Open main menu

Electrical Contacts β

Changes

Platinum Metal Based Materials

659 bytes added, 10:24, 4 January 2023
no edit summary
The platinum group metals include the elements Pt, Pd, Rh, Ru, Ir, and Os ''(Table <xr id="tab:Properties_Production_Processes_and_Application_Forms_for_Platinum_Metals"/><!--(Tab. 2.6)''-->). For electrical contacts , platinum and palladium have practical significance as base alloy materials and ruthenium and iridium are used as alloying components. Pt and Pd have similar corrosion resistance as gold but because for the reason of their catalytical properties , they tend to polymerize adsorbed organic vapors on contact surfaces. During frictional movement between contact surfaces , the polymerized compounds known as “brown powder” are formed , which can lead to significantly a significant increase in contact resistance. Therefore Pt and Pd are typically used as alloys and not in their pure form for electrical contact applications.
<figtable id="tab:Properties_Production_Processes_and_Application_Forms_for_Platinum_Metals"><caption>'''<!--Table 2.6:-->Properties, Production Processes, and Application Forms for Platinum Metals'''</caption> {| class="twocolortable" style="text-align: left; font-size: 12px"|-!Element !Properties!Processing!Forms of Application|-|Ru<br />Ruthenium|Dull grey to silvery white, very hard and brittle,<br />in the presence of oxygen resistant to acids,<br />oxidizes during heating in air|Vapor deposition, sputtering, powder metallurgy,<br />warm-forming only possible at 1200 – 1500°C|Powder; in sheet form, as coatings,<br />and as wire mostly as alloying component|-|Rh<br />Rhodium is |Almost silvery white, very hard and brittle, not used as a solid contact material but soluble in acids,<br />oxidizes in air during red anneal|Electroplating, vapor deposition, sputtering,<br />after warm-forming at 800 – 1000°C cold working is applied for example as a possible|Coatings (electroplated layer ), alloying component,<br />in sliding contact systems. Ruthenium is mostly used limited form as an sheet and wire|-|Pd<br />Palladium|Dull white, resistant to most acids,<br />oxidizes at red anneal|Electroplating, vapor deposition,<br />sputtering, cold working|Sheet, strip, tubing, wire,<br />rivets, and coatings|-|Os<br />Osmium|Bluish white, hardest platinum metal,<br />very brittle, resistant against non-oxidizing acids,<br />oxidizes easily on air|Powder metallurgy|Powder, alloying component |-|Ir<br />Iridium|Almost silvery white, very hard and brittle,<br />acid resistant, oxidizes at red anneal|Vapor deposition, sputtering, powder metallurgy,<br />warm-forming possible at 1200 – 1500°C|Powder, alloying component,<br />in the material PdRu15. The metals osmium limited amounts as sheet|-|Pt<br />Platinum|Grey white, ductile, acid resistant except for aqua regia,<br />HBr, and iridium have no practical applications in electrical contacts.HJ, oxidation resistant at red anneal|Electroplating, vapor deposition,<br />sputtering, cold working|Sheet, strip, tubing, wire, rivets, coatings|}</figtable>
Since Pd was for the longest time rather stable in price it was looked at as a substitute for the more expensive gold. This was followed by a steep increase in the Pd price which caused a significant reduction in its use in electrical contacts. Today (2011) the Pd price again is lower than that of gold.
Alloys of Pt with Ru, Ir, Ni, and W were widely Rhodium is not used in electromechanical components in the telecommunication industry and in heavy duty automotive breaker points ''(Table 2.7)''. Today these components have been replaced in many applications by as a solid state technology and the usage of these materials contact material but is greatly reduced. Pd alloys however have applied for example as a more significant importanceelectroplated layer in sliding contact systems. PdCu15 Ruthenium is widely mostly used for example as an alloying component in automotive flasher relays. Because of their resistance to sulfide formation PdAg alloys are applied in various relay designsthe material PdRu15. The ability to thermally precipitation harden somemulti component alloys based on PdAgAuPt they find special usage in wear resistant sliding contact metals osmium and iridium have no practical applications. Pd44Ag38Cu15PtAuZn is a standard alloy in this groupelectrical contacts.
