives
Preparation Substrate
Material
Application by Drying
[°C]
Properties Usage Amount
[g/100 cm2]
Area Resistance
[Ω/m2]
AROMAL 38 glass, plastics spraying, immersion,
paint brush
RT,
30 min
100°C
hard well conducting
Ag layer for broad applications
0.5 - 2 < 0.1
AROMAL 50 glass, wax, plastics spraying, immersion,
paint brush
10 min
RT
very flat surface,
especially for electrolytic build-up
0.5 - 2 < 0.2
AROMAL 70T plastics tampon printing 60 min
RT
hard and well conductive coating < 0.1
AROMAL 141 plastics,
paper- based plastics
screen printing 45 min
120°C
mechanically
very strong coatings
< 0.05
AROMAL 170 plastics screen printing 30 min
100°C
flexible layers,
well suited for foil materials
< 0.05
AROMAL K 5 A+B metal, glass dispenser,
screen printing
24h RT,
3h
80°C
mechanically very strong
bond connection
as alternative to soldering
< 0.1
AROMAL K 20 metal, plastics,
ceramics
dispenser,
screen printing
15 min
150°C
flexible bonds which help
decrease thermal stresses
< 0.1
DOSILAC Silver conductive paints in spray cans; can be spray painted; properties similar to those of AUROMAL 50

Conductive paints and adhesives have broad applications in electrical and electronic engineering. They are used for example for the contacting of film resistors, mounting of terminal wires, conducting electrostatic electricity, or contacting components at low temperatures.

The mechanical strength of the bond connections depends mostly on the selected hardening temperature Figure 4 .

 
Flexible keyboard contact pattern printed with AUROMAL 170
 
Shear force of an adhesive joint (silver adhesive AUROMAL K 20) as a function of the hardening temperature

Precious Metal Flakes

To obtain certain desired physical properties of preparations the dispersed precious metals in flat flake-like particles (generally called "flakes") are needed. These are produced by milling fine metal powders in the presence of milling additives or agents. The properties of these metal flakes, i.e. silver flakes (ability to disperse easily, flow characteristics, electrical conductivity) are strongly dependent on the particle shape and size as well as on the type of milling agents used. Figure 5 illustrates through SEM photos a type of rather fine silver flake (medium particle size 4 – 6 µm) (a) and another one with relatively large flat but thin flake shapes (particle size 8 – 11 µm) (b). Typical commercial silver flake types are listed with their respective properties in Table 4. Gold and platinum can also be produced as powder flakes. By volumes used they are however of lesser commercial importance.

 
SEM photos of silver flakes (a) fine grain (b) large flat


Table 4: Typical Commercial Silver Flake Types
Type of Flake F56 B190 ES4
Main characteristics Low tap density Very fine Pure, wide grain size distribution
Silver content [wt%] > 99.0 > 99.0 > 99.7
Med. Grain size [μm] Tap density 3 - 8 4 - 6 9 - 13
DIN/ISO 3953 [g/cm3] 0.7 - 1.1 2.1 - 2.7 2.7 - 3.6
Spec. Surface area B.E.T. [m2/g] 0.7 - 1.1 0.3 - 0.7