Open main menu

Electrical Contacts β

Difference between revisions of "Contact Spring Calculations"

(6.4.7 Contact Spring Calculations)
(Blanked the page)
(Tag: Blanking)
 
(42 intermediate revisions by 5 users not shown)
Line 1: Line 1:
===6.4.7 Contact Spring Calculations===
 
[[File:One side fixed contact bending spring.jpg|right|thumb|One side fixed contact bending spring]]
 
Fig. 6.20:
 
One side fixed contact bending spring<br />
 
L = Length of spring<br />
 
E = Modulus of elasticity<br />
 
B = Width of spring<br />
 
F = Spring force<br />
 
D = Thickness of spring<br />
 
x = Deflection<br />
 
max = maximum bending force
 
  
The influence of the dimensions can be illustrated best by using the single side fixed beam model (Fig. 6.20). For small deflections the following equation is valid:
 
:<math>F = \frac {3 x E x J}{L^3} x</math>
 
 
where J is the momentum of inertia of the rectangular cross section of the beam
 
:<math>J = \frac {B x D^3}{12}</math>
 
 
For springs with a circular cross-sectional area the momentum of inertia is
 
:<math>J=\pi D^4/64</math>
 
<math>D= Durchmesser</math>
 
 
To avoid plastic deformation of the spring the max bending force σ<sub>max</sub> cannot be exceeded
 
:<math>σ^max = \frac {3 x E x D}{2L^2}x^max</math>
 
 
The stress limit is defined through the fatigue limit and the 0.2% elongation limit
 
resp.
 
 
xmax= 2 x L ² Rp0,2
 
3 x D x E
 
 
and/or
 
 
Fmax= B x D ² Rp0,2
 
6L
 
 
 
*'''Special Spring Shapes'''
 
 
*'''Triangular spring'''
 
 
Deflection
 
x= L³
 
F
 
2 x E x J
 
 
= x L³
 
 
6 x F
 
E x B
 
 
Max. bending force
 
Fmax= 1 8 x F x L
 
B x D²
 
 
*'''Trapezoidal spring'''
 
 
Deflection
 
x= x L³
 
E x J
 
F
 
(2 + B /B )
 
 
x= x L³
 
E x B x D³
 
12 x F
 
(2 + B /B ) min ma
 
 
Max. bending force
 
 
Fmax= 1 8 x F x L
 
(2 + B /B ) x B x D² min max max
 
 
==References==
 
[[Application Tables and Guideline Data for Use of Electrical Contact Design#References|References]]
 

Latest revision as of 13:00, 27 March 2023