Platinum and palladium alloys are mainly used similar to Since Pd was for the gold based materials longest time rather stable in price, it was seen as a substitute for the form of welded wire and profile segments but rarely as contact rivetsmore expensive gold. Because of This was followed by a steep increase in the high precious metal prices joining technologies are used that allow the most economic application of the contact alloy Pd price, which caused a significant reduction in its use in the area where functionally neededelectrical contacts. Because of their resistance to material transfer they are used for DC applications and due to their higher arc erosion resistance they are applied for medium electrical loads up to about 30W in relays and switches ''Today (Table 2Dec.102021)''. Multi-component alloys based on Pd with higher hardness and wear resistance are mainly used as spring arms in sliding contact systems and DC miniature motorsthe palladium price is around 2600 Euro/oz.
Alloys of Pt with Ru, Ir, Ni and W were widely used in electromechanical components in the telecommunication industry and in heavy duty automotive breaker points (<xr id==DEVELOP"tab:ImageLIst=====BEGIN====Physical Properties of the Platinum Metals an their Alloys/>).
<xr figtable id="figtab:Physical Properties,_Production_Processes,_and_Application_Forms_for_Platinum of the Platinum Metalsan their Alloys"/> <caption>'''<!--Table 2.7:-->Physical Properties, Production Processes, and Application Forms for of the Platinum Metals an their Alloys'''</caption>
<xr id{| class="twocolortable" style="figtext-align:Physical_Properties_of_the_Platinum_Metals_and_their_Alloysleft; font-size: 12px"|-!Material!Platin/Palladium<br/>Content<br/>[wt.%] Physical Properties !Density<br/>[g/cm<sup>3</sup>]!Melting Point or Range<br/>[°C]!Electrical<br/>Resistivity<br/>[µΩ*cm]!Electrical<br/>Conductivity<br/>[MS/m]!Thermal<br/>Conductivity<br/>[W/m*K]!Temp. Coefficient of the Platinum Metals and their Alloys<br/>Electrical Resistance<br/>[10<sup>3</sup>/K]!modulus of<br/>Elasticity<br/>[Gpa]|-|Pt (99,95)| >99,95|21,5|1772|10,6|9,5|72|3,9|173|-|PtIr5|95|21,5|1774 - 1776|22,2|4,5|42||190|-|PtIr10|90|21,6|1780 - 1785|17,9|5,6|29|2,0|220|-|PtRu10|90|20,6|ca. 1800|33,3|3,0||0,83|235|-|PtNi6|92|19,2|1670 - 1710|30|3,3||1,5|180|-|PtW5|95|21,3|1830 - 1860|43,4|2,3||0,7|185|-|Pd (99,95)| >99,95|12,0|1554|10,8|9,3|72|3,8|124|-|PdCu15|85|11,3|1370 - 1400|38,5|2,6|17|0,49|175|-|PdCu40|60|10,5|1200 - 1230|33,3|3,0|38|0,28|175|-|PdNi5|95|11,8|1455 - 1485|16,9|5,9||2,47|175|-|}</figtable>
<xr id="fig:Mechanical_Properties_of_the_Platinum_Metals_and_their_Alloys"/>
Table 2.8: Mechanical Properties of the Platinum Metals and their Alloys
Today these components have been replaced in many applications by solid state technology and the usage of these materials is greatly reduced. Pd alloys however have a more significant importance. PdCu15 is widely used, for example in automotive flasher relays. Because of their resistance to sulfide formation PdAg alloys are applied in various relay designs. With the ability to thermally precipitation harden some multi component alloys based on PdAgAuPt, they find special usage in wear resistant sliding contact applications. Pd44Ag38Cu15PtAuZn is a standard alloy in this group (<xr id="figtab:Mechanical_Properties_of_the_Platinum_Metals_and_their_Alloys"/>Fig. <!--(Tab 2.258)--> and <xr id="tab: Influence of 1Contact_and_Switching_Properties_of_the_Platinum_Metals_and_their_Alloys"/><!--20 atom% of different additive metals on the electrical resistivity p of platinum (DegussaTab. 2.9)-->).
Platinum and palladium alloys are mainly used similar to the gold based materials in the form of welded wire and profile segments but rarely as contact rivets. Due to the high precious metal prices, joining technologies are used, that allow the most economic application of the contact alloy in the area where functionally needed. For reason of their resistance to material transfer they are used for DC applications and due to their higher arc erosion resistance, they are applied for medium electrical loads up to about 30W in relays and switches (<xr id="fig:Application_Examples_and_Form_of_Supply_for_Platinum_Metals_and_their_Alloys"/>Fig<!--(Table 2. 210)-->).26: Influence of 1Multi-22 atom% of different additive metals component alloys based on the electrical resistivity p of palladiumPd with higher hardness and wear resistance are mainly used as spring arms in sliding contact systems and DC miniature motors.
<xr figtable id="figtab:Mechanical_Properties_of_the_Platinum_Metals_and_their_Alloys"/>Fig. <caption>'''<!--Table 2.278: Phase diagram -->Mechanical Properties of platinum-iridiumthe Platinum Metals and their Alloys'''</caption><table class="twocolortable"><tr><th rowspan="2">Material</th><th colspan="2">Tensile Strength [MPa]</th><th colspan="2">Elongation A [%]</th><th colspan="2">Vickers Hardness HV 1</th></tr><tr><th>soft</th><th>70% cold worket</th><th>soft</th><th>70% cold worket</th><th>soft</th><th>70% cold worket</th></tr><tr><td>Pt (99,95)</td><td>150</td><td>360</td><td>40</td><td>3</td><td>40</td><td>120</td></tr><tr><td>PtIr5</td><td>260</td><td>550</td><td>25</td><td>2</td><td>85</td><td>160</td></tr><tr><td>PtIr10</td><td>340</td><td>570</td><td>24</td><td>2</td><td>105</td><td>210</td></tr><tr><td>PtRu10</td><td>650</td><td>1000</td><td>24</td><td>2</td><td>195</td><td>320</td></tr><tr><td>PtNi8</td><td>640</td><td>950</td><td>22</td><td>2</td><td>200</td><td>320</td></tr><tr><td>PtW5</td><td>530</td><td>860</td><td>21</td><td>2</td><td>150</td><td>270</td></tr><tr><td>Pd (99,95)</td><td>200</td><td>420</td><td>42</td><td>2</td><td>40</td><td>90</td></tr><tr><td>PdCu15</td><td>400</td><td>780</td><td>38</td><td>2</td><td>90</td><td>220</td></tr><tr><td>PdCu40</td><td>550</td><td>950</td><td>35</td><td>2</td><td>120</td><td>260</td></tr><tr><td>PdNi5</td><td>340</td><td>700</td><td>25</td><td>2</td><td>95</td><td>200</td></tr><tr><td>Pd35AuAgPt</td><td></td><td></td><td></td><td></td><td></td><td>420*</td></tr><tr><td>Pd44Ag38Cu15 PtAuZn</td><td/><td/><td/><td/><td/><td>405*</td></tr><tr><td>Pd40Co40W20</td><td/><td/><td/><td/><td/><td>680*</td></tr></table></figtable>
*maximum hardness
Fig. <figtable id="tab:Contact_and_Switching_Properties_of_the_Platinum_Metals_and_their_Alloys"><table class="twocolortable"><caption> '''<!--Table 2.289: Phase diagram -->Contact and Switching Properties of platinumthe Platinum Metals and their Alloys'''</caption><tr><th><p class="s11">Material</p></th><th><p class="s12">Properties<th colspan="2"></p></th></tr><tr><td><p class="s11">Pt</p></td><td><p class="s12">Very high corrosion resistance</p></td><td/></tr><tr><td><p class="s11">PtIr5 -nickel10</p></td><td><p class="s12">Very high corrosion resistance, low contact resistance</p></td><td><p class="s12">High arc erosion resistance, high hardness</p></td></tr><tr><td><p class="s11">PtRu10</p></td><td><p class="s12">Very high corrosion resistance, low welding tendency</p></td><td><p class="s12">Low contact resistance, very</p><p class="s12">high hardness</p></td></tr><tr><td><p class="s11">PtNi8</p></td><td><p class="s12">Low material transfer tendency</p></td><td><p class="s12">Very high hardness</p></td></tr><tr><td><p class="s11">PtW5</p></td><td><p class="s12">Low material transfer tendency</p></td><td><p class="s12">High hardness</p></td></tr><tr><td><p class="s11">Pd</p></td><td><p class="s12">Strong tendency to “Brown Powder” formation</p></td><td><p class="s12">Less arc erosion resistant than Pt</p></td></tr><tr><td><p class="s11">PdCu15</p><p class="s11">PdCu40</p></td><td><p class="s12">Tendency to “Brown Powder” formation</p></td><td><p class="s12">Mostly resistant to material</p><p class="s12">transfer, high hardness</p></td></tr><tr><td><p class="s11">PdNi5</p></td><td><p class="s12">Strong tendency to “Brown Powder” formation</p></td><td><p class="s12">Low welding tendency</p></td></tr><tr><td><p class="s11">Pd44Ag38Cu15</p><p class="s11">PtAuZn</p></td><td><p class="s12">High mechanical wear resistance</p></td><td><p class="s12">Standard material for sliding</p><p class="s12">contact brushes</p></td></tr></table></figtable>
Fig. 2.29: Phase diagram of platinum-tungsten
Fig. 2.30: Phase diagram of palladium-copper
Fig. <figtable id="fig:Application_Examples_and_Form_of_Supply_for_Platinum_Metals_and_their_Alloys"><table class="twocolortable"><caption>'''<!--Table 2.3110: Strain hardening -->Application Examples and Form of Supply for Platinum Metals and their Alloys'''</caption><tr><th><p class="s11">Material</p></th><th><p class="s12">Application Examples</p></th><th><p class="s12">Forms of Supply</p></th></tr><tr><td><p class="s11">Pt by cold working(99,95)</p></td><td><p class="s12">Relays</p></td><td><p class="s12">Contact rivets, welded contact parts</p></td></tr><tr><td><p class="s11">PtIr5</p><p class="s11">PtIr10</p><p class="s11">PtRu10</p><p class="s11">PtNi8</p><p class="s11">PtW5</p></td><td><p class="s12">Relays, sliding contact systems,</p><p class="s12">automotive ignition breaker points</p></td><td><p class="s12">'''Semi-finished Contact Materials''':</p><p class="s12">Wire, seam-welded contact profiles</p><p class="s12">'''Contact Parts:'''</p><p class="s12">Tips, wire-formed parts, solid and composite contact rivets, welded contact parts</p></td></tr><tr><td><p class="s11">Pd (99,95)</p><p class="s11">PdNi5</p></td><td><p class="s12">Relays</p></td><td><p class="s12">Micro-profiles (weld tapes), contact rivets, welded contact parts</p></td></tr><tr><td><p class="s11">PdCu15</p><p class="s11">PdCu40</p></td><td><p class="s12">Automotive flasher relays</p></td><td><p class="s12">Micro-profiles, composite contact rivets</p></td></tr><tr><td><p class="s11">Pd35AuAgPt</p><p class="s11">Pd44Ag38Cu15</p><p class="s11">PtAuZn</p><p class="s11">Pd40Co40W20</p></td><td><p class="s12">Potentiometers, slip rings, miniature</p><p class="s12">DC motors</p></td><td><p class="s12">Wire-formed parts, welded wire segments, multi-arm sliding contact brushes</p></td></tr></table></figtable>
Fig. 2.32: Softening of Pt after annealing for 0.5 hrs after 80% cold working
Fig. 2.33: Strain hardening of PtIr5 by cold working<div class="multiple-images">
Fig. 2<figure id="fig:Influence_of_1-20_atom%_of_different_additive_metals_on_the_electrical_resistivit_ p_of_platinum_(Degussa)">[[File:Influence of platinum degussa.34: Softening jpg|left|thumb|<caption>Influence of PtIr5 after annealing for 1 hr after - 20 atom% of different degrees additive metals on the electrical resistivity p of cold workingplatinum (Degussa)</caption>]]</figure>
Fig<figure id="fig:Influence_of_1-20_atom%_of_different_additive_metals_on_the_electrical_resistivit_ p_of_platinum">[[File:Influence of palladium. 2.35: Strain hardening jpg|left|thumb|<caption>Influence of 1-22 atom% of different additive metals on the electrical resistivity p of PtNi8 by cold workingpalladium</caption>]]</figure>
<figure id="fig:Phase_diagram_of_platinum-iridium">[[File:Phase diagram of platinum iridium.jpg|left|thumb|<caption>Fig. 2.3627: Softening Phase diagram of PtNi8 after annealing for 1 hr after 80% cold workingplatinum-iridium</caption>]]</figure>
<figure id="fig:Phase_diagram_of_platinum-nickel">[[File:Phase diagram of platinum nickel.jpg|left|thumb|<caption>Fig. 2.3728: Strain hardening Phase diagram of PtW5 by cold workingplatinum-nickel</caption>]]</figure>
<figure id="fig:Phase_diagram_of_platinum-tungsten">[[File:Phase diagram of palladium copper.jpg|left|thumb|<caption>Fig. 2.3829: Softening Phase diagram of PtW5 after annealing for 1hr after 80% cold workingplatinum-tungsten</caption>]]</figure>
<figure id="fig:Phase_diagram_of_platinum-copper">[[File:Phase diagram of palladium copper2.jpg|left|thumb|<caption>Fig. 2.3930: Strain hardening Phase diagram of Pd 99.99 by cold workingpalladium-copper</caption>]]</figure>
<figure id="fig:Strain_hardening_of_Pt_by_cold_working">[[File:Strain hardening of Pt by cold working.jpg|left|thumb|<caption>Fig. 2.4031: Strain hardening of PdCu15 Pt by cold working</caption>]]</figure>
<figure id="fig:Softening_of_Pt_after_annealing_for_0.5_hrs_after_80%_cold_working">[[File:Softening of Pt after annealing.jpg|left|thumb|<caption>Fig. 2.4132: Softening of PdCu15 Pt after annealing for 0.5 hrsafter 80% cold working</caption>]]</figure>
<figure id="fig:Strain_hardening_of_PtIr5_by_cold_working">[[File:Strain hardening of PtIr5 by cold working.jpg|left|thumb|<caption>Fig. 2.4233: Strain hardening of PdCu40 PtIr5 by cold working</caption>]]</figure>
<figure id="fig:Softening_of_PtIr5_after_annealing_for_1_hr_after_different degrees_of_cold_working">[[File:Softening of PtIr5 after annealing.jpg|left|thumb|<caption>Fig. 2.4334: Softening of PdCu40 PtIr5 after annealing for 0.5 hrs 1 hr after 80% different degrees of cold working</caption>]]</figure>
<figure id="fig:Strain_hardening_of_PtNi8_by_cold_working">[[File:Strain hardening of PtNi8 by cold working.jpg|left|thumb|<caption>Fig. 2.4435: Electrical resistivity p Strain hardening of PdCu alloys with and without an annealing step for forming an ordered phasePtNi8 by cold working</caption>]]</figure>
'''Table <figure id="fig:Softening_of_PtNi8_after_annealing_for_1_hr_after_80%_cold_working">[[File:Softening of PtNi8 after annealing.jpg|left|thumb|<caption>Fig. 2.936: Contact and Switching Properties Softening of the Platinum Metals and their Alloys'''PtNi8 after annealing for 1 hr after 80% cold working</caption>]]</figure>
'''Table <figure id="fig:Strain_hardening_of_PtW5_by_cold_working">[[File:Strain hardening of PtW5 by cold working.jpg|left|thumb|<caption>Fig. 2.1037: Application Examples and Form Strain hardening of Supply for Platinum Metals and their Alloys'''PtW5 by cold working</caption>]]</figure>
===END====Table 2.6: Properties, Production Processes, and Application Forms for Platinum Metals<figtable figure id="fig:Properties,_Production_Processes,_and_Application_Forms_for_Platinum MetalsSoftening_of_PtW5_after_annealing_for_1_hr_after_80%_cold_working">[[File:Properties production platinum metalsSoftening of PtW5 after annealing.jpg|left|thumb|<caption>Properties, Production Processes and Application Forms Fig. 2.38: Softening of PtW5 after annealing for Platinum Metals1 hr after 80% cold working</caption>]]</figtablefigure><figtable id="fig:Physical_Properties_of_the_Platinum_Metals_and_their_Alloys">Table 2.7: Physical Properties of the Platinum Metals and their Alloys</figtable><figtable id="fig:Mechanical_Properties_of_the_Platinum_Metals_and_their_Alloys">'''Table 2.8: Mechanical Properties of the Platinum Metals and their Alloys'''
<table borderfigure id="1" cellspacing="0" style="border-collapsefig:collapseStrain_hardening_of_Pd_99.99_by_cold_working"><tr><td/><td><p class="s11">soft</p></td><td><p class="s11">70% cold worket</p></td><td><p class="s11">soft</p></td><td><p class="s11">70% [[File:Strain hardening of Pd-99 99by coldworking.jpg|left|thumb|</p><p class="s11">worket</p></td><td><p class="s11">soft</p></td><td><p class="s11">70% cold</p><p class="s11">worket</p></td></tr><tr><td><p class="s11">Pt (99,95)</p></td><td><p class="s11">150</p></td><td><p class="s11">360</p></td><td><p class="s11">40</p></td><td><p class="s11">3</p></td><td><p class="s11">40</p></td><td><p class="s11">120</p></td></tr><tr><td><p class="s11">PtIr5</p></td><td><p class="s11">260</p></td><td><p class="s11">550</p></td><td><p class="s11">25</p></td><td><p class="s11"caption>Fig. 2</p></td><td><p class="s11">85</p></td><td><p class="s11">160</p></td></tr><tr><td><p class="s11">PtIr10</p></td><td><p class="s11">340</p></td><td><p class="s11">570</p></td><td><p class="s11">24</p></td><td><p class="s11">2</p></td><td><p class="s11">105</p></td><td><p class="s11">210</p></td></tr><tr><td><p class="s11">PtRu10</p></td><td><p class="s11">650</p></td><td><p class="s11">1000</p></td><td><p class="s11">24</p></td><td><p class="s11">2</p></td><td><p class="s11">195</p></td><td><p class="s11">320</p></td></tr><tr><td><p class="s11">PtNi8</p></td><td><p class="s11">640</p></td><td><p class="s11">950</p></td><td><p class="s11">22</p></td><td><p class="s11">2</p></td><td><p class="s11">200</p></td><td><p class="s11">320</p></td></tr><tr><td><p class="s11">PtW5</p></td><td><p class="s11">530</p></td><td><p class="s11">860</p></td><td><p class="s11">21</p></td><td><p class="s11">2</p></td><td><p class="s11">150</p></td><td><p class="s11">270</p></td></tr><tr><td><p class="s11">.39: Strain hardening of Pd (99,95)</p></td><td><p class="s11">200</p></td><td><p class="s11">420</p></td><td><p class="s11">42</p></td><td><p class="s11">2</p></td><td><p class="s11">40</p></td><td><p class="s11">90</p></td></tr><tr><td><p class="s11">PdCu15</p></td><td><p class="s11">400</p></td><td><p class="s11">780</p></td><td><p class="s11">38</p></td><td><p class="s11">2</p></td><td><p class="s11">90</p></td><td><p class="s11">220</p></td></tr><tr><td><p class="s11">PdCu40</p></td><td><p class="s11">550</p></td><td><p class="s11">950</p></td><td><p class="s11">35</p></td><td><p class="s11">2</p></td><td><p class="s11">120</p></td><td><p class="s11">260</p></td></tr><tr><td><p class="s11">PdNi5</p><p class="s11">Pd35AuAgPt</p></td><td><p class="s11">340</p></td><td><p class="s11">700</p></td><td><p class="s11">25</p></td><td><p class="s11">2</p></td><td><p class="s11">95</p></td><td><p class="s11">200</p><p class="s11">420*</p></td></tr><tr><td><p class="s11">Pd44Ag38Cu15</p></td><td/><td/><td/><td/><td/><td><p class="s11">405*</p></td></tr><tr><td><p class="s11">PtAuZn</p><p class="s11">Pd40Co40W20</p></td><td/><td/><td/><td/><td/><td><p class="s11">680*</p></td></tr><tr><td><p class="s31">*maximum hardness</p></td><td/><td/><td/><td/><td/><td/></tr>.99 by cold working</tablecaption>]]</figtablefigure>
Fig. 2.25<figure id="fig: Influence of 1-20 atom% of different additive metals on the electrical resistivity p of platinum (Degussa)Strain_hardening_of_PdCu15_by_cold_working">[[File:Influence Strain hardening of platinum degussaPdCu15 by cold working.jpg|rightleft|thumb|Influence <caption>Fig. 2.40: Strain hardening of 1- 20 atom% of different additive metals on the electrical resistivity p of platinum (Degussa)PdCu15 by cold working</caption>]]</figure>
Fig<figure id="fig:Softening_of_PdCu15_after_annealing_for_0. 2.26: Influence of 1-22 atom% of different additive metals on the electrical resistivity p of palladium5_hrs">[[File:Influence Softening of palladiumPdCu15 after annealing.jpg|rightleft|thumb|Influence <caption>Softening of 1-22 atom% of different additive metals on the electrical resistivity p of palladiumPdCu15 after annealing for 0.5 hrs</caption>]]</figure>
Fig. 2.27<figure id="fig: Phase diagram of platinum-iridiumStrain_hardening_of_PdCu40_by_cold_working">[[File:Phase diagram Strain hardening of platinum iridiumPdCu40 by cold working.jpg|rightleft|thumb|Phase diagram <caption>Strain hardening of platinum-iridiumPdCu40 by cold working</caption>]]</figure>
Fig. 2.28: Phase diagram of platinum-nickel[[File:Phase diagram of platinum nickel.jpg|right|thumb|Phase diagram of platinum-nickel]]Fig. 2.29: Phase diagram of platinum-tungsten[[File:Phase diagram of palladium copper.jpg|right|thumb|Phase diagram of platinum-tungsten]]Fig. 2.30: Phase diagram of palladium-copper[[File:Phase diagram of palladium copper2.jpg|right|thumb|Phase diagram of palladium-copper]]Fig. 2.31: Strain hardening of Pt by cold working[[File:Strain hardening of Pt by cold working.jpg|right|thumb|Strain hardening of Pt by cold working]]Fig. 2.32: Softening of Pt after annealing for 0.5 hrs after 80% cold working[[File:Softening of Pt after annealing.jpg|right|thumb|Softening of Pt after annealing for 0.5 hrs after 80% cold working]]Fig. 2.33: Strain hardening of PtIr5 by cold working[[File:Strain hardening of PtIr5 by cold working.jpg|right|thumb|Strain hardening of PtIr5 by cold working]]Fig. 2.34: Softening of PtIr5 after annealing for 1 hr after different degrees of cold working[[File:Softening of PtIr5 after annealing.jpg|right|thumb|Softening of PtIr5 after annealing for 1 hr after different degrees of cold working]]Fig. 2.35: Strain hardening of PtNi8 by cold working[[File:Strain hardening of PtNi8 by cold working.jpg|right|thumb|Strain hardening of PtNi8 by cold working]]Fig. 2.36: Softening of PtNi8 after annealing for 1 hr after 80% cold working[[File:Softening of PtNi8 after annealing.jpg|right|thumb|Softening of PtNi8 after annealing for 1 hr after 80% cold working]]Fig. 2.37<figure id="fig: Strain hardening of PtW5 by cold working[[File:Strain hardening of PtW5 by cold working.jpg|right|thumb|Strain hardening of PtW5 by cold working]]Fig. 2Softening_of_PdCu40_after_annealing_for_0.38: Softening of PtW5 after annealing for 1hr after 805_hrs_after_80% cold working[[File:Softening of PtW5 after annealing.jpg|right|thumb|Softening of PtW5 after annealing for 1hr after 80% cold working]]Fig. 2.39: Strain hardening of Pd 99.99 by cold working[[File:Strain hardening of Pd-99 99by cold working.jpg|right|thumb|Strain hardening of Pd 99.99 by cold working]]Fig. 2.40: Strain hardening of PdCu15 by cold working[[File:Strain hardening of PdCu15 by cold working.jpg|right|thumb|Strain hardening of PdCu15 by cold working]]Fig. 2.41: Softening of PdCu15 after annealing for 0.5 hrs[[File:Softening of PdCu15 after annealing.jpg|right|thumb|Softening of PdCu15 after annealing for 0.5 hrs]]Fig. 2.42: Strain hardening of PdCu40 by cold working[[File:Strain hardening of PdCu40 by cold working.jpg|right|thumb|Strain hardening of PdCu40 by cold working]]Fig. 2.43: Softening of PdCu40 after annealing for 0.5 hrs after 80% cold working_cold_working">[[File:Softening of PdCu40 after annealing.jpg|rightleft|thumb|<caption>Softening of PdCu40 after annealing for 0.5 hrs after 80% cold working</caption>]]Fig. 2.44: Electrical resistivity p of PdCu alloys with and without an annealing step for forming an ordered phase[[File:Electrical resistivity p of PdCu alloys.jpg|right|thumb|Electrical resistivity p of PdCu alloys with and without an annealing step for forming an ordered phase]]</figure>
'''Table 2.9: Contact and Switching Properties of the Platinum Metals and their Alloys'''<table border="1" cellspacingfigure id="0" style="border-collapsefig:collapseElectrical_resistivity_p_of_PdCu_alloys"><tr><td><[[File:Electrical resistivity p class="s11">Materialof PdCu alloys.jpg|left|thumb|</p></td><tdcaption><Electrical resistivity p class="s12">Properties</p></td></tr><tr><td><p class="s11">Pt</p></td><td><p class="s12">Very high corrosion resistance</p></td><td/></tr><tr><td><p class="s11">PtIr5 - 10</p></td><td><p class="s12">Very high corrosion resistance, low contact resistance</p></td><td><p class="s12">High arc erosion resistance, high hardness</p></td></tr><tr><td><p class="s11">PtRu10</p></td><td><p class="s12">Very high corrosion resistance, low welding tendency</p></td><td><p class="s12">Low contact resistance, very</p><p class="s12">high hardness</p></td></tr><tr><td><p class="s11">PtNi8</p></td><td><p class="s12">Low material transfer tendency</p></td><td><p class="s12">Very high hardness</p></td></tr><tr><td><p class="s11">PtW5</p></td><td><p class="s12">Low material transfer tendency</p></td><td><p class="s12">High hardness</p></td></tr><tr><td><p class="s11">Pd</p></td><td><p class="s12">Strong tendency to “Brown Powder” formation</p></td><td><p class="s12">Less arc erosion resistant than Pt</p></td></tr><tr><td><p class="s11">PdCu15</p><p class="s11">PdCu40</p></td><td><p class="s12">Tendency to “Brown Powder” formation</p></td><td><p class="s12">Mostly resistant to material</p><p class="s12">transfer, high hardness</p></td></tr><tr><td><p class="s11">PdNi5</p></td><td><p class="s12">Strong tendency to “Brown Powder” formation</p></td><td><p class="s12">Low welding tendency</p></td></tr><tr><td><p class="s11">Pd44Ag38Cu15</p><p class="s11">PtAuZn</p></td><td><p class="s12">High mechanical wear resistance</p></td><td><p class="s12">Standard material of PdCu alloys with and without an annealing step for slidingforming an ordered phase</p><p class="s12">contact brushes</p></td></trcaption>]]</tablefigure>
'''Table 2.10: Application Examples and Form of Supply for Platinum Metals and their Alloys'''<table border="1" cellspacing="0" style="border-collapse:collapse"><tr><td><p class="s11">Material</p></td><td><p class="s12">Application Examples</p></td><td><p class="s12">Forms of Supply</p></td></tr><tr><td><p class="s11">Pt (99,95)</p></td><td><p class="s12">Relays</p></td><td><p class="s12">Contact rivets, welded contact parts</p></td></tr><tr><td><p class="s11">PtIr5</p><p class="s11">PtIr10</p><p class="s11">PtRu10</p><p class="s11">PtNi8</p><p class="s11">PtW5</p></td><td><p class="s12">Relays, sliding contact systems,</p><p class="s12">automotive ignition breaker points</p></td><td><p class="s12">Semi-finished Contact Materials:</p><p class="s12">Wire, seam-welded contact profiles</p><p class="s12">Contact Parts:</p><p class="s12">Tips, wire-formed parts, solid and composite contact rivets, welded contact parts</p></td></tr><tr><td><p class="s11">Pd (99,95)</p><p class="s11">PdNi5</p></td><td><p class="s12">Relays</p></td><td><p class="s12">Micro-profiles (weld tapes), contact rivets, welded contact parts</p></td></tr><tr><td><p class="s11">PdCu15</p><p class="s11">PdCu40</p></td><td><p class="s12">Automotive flasher relays</p></td><td><p class="s12">Micro-profiles, composite contact rivets</p></td></tr><tr><td><p class="s11">Pd35AuAgPt</pdiv><p div class="s11clear">Pd44Ag38Cu15</p><p class="s11">PtAuZn</p><p class="s11">Pd40Co40W20</p></td><td><p class="s12">Potentiometers, slip rings, miniature</p><p class="s12">DC motors</p></td><td><p class="s12">Wire-formed parts, welded wire segments, multi-arm sliding contact brushes</p></td></tr></tablediv>
==References==
[[Contact Materials for Electrical Engineering#References|References]]
 
[[de:Werkstoffe_aus_Platin-Metallen]]